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1.  Introduction

Estimating the shape of a deforming cylindrical rod from its 
surface strains has been given a considerable attention since 
Wilk (1988) [1]. Some recent studies have reported the shape 
sensing of various deformable cylinder-shaped structures such 
as pipelines [2], endoscopes [3, 4], biopsy needles [5], robotic 
surgical instruments [6, 7], and multicore optical fibers [8–12].

Most existing studies on the shape sensing of cylindrical 
rods focused on optical strain sensing methods, while only a 

few presented the deformation geometry models or numerical 
procedures used. Wilk showed several detailed formulations 
by which to determine the deformation state of a cylindrical 
rod under bending, twisting, shear, and elongation. However, 
he did not cover cases in which bending and twisting take 
place at the same time, as doing so requires a proper geometric 
model of the strain on the surface of the rod. Recently, Zhang 
et al (2013) [2], Askins et al (2008) [8], and Froggatt et al 
(2014) [10] introduced a number of approximate methods for 
the shape estimation of a bent and twisted rod. Askins modeled 
the strain caused by the combination of bending and twist as 
a linear combination, and Froggatt employed the Pythagoras’ 
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theorem to decompose the bend-induced strain and the twist-
induced strain on the surface. Zhang approximated the strain 
by modeling the fiber shape as an Archimedean spiral. The 
effect of Frenet–Serret torsion was neglected in these studies. 
Froggatt’s model proved to be particularly applicable for heli-
cally wound multi-core optical fibers, for which the strains 
can be measured with very high resolutions using Rayleigh 
scattering. However, the deformation geometries proposed 
in these reports are not precise descriptions of the three-
dimensional (3D) deformation of a rod, but are rather more of 
a crude approximation.

In our previous works [13, 14], we suggested a curve 
known as a superhelix to model the geodesics on the curved 
surface of a bent and twisted cylinder. A superhelix is a 3D 
space curve that is helically coiled around a helix, which can 
represent the geodesics on the surface of a cylinder subjected 
to 3D bending, and hence can be used as a deformation geom-
etry model for the shape sensing of a cylinder. A superhelix 
is especially effective as a geometric model for strain sensors 
that are laid in a helical configuration, where the rate of spin 
of the helix is meant to change according to twist deformation.

In one of our recent studies [15], we introduced the helical 
extension method (HEM), a new method for reconstructing 
a 3D space curve from its curvature and torsion, which may 
be useful for the shape sensing of a rod that is subjected to 
3D bending. This method, as the name implies, regards each 
segment of the curve as a helix, and has been shown to outper-
form the conventional 4th order Runge–Kutta method.

In this study, we aim to demonstrate the entire numerical 
procedure of shape sensing, by combining the theories we 
developed in our two previous works. We will cover in detail 
how the deformation state of a cylindrical rod is precisely 
determined from strain measurements from the sensors that 
are bound on the surface of the rod in triple helices.

Later in this paper, we specify our problem in detail and 
show how the shape estimation is done in section 2. In sec-
tion  3, we present a numerical simulation to validate our 
method and show the results. The conclusion and future works 
are presented in section 4.

2.  Numerical procedure

The triple helix configuration seems to be an ideal sensor 
formation for measuring the bending and twist of a cylinder. 
It comprises three arrays of sensors helically wound on the 
cylinder’s surface at a constant rotational rate and with equal 
angular gaps apart from one another. This formation allows us 
to measure the twist and bending deformation simultaneously, 
and fits the number of sensors per segment to its minimum, 
which is equal to the degree of freedom of bending and twist. 
It also gets the information of strain measurements radially 
balanced, and keeps the fiber formation on the cross-sections 
conserved throughout the length of the fiber.

The cylinder under test is presumed to have three sets of 
fiber optic strain sensors attached in a triple helix form on its 
surface. For convenience, hereafter we will refer to these sets 
of sensors as fibers. Although each of the fiber strands is con-
tinuous, the strain measurement is normally done in a discrete 
fashion. Therefore, there is bound to be a certain basic gauge 
length depending on the spatial resolution of the strain sensing 
method being used. In this study, we assume that the cylinder 
is divided into segments of equal lengths and that the strains 
are received from three fiber segments for each segment. The 
cross-sections of the cylinder that border each pair of con-
secutive segments are called nodes. Figure 1 shows the overall 
shape of a typical cylinder under test in its undeformed state. 
The fibers are depicted by the red, green, and blue curves. The 
3D positions of the centerline of a cylinder and the sensors 
that are twined on the surface can be parametrized as

C(s) =




0
0
s


 ,� (1)

and

F(s) =




r cos (ωos + θi)

r sin (ωos + θi)

s


 , i = 1, 2, 3,� (2)

respectively, where 0 � s � L is the arclength parameter of 
the centerline of the cylinder, and ωo is the initial rate of spin 
of the helix with respect to s on the undeformed cylinder. The 
angle θi represents the direction of the fibers at s  =  0 on the 
xy plane as shown in figure 1(b). In this study, we let θ1 = 0, 
θ2 = 2π

3 , and θ3 = 4π
3 .

