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Abstract

Background: Signaling pathways can be reconstructed by identifying ‘effect types’ (i.e. activation/inhibition) of
protein-protein interactions (PPls). Effect types are composed of ‘directions’ (i.e. upstream/downstream) and 'signs’
(i.e. positive/negative), thereby requiring directions as well as signs of PPIs to predict signaling events from PPI
networks. Here, we propose a computational method for systemically annotating effect types to PPIs using relations
between functional information of proteins.

Results: We used regulates, positively requlates, and negatively regulates relations in Gene Ontology (GO) to predict
directions and signs of PPIs. These relations indicate both directions and signs between GO terms so that we can
project directions and signs between relevant GO terms to PPIs. Independent test results showed that our method is
effective for predicting both directions and signs of PPIs. Moreover, our method outperformed a previous
GO-based method that did not consider the relations between GO terms. We annotated effect types to human PPIs
and validated several highly confident effect types against literature. The annotated human PPIs are available
in Additional file 2 to aid signaling pathway reconstruction and network biology research.

Conclusions: We annotated effect types to PPIs by using regulates, positively requlates, and negatively requlates relations
in GO. We demonstrated that those relations are effective for predicting not only signs, but also directions of
PPIs. The usefulness of those relations suggests their potential applications to other types of interactions such as

protein-DNA interactions.
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Background

A cell reacts to stimuli through signaling pathways, in
which proteins physically interact with each other to
transmit signals. Those signals propagate inside a cell,
causing various responses such as cell proliferation and
differentiation [1-4]. Abnormal signal transduction triggers
aberrant biological processes that might result in diseases
such as cancer [2-5]. To understand how such signals flow,
various high-throughput experiments have been developed
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to detect protein-protein interactions (PPIs) such as yeast
two hybrid and affinity purification-mass spectroscopy [6].
Even though such high-throughput experiments can
determine whether two proteins bind to each other or not,
they are not sufficient for reconstructing signaling pathways.

To reconstruct signaling pathways from PPI networks,
we need to know two aspects of PPIs: ‘directions, and
‘signs’. Directions of PPIs represent upstream/downstream
relationships, indicating the direction of signal flow. Signs
of PPIs represent whether the interactions have positive
effects or negative effects. By combining directions with
signs, we can define activation/inhibition relationships of
PPIs, which we call ‘effect types’.
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Effect types are indispensable for not only reconstruct-
ing signaling pathways, but also other research areas
such as network pharmacology [7, 8]. Without direc-
tions, we cannot know causality. This leads to many false
positive results that arise from mistaking an effect as a
cause [8]. Without signs, we cannot distinguish whether
a result is desirable or harmful. For example, when signs
are unavailable for drug-disease associations, we cannot
differentiate whether a drug cures a disease, or causes a
disease as a side effect [9].

Despite effect types are important, no experimental
method is available that determines effect types of PPIs in a
high-throughput way. Satisfying this need, several computa-
tional methods have been proposed to predict signs of PPIs
systemically [10-12]. Based on data they used, previous
works can be categorized into phenotype-based methods
[10, 11] and a Gene Ontology (GO) [13]-based method
[12]. Phenotype-based methods used RNA interference
(RNAI) screening to identify phenotypes that were affected
by a gene knockdown. Then, they predicted signs of PPIs
based on the hypothesis that proteins resulting in similar
phenotypes would interact positively [10, 11]. Even though
they were effective, they have two limitations. Firstly, they
ignored directions even though their aim was predicting
effect types. Secondly, predicted signs cannot be generically
applied to human PPIs. Because conducting RNAIi screen-
ing for all proteins is experimentally expensive, they applied
their method to smaller Drosophila melanogaster [10],
or HeLa cells [11].

To overcome these limitations, a recent method uti-
lized GO, which is more directly related to proteins [12].
Their hypothesis was that proteins with similar GO
annotations would interact positively. They used GO
terms as features for representing PPIs, and trained
L2-regularized logistic regression model. Even though
they improved the performance by using more direct
data, they have mainly three limitations. Firstly, still
they did not consider direction, leaving the causality
between two proteins unknown. Secondly, similar GO
annotations not necessarily means two proteins inter-
act positively. In either positive PPIs or negative PPlIs,
two proteins interact with each other in any case.
Therefore, negatively interacting proteins might also
participate in the same biological process or have
similar molecular function. In fact, the exactly same
feature encoding was used for predicting whether two
proteins interact or not, treating positive PPIs and
negative PPIs equally [13]. Thirdly, they did not con-
sider GO relations. However, GO has positively regu-
lates and negatively regulates relations, which indicate
signs between GO terms. These relations might help
to differentiate negative PPIs in which one protein
negatively regulates a biological process in which the
other protein participates. Moreover, those relations
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indicate directions between GO terms, suggesting their
potential use in predicting effect types of molecular
interactions.