In this study, we ignore the thickness of the fibers and rep-
resent their positions by the center of the cross-section of the 
fiber in each case. Moreover, we regard the cylindrical surface 
that includes the fibers’ central curves as the surface of our 
cylinder.

To redefine our problem, we are supposed to determine the 
following.

Figure 1.  (a) A typical cylinder under test in its undeformed 
state. In this example, the cylinder is divided into four sampling 
segments. The three strands of helical fibers are depicted by the red, 
green, and blue curves. (b) The cross-section at s  =  0 is represented 
on the xy plane. In every cross-section, the fibers are arranged to 
form an equilateral triangle, displaced from the center by radius r 
and angled apart from one another by 120 degrees.

Meas. Sci. Technol. 29 (2018) 095003
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	 •	�The local deformation factors of each segment: The 
curvature of the central curve κ, the torsion of the cen-
tral curve τ, the azimuth angle of the first fiber from the 
bending direction in the halfway cross-section of the seg-
ment ψ, and the rate at which the fiber is wound on the 
cylinder ω.

	 •	�The overall shape of the deformed cylinder: Central node 
positions and fiber node positions.

These factors are determined with the following 
information,

	 •	�The cylinder and the fibers in the undeformed state: The 
overall length of the cylinder L, the radius of the cylinder 
r, the number of segments Nseg, the length of a segment 
∆s, and the original rate of spin of the fibers ωo.

	 •	�The clamped end (s  =  0) of the cylinder: The position 
of the center of the cylinder at s  =  0, the position of the 
fibers at s  =  0, and the tangential direction of the central 
curve of the cylinder at s  =  0.

	 •	�The strains on the surface received from the sensors after 
deformation

under the following assumptions.

	 •	�The cross-sections are conserved undeformable and 
perpendicular.

	 •	�The cylinder is neither elongated nor compressed along 
its central axis, and hence the central curve stays unit-
speed after deformation.

	 •	�The deformation is bending and twisting only.

Our solution to this problem is a two-stage procedure. First, 
we determine the local deformation factors from the surface 
strains, after which we reconstruct the overall shape of the 
cylinder from the local deformation factors by positioning the 
central and fiber nodes.

2.1.  Determining the local deformation factors from the local 
strains

At this stage, the strains received from the three fiber seg-
ments ε1, ε2, and ε3 are used to obtain the local deformation 
factors, ψ, κ, τ, and ω. ψ represents the direction of the fibers 
away from the bending direction, and hence indicates the 
bending direction. κ and τ represent the curvature and the 
rate of change of the bending direction of the central curve, 
respectively. ω represents the rate at which the fibers are spun 
on the cylinder, which changes due to twist deformation of the 
cylinder, hence indicates the degree of twist.

We determine κ, ψ, and ω first, and then calculate τ from its 
relation with ψ, and ω. During this process, the fiber segments 
are assumed to take the form of segments of superhelices, as 
shown in figure 2. In our previous works [13, 14], we derived 
the equation of a superhelix, as

F(s) =




κ
κ2+τ 2 cos

(√
κ2 + τ 2s

)
− r cos ((ω − τ) s + ψ) cos

(√
κ2 + τ 2s

)

+r τ√
κ2+τ 2

sin ((ω − τ) s + ψ) sin
(√

κ2 + τ 2s
)

κ
κ2+τ 2 sin

(√
κ2 + τ 2s

)
− r cos ((ω − τ) s + ψ) sin

(√
κ2 + τ 2s

)

−r τ√
κ2+τ 2

sin ((ω − τ) s + ψ) cos
(√

κ2 + τ 2s
)

τ√
κ2+τ 2

s + r κ√
κ2+τ 2

sin ((ω − τ) s + ψ)




,

� (3)
by which we can express the shape of the deformed fiber 
segments as shown in figure  2(a). Here, I used parentheses 
instead of square brackets to indicate that these coordinates 
are represented in the local uvw-frame, in contrast to (1) and 
(2) which were written in the global xyz-frame. The û-axis of 
the local coordinate is equivalent to the opposite direction of 
n̂ in figure 2(b), which is the normal vector at the midpoint 
of the central curve segment, and the ŵ-axis is the axis of the 
central helix. In the local frame, s  =  0 at the midpoint of the 

segment, and −∆s
2 � s � ∆s

2 .

Figure 2.  Modeling of a cylinder segment subjected to bending and 
twisting at constant rates. (a) The central curve deflects into a helix, 
and the fibers bound on the surface become superhelices. (b) The 
fiber phase ψ represents the azimuth angle of the red fiber on the 
n̂b̂-plane in the cross-section that halves the segment.
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A more detailed derivation of (3) can be found in our 
previous work [13]. In that study, we attempted to derive an 
analytical formula for the arc length of a superhelix, which 
eventually served to determine the strain on a deforming cyl-
inder from the change in the length of an infinitesimal sec-
tion along the curve on the cylinder’s surface. However, it was 
found that it was not simple to derive a complete and concise 
formula for the arc length of a superhelix; hence there remains 
no exact method with which to assess the strain on the surface 
of a deforming cylinder.

Recently, we found an alternative means of formulating the 
strain on the surface of a cylinder, once again by using the 
superhelix model. In this new method, we employ the rate of 
spatial progression, instead of the arc length, of a superhelix. 

By letting F(s) = [F1(s) F2(s) F3(s)]
T, we can express the 

rate of spatial progression of a superhelix as

v(s) =

√[
d
ds

F1(s)
]2

+

[
d
ds

F2(s)
]2

+

[
d
ds

F3(s)
]2

=

√
[1 − rκ cos ((ω − τ)s + ψ)]

2
+ (rω)2.

�

(4)

Since v(s) is the rate with respect to s, the arc length of a 
superhelix can be obtained by integrating v(s) over s. From 
the definition of the nominal strain, we have the strain on the 
cylinder’s surface within the section [s, s + δs] as

ε =
l − lo

lo

=

∫ s+δs
s v(σ)ds∫ s+δs

s vo(σ)ds
− 1,

�

(5)

where lo and vo represent the undeformed length and the unde-
formed spatial progression rate, respectively. By making δs 
approach zero, we can have the strain parameterized with s as

ε(s) = lim
δs→0

∫ s+δs
s v(σ)ds∫ s+δs

s vo(σ)ds
− 1

= lim
δs→0

∫ s+δs
s v(σ)ds

δs∫ s+δs
s vo(σ)ds

δs

− 1

=
v(s)
vo(s)

− 1

=

√
[1 − rκ cos ((ω − τ)s + ψ)]

2
+ (rω)2

1 + (rωo)
2 − 1,

�

(6)

and by substituting s  =  0 into (6), we obtain a formula that 
offers the strain at any certain point on the superhelix wher-
ever the phase angle ψ is known.

ε =

√
(1 − rκ cosψ)2

+ (rω)2

1 + (rωo)
2 − 1.� (7)

Note that (7) has no τ in it, meaning that the local surface 
strain on the bending cylinder is independent of the torsion of 
the central curve, the rate of change of the bending direction 
of the cylinder. This is fairly counter-intuitive to us, because 

we know that the arc length of a superhelix largely depends on 
τ, as proven in our previous works [13, 14]. This also means 
that we cannot determine τ directly from the surface strains 
during the actual process of shape sensing of a cylinder, 
though we can of course obtain τ indirectly from its relation 
with ω and ψ.

2.1.1.  Computing κ, ψ, and ω.  Differentiating (7) with κ, ψ, 
and ω gives

εκ(κ,ψ,ω) =
∂ε

∂κ
= − (1 − rκ cosψ) r cosψ√

[1 + (rωo)2]
[
(1 − rκ cosψ)2

+ (rω)2
] ,

� (8)

εψ(κ,ψ,ω) =
∂ε

∂ψ
=

(1 − rκ cosψ) rκ sinψ√
[1 + (rωo)2]

[
(1 − rκ cosψ)2

+ (rω)2
] ,

� (9)

εω(κ,ψ,ω) =
∂ε

∂ω
=

r2ω√
[1 + (rωo)2]

[
(1 − rκ cosψ)2

+ (rω)2
] .

� (10)
At this stage, we can use the Newton–Raphson method to 
solve iteratively for κ, ψ, and ω to satisfy

ε(κ,ψ + θ1,ω) = ε1,
ε(κ,ψ + θ2,ω) = ε2,
ε(κ,ψ + θ3,ω) = ε3.

� (11)

with the given set of strains ε1, ε2, and ε3.
To start the iteration, suppose the values of κ, ψ, and ω are 

priorly given correspondingly as κi, ψi, and ωi , i being the 
iteration count, and we can obtain a refined set of values by 
adding them to δκ, δψ, and δω. In this case, we can express

ε(κi,ψ1i,ωi) + [εκ(κi,ψ1i,ωi)δκ + εψ(κi,ψ1i,ωi)δψ + εω(κi,ψ1i,ωi)δω] = ε1,
ε(κi,ψ2i,ωi) + [εκ(κi,ψ2i,ωi)δκ + εψ(κi,ψ2i,ωi)δψ + εω(κi,ψ2i,ωi)δω] = ε2,
ε(κi,ψ3i,ωi) + [εκ(κi,ψ3i,ωi)δκ + εψ(κi,ψ3i,ωi)δψ + εω(κi,ψ3i,ωi)δω] = ε3,
� (12)
where ψ1i = ψi + θ1, ψ2i = ψi + θ2, and ψ3i = ψi + θ3. 
Rewriting (12) in matrix form allows us to solve the equa-
tion for δκ, δψ, and δω quite easily by multiplying the inverse 
matrix on both sides.


εκ(κi,ψ1i,ωi) εψ(κi,ψ1i,ωi) εω(κi,ψ1i,ωi)

εκ(κi,ψ2i,ωi) εψ(κi,ψ2i,ωi) εω(κi,ψ2i,ωi)

εκ(κi,ψ3i,ωi) εψ(κi,ψ3i,ωi) εω(κi,ψ3i,ωi)






δκ

δψ

δω


 =



ε1 − ε(κi,ψ1i,ωi)

ε2 − ε(κi,ψ2i,ωi)

ε3 − ε(κi,ψ3i,ωi)




� (13)
We then update κ, ψ, and ω correspondingly as κi+1 = κi + δκ, 
ψi+1 = ψi + δψ, and ωi+1 = ωi + δω to repeat the iteration until 
δκ, δψ, and δω all fall under the threshold.

It may be worthwhile to note that the initial values of 
κ0, ψ0, and ω0 should be carefully chosen, as otherwise the 
Newton–Raphson iteration can fail to converge. It is crucial to 
avoid letting κ0 = 0 or ψ0 = 0, given that should either occur, 
εκ and εψ become zero. Moreover, the curvature of a space 
curve is always non-negative by definition, implying a benefit 
when initializing κ0 as a positive value. In our simulation we 
let κ0 = 0.01, ψ0 = π

2 , and ω0 = ωo.

Meas. Sci. Technol. 29 (2018) 095003
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2.1.2.  Computing τ.  We are to determine τ from its relation-
ship with ψ and ω; 

τ = ω − dψ
ds

� (14)

Before we go further into computing τ, we initially must 
smooth out the values of ψ calculated for each segment in our 
previous step. Because (7) is periodic with respect to ψ, it is 
possible that the ψ values were obtained from a completely 
random range of angles, but it is most likely that they exist 
within [−2π, 2π] at this point. However, for instance, from 
the definition of ψ, there is virtually no difference between 
ψ = −2π and ψ = 2π; hence, if the ψ values of two neigh-
boring segments are −1.999π and 1.999π , it would then be 
more natural to say that the difference in ψ between these two 
segments is 0.002π  rather than 3.998π . Thus, we cannot com-

pute dψds  properly with all our ψ values held within [2 − π, 2π], 
which is why we should utilize a special algorithm to smooth 
out ψ. We define the following for k = 1 : Nseg

ak = ψk+1 − ψk −
ωk + ωk+1

2
∆s,� (15)

qk =
⌊ ak

2π

⌋
,� (16)

mk = ak (mod 2π).� (17)

What we seek here is to keep every ak within the range of 
[−π,π]. This can be achieved by executing the following 
algorithm:

1: for k  =  1 to Ns  −  1 do

2:    if |ak| > π  then
3:      if mk � π then
4:        ψ(k+1):Ns ← ψ(k+1):Ns − 2πqk

5:      else
6:        ψ(k+1):Ns ← ψ(k+1):Ns − 2π(qk + 1)
7:      end if
8:    end if
9: end for

Next, we should determine dψ
ds  at the midpoints of the seg-

ments using the ψ values given at the midpoints of the seg-
ment. There are a number of ways by which to accomplish 
this, but in this study we use the ordinary cubic spline interpo-
lation, which can be done easily with some simple MATLAB 
commands. Suppose smid is the array of parameter s at the 
midpoints of the segments, and psi is the array of ψ values 

of the segments. Then, we can obtain the array of dψ
ds  at the 

midpoints as dpsids  =  ppval(fnder(spline(smid,
psi),1),smid), and we can finally determine τ by substi-

tuting these dψds  values in (14).

2.2.  Determining the node positions from the local  
deformation factors.

At this stage, we calculate the overall shape of the cylinder 
by positioning the nodes of the central curve and the fibers. 

Before continuing, it may be beneficial to conduct a simple 
smoothing operation of our deformation variables. Here, we 
simply slice each cylinder segment into a number of subseg-
ments, onto which we interpolate the deformation variables 
using the conventional cubic spline. This process is optional, 
but is found significantly to improve the accuracy of the 
estimation.

After smoothing, the number of segments Nseg is replaced 
with the number of subsegments Nsub = aNseg, where a 
is the number of subsegments per segment. Likewise, the 
segment length ∆s is replaced by the subsegment length 

∆ssub = L
Nsub

= ∆s
a . The variables κ, τ and ω are defined 

within the segments, and thus must be splined from the mid-

points of the segments, s = (n−0.5)L
Nseg

, n = 1 : Ns, to the mid-

points of the subsegments, s = (n−0.5)L
aNseg

, n = 1 : aNseg. In the 

latter process, we will need the values of ψ at the subnodes, 

s = nL
aNseg

, n = 0 : aNseg; therefore it would be wise to com-
pute these values beforehand as well.

2.2.1.  Positioning the central curve and the fibers.  The posi-
tions of the central nodes are determined by the Helical Exten-
sion Method (HEM), which was introduced with its efficiency 
proven in our previous work [15].

From our initial assumption that the cylinder is clamped 
at s  =  0, the center C(0) = [0 0 0]T and the tangent 
t̂(0) = [0 0 1]T are naturally given. Moreover, using φ at s  =  0 
as computed by cubic spline interpolation, we can easily 
obtain the initial normal vector n̂(0) and binormal vector b̂(0) 
as follows:

n̂(0) = [ cos(−ψ) sin(−ψ) 0 ]T

= [ cosψ − sinψ 0 ]T,
� (18)

b̂(0) = [ cos(−ψ +
π

4
) sin(−ψ +

π

4
) 0 ]T

= [ sinψ cosψ 0 ]T,
� (19)

by rotating [1 0 0]T about t̂(0) by −ψ and −ψ + π
4 , respec-

tively. Henceforth, C(0) will be our C0, and the set of t̂(0), 
n̂(0), and b̂(0) will form our initial TNB frame, ̂t0, n̂0, and b̂0, 
with which to start the HEM.

Subsequently, we use κk and τk for all instances of kth sub-
segments for k = 1 : Nsub, for determination of the central node 
position Ck. We determine the radius R, the elevational rate H, 
and the rotational rate Ω of the helix of which each of the cen-
tral curve subsegments is presumed to have taken as its form, as

R =
κk

κ2
k + τ 2

k
,� (20)

H =
τk√

κ2
k + τ 2

k

,
� (21)

Ω =
√

κ2
k + τ 2

k .� (22)

We employ them to update the TNB frame, by rotating it with 
respect to the axis of the helix
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ŵk = Ht̂k−1 + RΩb̂k−1.� (23)

by the angle of γ = Ω∆s
a . From Rodrigues’ rotation formula,

t̂k = Rt̂k−1, n̂k = Rn̂k−1, b̂k = Rb̂k−1,� (24)

where R  is the rotation matrix

R =




X + w2
1(1 − X) w1w2(1 − X)− w3Y w3w1(1 − X) + w2Y

w1w2(1 − X) + w3Y X + w2
2(1 − X) w2w3(1 − X)− w1Y

w3w1(1 − X)− w2Y w2w3(1 − X) + w1Y X + w2
3(1 − X)


 ,

� (25)
and where X = cos γ  and Y = sin γ. The position of the cen-
tral subnode can then be updated as

Ck = Ck−1 + Rn̂k−1 + H∆sŵk − Rn̂k.� (26)

Finally, the position of the fiber subnodes can easily be 
found using the Ck and the ψ values that we precomputed for 
the subnodes. We can express the direction that points toward 
the fiber subnodes from the central subnode as the following 
unit vector

f̂k,i = cos (ψk + θi) n̂k + sin (ψk + θi) b̂k, i = 1, 2, 3.� (27)

With this, we can locate the fiber subnodes at

Fk,i = Ck + r̂fk,i, i = 1, 2, 3.� (28)

3.  Numerical simulation

In the previous section, we demonstrated a method for the 
shape sensing of a cylinder using strains measured with sen-
sors that are bound to the cylinder in triple helices. To validate 
our method, we conducted a simple numerical simulation with 
an example of a cylinder that undergoes bending and twisting 

deformation. We measured the strain of the fibers that are 
attached to the surface of the cylinder in triple helices, and 
used the methods we proposed in the previous sections to esti-
mate the positions of the central nodes and the fiber nodes. We 
evaluated the accuracy of the results according to the position 
errors at the tip of the cylinder.

3.1.  Undeformed cylinder

The undeformed cylinder with a radius r and length L has 
three strands of strain-sensing fibers bound on its surface in 
a triple helix configuration of a constant rate ωo. The cylinder 
is clamped at s  =  0, where the center is fixed at the origin, 
the longitudinal direction is the z-axis, and all three fibers 
are away from the origin by distance r and are pointing at 

angle θi =
2(i−1)

3 π for i = 1, 2, and 3. Thus, we can form
ulate the positions of the fibers on the undeformed cylinder 

as Fi(s) = [cos(ωos + θi), sin(ωos + θi), s]T , i = 1, 2, and 

3; hence, the positions of the fiber nodes can be assigned by 
substituting s = 0,∆s, 2∆s, · · · , L, accordingly.

Because our simulation includes the process of strain meas-
urement, we also need to position some of the points between 
the fiber nodes. Thus, we re-divided the entire cylinder into 
Nsub subsegments by positioning uniformly spaced Nsub + 1 
subnodes all along the entire length of the cylinder in order 
to measure the fiber strains using the distances between them. 
Hence, each segment comes to have m = Nsub/Nseg subseg-
ments. Here we choose Nsub = 10 800 = 24 × 33 × 52, which 
is a moderately large number with many divisors, such we 
can perform our numerical test with as many cases of Nsegs 
as desired. Later, we reused the same number of subsegments 

Figure 3.  Example of cylinder deformation as used in our 
simulation. The central line was deflected into a curve that we 
formulated as (29), and the fibers were located by assigning ψ a 
value determined by (38).

Figure 4.  The rotational angle of the strain sensing region, α, was 
found as one of the most critical factors that affect the accuracy of 
shape sensing results.
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in the process of shape reconstruction as well, simply for 
convenience.

3.2.  Deformed cylinder and strain measurement

We devised an example case of a deformed cylinder that sat-
isfies our assumptions that the cylinder is clamped at s  =  0 
and that its cross-sections remain undeformed and perpend
icular. Figure 3 illustrates the overall shape of the deformation 
example we used.

The bending deformation is represented by the central 
curve, which is the curve followed by the centers of the cross 
sections. We made the central curve deflect into a 3D space 
curve that we termed a Jinguer [15]. A Jinguer is a semicircle 
that is drawn on a cylindrical surface, making an appropriate 
example for our simulation, as it is a unit-speed curve and it 
has smoothly varying curvature and torsion. The parametric 
equation of a Jinguer of length L can be written as

C(s) =
2L
π2




cos
(
π
2 cos πs

L

)
1 − sin

(
π
2 cos πs

L

)
π
2 sin πs

L


 ,� (29)

and its TNB frame is derived as

t̂(s) =



sin

(
π
2 cos πs

L

)
sin πs

L
cos

(
π
2 cos πs

L

)
sin πs

L
cos πs

L


 ,� (30)

n̂(s) =




2 cos πs
L sin(π

2 cos πs
L )−π sin2 πs

L cos(π
2 cos πs

L )√
π2
4 (cos

2πs
L −1)

2
+4

2 cos πs
L cos(π

2 cos πs
L )+π sin2 πs

L sin(π
2 cos πs

L )√
π2
4 (cos

2πs
L −1)

2
+4

− 2 sin πs
L√

π2 sin4 πs
L +4




,� (31)

The position of the fibers after deformation can be pre-
scribed by determining ψ as a function of s. It follows from 
(14) that

ψ(s) =
∫ s

0
[ω(σ)− τ(σ)] dσ,� (35)

which, when substituted with (34), gives us

ψ(s) =
∫ s

0
ω(σ)dσ − tan−1

[π
2
sin2 πs

L

]
− π

4
sin2 πs

L
.� (36)

In our simulation we assigned a slight perturbation to the rota-
tional rate of the fibers, as follows

ω(s) = ωo + α sin
2πs
L

,� (37)

which gives us

ψ(s) = ωos − αL
2π

cos
2πs
L

− tan−1
[π

2
sin2 πs

L

]
− π

4
sin2 πs

L
.

�
(38)

The fiber positions can then be assigned by the formulae (27) 
and (28), where the normal and binormal vectors are given by 
(31) and (32), respectively.

Although the strain is originally defined as a function of 
the position directly at the sampling point, most practical 
strain-sensing techniques include a process by which they 
obtain the average value of the strains within a certain region 
around the sampling point. In order to mimic such a process, 
we evaluated the strain using a certain number of subsegments 
that are adjacent to the fiber segment’s midpoint. The strain is 
obtained from the change in the length of the strain sensing 
region, which is approximated by the sum of the distances 
between consecutive subnodes. The number of subsegments 
chosen in this procedure is an even positive integer, μ. Since 
each segment is divided into m subsegments, the length of the 
strain sensing region before deformation can be represented 

b̂(s) =




− 2 sin2 πs
L cos(π

2 cos πs
L )√

π2 sin4 πs
L +4

− cos πs
L [2 cos πs

L cos(π
2 cos πs

L )+π sin2 πs
L sin(π

2 cos πs
L )]√

π2
4 (cos

2πs
L −1)

2
+4

2 sin2 πs
L sin(π

2 cos πs
L )√

π2 sin4 πs
L +4

+
cos πs

L [2 cos πs
L sin(π

2 cos πs
L )−π sin2 πs

L cos(π
2 cos πs

L )]√
π2
4 (cos

2πs
L −1)

2
+4

π sin3 πs
L√

π2 sin4 πs
L +4




.

�

(32)

From this TNB frame, the curvature and torsion are given as

κ(s) =
π

4L

√
π2

(
cos

2πs
L

− 1
)2

+ 16,� (33)

and

τ(s) =
π2 sin 2πs

L

4L

(
32

π2
(
cos 2πs

L − 1
)2

+ 16
+ 1

)
.� (34)

as µm∆s. Expressly, for k = 1, · · · , Nseg and i = 1, 2, and 3, we 
computed the strain of the ith fiber in the kth segment as

εk,i =

∑(k− 1
2 )m+ 1

2 µ−1
n=(k− 1

2 )m− 1
2 µ

√
[x̃n+1,i − x̃n,i]2 + [ỹn+1,i − ỹn,i]2 + [̃zn+1,i − z̃n,i]2

∑(k− 1
2 )m+ 1

2 µ−1
n=(k− 1

2 )m− 1
2 µ

√
[x̄n+1,i − x̄n,i]2 + [ȳn+1,i − ȳn,i]2 + [̄zn+1,i − z̄n,i]2

− 1,

� (39)
where x̃, ỹ, and z̃ denotes the coordinates in the global frame 
of the fiber subnodes after deformation, and x̄, ȳ, and z̄ before 
deformation. We used these strains as the inputs to locate the 
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central and fibral subnodes, following the procedure covered 
in section 2.

3.3.  Results

We conducted our numerical tests for various cases, each case 
with differing values of Nseg, ωo, m, μ, and r, and we collected 
the estimated positions to evaluate the accuracy. It took from 
2.5 to 3 s of time to purely determine the shape from the given 
strains for each case in MATLAB, hence the proposed method 
would be applicable to real-time shape sensing by adopting 
a faster computational tool. The calculation time depended 
much more strongly on Nsub than on Nseg, which means most 
of the computation was carried out on reconstructing the 
shape from the smoothed local deformation factors.

Since our method is bound to have some spatial drift error 
along the arc length, the error is predictably greatest at the end 
of the cylinder. Hence, we chose to evaluate the accuracy by 
comparing the true and the estimated positions of the tip of the 
red fiber, namely, FNsub,1.

It was observed from our simulation results that the acc
uracy of the estimation largely depend on two major factors: 
α, which is the rotational angle of the sensing region of the 
fiber with respect to the central axis of the cylinder, and δ, 
which is the length of a segment divided by the length of the 
entire cylinder and hence is the reciprocal of Nseg. The angle 
that α represents within a segment is as illustrated in figure 4. 
Thus with the given values of L, m, μ, and ωo, we can deter-
mine α as

α =
µωoL

m
.� (40)

A trend towards growth in the errors was observed with 
larger values of α and δ, and the error was found to depend 
more strongly on α than on δ. Generally, the influence of δ was 
noticeable only when both α and δ were very small, while oth-
erwise α appeared much more dominant. For relatively larger 
values of α, the effect of δ appeared to be mostly insignificant.

Figures 5(a) and (b) presents the correspondence between 
α and the position error of the red fiber node at s  =  L. We fixed 
all other variables but varied only ωo and μ, for (a) and (b), 
respectively, such that both plots contained the same values 
of α. We can clearly observe, even with differing values of ωo 
and μ, that if we have the same value of α, the result will be 
then similar in terms of accuracy.

We speculate the reason for this α-dependence of the acc
uracy as follows. Since we assume that the strain is measured 
right at the midpoint of each fiber segment, it is quite natural 
to expect a better estimation when the actual measurement is 
focused better at the midpoints. The dependence could also be 
on the length, instead of the rotational angle, of the region, but 
considering how the surface strain of a deforming rod varies 
with the angle from the bending direction, we may find the 
dominance of α to be relatively intelligible, unless the rate of 
change of the bending direction is much faster than the rota-
tional rate of the fibers.

Figure 6 shows the position errors collected from 
the results of various cases with differing values of 

Figure 5.  The estimated shape of the first fiber F1(s) with (a) Nseg = 10; ωo = 40 rev/L; and µ = 40, 80, and 160, and (b) Nseg = 10; 
µ = 160; and ωo = 10, 20, and 40 rev/L. The total number of subsegments was Nsub = 10 800 for both (a) and (b). The true fiber shape is 
presented as red curves, and in (b) it is only shown for the case of ωo = 40 for convenience.
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Nseg = 5, 6, 8, 10, 12, 15, and 30; ωo = 5, 10, 20, 40, 80, 160, 
and 320; and µ = 4, 8, 16, 32, 64, 128, and 256. Here, we fixed 
and varied the values of ωo and μ alternatively, as we did in 
figure 5, such that the two subplots can contain the same set 
of values of α, which in turn caused the results they show 
to be of a striking similarity. We can observe here the quali-
tative trend referred to above; specifically, the dependence 
on δ becomes stronger with a lower α and a higher δ, and 
weaker with a higher α and a lower δ. In order to investi-
gate this tendency in more depth, we also tested the fol-
lowing cases: Nseg = 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, and 30; 
ωo = 5, 10, 15, 20, 25, and 30; and µ = 4, 8, 16, and 32. We 
used MATLAB’s surface fitting tool in order to analyze the 
overall tendency of convergence, finding that the effect of α 
and δ on the position error can be approximated as

E = 0.9011e5.113α + 0.4453e18.88δ − 2.089.� (41)

Of course, (41) is only a result of an approximate fitting that 
is specialized for one specific deformation example as used 
in the simulation here; hence, we can scarcely consider it as 
a general relation. However, this at least provides a tentative 
glimpse of how α and δ are roughly related to the accuracy of 
our method. Further studies on this subject would be useful.

4.  Conclusion

In summary, we have demonstrated a numerical method by 
which to estimate the deformation state of a cylinder using 
data received from a set of strain sensors attached to the sur-
face of the cylinder in a triple helix configuration. The method 
is a two-stage process. First, we determine the local defor-
mation factors from the strains, after which we determine the 
overall shape using the deformation factors.

The local deformational rates are computed from the sur-
face strains by Newton–Raphson iteration with an analytical 
strain formula. This strain formula is based on our original 
superhelix model, which precisely describes the strain on the 
surface of a cylinder under bending and twist deformation. 
The positions of the centers of the cross-sections are com-
puted by the Helical Extension Method, of which the accuracy 
and efficiency were verified in our previous work. The posi-
tions of the fibers are obtained from the normal and binormal 
vectors of the central curve.

We validated our method in a simulation with a virtual cyl-
inder that is deformed into an analytically prescribed shape. 
The simulation was conducted with various numbers of meas-
uring segments and various initial rates of spin. The results 
showed that the proposed method can estimate the shape of a 
deformed cylinder with remarkable precision. It was observed 
that the accuracy of estimating the shape depends on two 
quantities: α, the rotational angle of the measuring region of 
each segment, and δ, the length of a segment divided by the 
length of the entire cylinder. It appeared from data fitting that 
position errors are approximated in the form of an exponential 
surface of (41).

In order to alleviate this problem of α-dependence, it may 
be worthwhile to re-adopt the formula for the arc length of a 
superhelix from our previous works [13, 14]. In our prelimi-
nary tests, where we modeled the changed length of the strain-
sensing interval as the arc length of a segment of a superhelix, 
it was observed that the influence of α on the accuracy was 
dramatically reduced. However, given that the arc length 
formula itself is very long and complicated, the computation 
process can become excessively heavy. Hence, assessing the 
fiber strain at the midpoint of each segment, as is done here, 
appears to be the most efficient and elegant method we have 
for now. Further studies will be required to refine the arc length 
formula and modify the computational process of shape esti-
mation accordingly.

Figure 6.  Position errors with Nseg = 5, 6, 8, 10, 12, 15, 30, with  
the remaining instances given as (a) ωo = 5, and  
µ = 4, 8, 16, 32, 64, 128, 256, and (b) ωo = 5, 10, 20, 40, 80, 160, 320,  
and µ = 4. The values of ωo and μ were selected such that α took 
the same set of values across the two subfigures.
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We can also interpret our simulation results from 
the perspective of sensor design. Currently, there exist a 
small number of multicore fiber products whose cores are 
spun into helices so they can work as 3D shape sensors. 
These products are usually spun at relatively high rates; 
for example, Fibercore’s SSM-7C1500 has a spin pitch of 
the cores of approximately 1.53 centimeters. If one is to 
use this fiber as a shape sensor, the spatial resolution used 
during the strain measurement should be 2.4 millimeters 
or less to keep α less than one radian. Despite all of the 
various types of optical strain-sensing methods, there are 
not many methods other than OFDR that can provide a spa-
tial resolution this high. Furukawa’s multicore fiber with 
continuous Bragg gratings, employed by Westbrook et  al 
(2017) [12], has a spin pitch of 2 centimeters and provides 
spatial resolution up to 40 microns by the use of OFDR, 
and hence makes α = 0.0126 radians. This is actually small 
enough to keep the relative position error at the end node 
less than 10−4 by our proposed method, provided that the 
strains are precisely measured. However, we can generally 
state that a spun multicore fiber would work more effec-
tively and more versatilely as a shape sensor if it were spun 
at a much lower rate.

This study provides a basis for subsequent studies of 
optical shape sensing by founding a concise and reliable 
numerical method. Most notably, this is the first study to our 
knowledge to investigate the effect of the initial rate of spin 
of the sensor array on the accuracy of the result. Our future 
efforts will focus on applying this numerical method in a labo-
ratory experiment.
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