Here, we propose a method for annotating directions
as well as signs to PPIs. We hypothesized that directions
and signs between GO terms, represented by regulates,
positively regulates, and negatively regulates relations,
can be used for predicting directions and signs of PPIs.
The rationale behind this hypothesis is as follows. Let
us assume that protein pl and p2 interact with each
other, and there is a significant tendency in which GO
terms involving pl positively regulates GO terms
involving p2. Since protein pl and p2 interact with each
other, the tendency of positive regulation might result
from activation of p2 by pl. Based on this hypothesis,
we predicted directions of undirected, unsigned PPIs
first. Then, we predicted sign for each directed,
unsigned PPI. PPIs were represented by features that
were generated from regulates, positively regulates, and
negatively regulates relations. Then, we trained logistic
regression models for predicting directions and signs.
Independent test results demonstrated that our method
outperforms previous GO-based method, especially for
negative PPIs. In addition, we annotated effect types to
human PPIs and validated highly confident predictions
against literature.

Methods

Method overview

The overall method for annotating effect types to PPIs is
illustrated in Fig. 1. The input was an undirected,
unsigned PPI network. For each undirected, unsigned
PPI, we predicted its direction first. We trained two
logistic regression models that predicted whether a
signal can flow in left-to-right direction and right-to-left
direction, respectively. The two models shared the same
feature vectors, which were composed of pairs of GO
terms between which regulates, positively regulates, or
negatively regulates relation hold. By combining outputs
of these two models, we decided final direction of a PPI
as one of ‘left-to-right, ‘right-to-left, and ‘bi-directional’.
Then, we predicted sign for each directed, unsigned PPIL.
If the PPI is bi-directional, we predicted each sign for
both directions. For predicting signs, we trained two
logistic regression models that predicted whether a
directed PPI can act as activation and inhibition, res-
pectively. The two models shared an identical feature
vector, which was composed of pairs of GO terms
between which positively regulates or negatively regulates
relation hold. By combining outputs of these two
models, we decided final effect type as one of the follow-
ings: ‘activation, ‘inhibition; ‘activation&inhibition, and
‘affect’. As a result, we obtained PPIs with effect type.
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Fig. 1 Method overview. a Input was an undirected, unsigned PPl network. b, ¢, d For each undirected, unsigned PPI, direction was predicted.
We trained two logistic regression models that predicted whether the signal can flow in left-to-right direction and right-to-left direction, respectively.
Feature vector was composed of pairs of GO terms between which regulates, positively regulates, or negatively regulates relation holds.
e A directed, unsigned PPl was obtained as a result of direction prediction. f A sign of PPl was predicted for each directed PPI. We trained two logistic
regression models that predicted whether a directed PPl can act as activation or inhibition, respectively. Feature vector was composed of a pair of GO
terms between which positively regulates or negatively regulates relation holds. g, h As a result of direction prediction and sign prediction, we annotated
effect types to PPI network. Abbreviations: GO, gene ontology; PPI, protein-protein interaction; LR, logistic regression
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Dataset

PPI dataset

We collected three PPI datasets: a training set, an inde-
pendent test set, and a prediction set. To gather reliable
datasets, we applied following policies to all datasets:
(1) We collected human PPIs only. (2) We removed
functional associations and self-interactions. (3) We
collected PPIs only when at least one regulates relation
holds between GO terms to which constituent proteins
are annotated. (4) We mapped protein families to their
members. (5) We integrated multiple instances of the
same PPI to remove redundancy.

For the training set and the independent test set, we
determined directions for each protein pair, and then
determined sign for each directed PPI. For proteins
protein 1 (pl) and protein 2 (p2), if a signal can flow in
only one direction, for example from p1 to p2, the direc-
tion is ‘uni-directional’. On the other hand, if the signal
can flow in both directions depending on a context, the
direction is ‘bi-directional’. Then, we determined sign
for each directed PPL If a PPI is bi-directional, we deter-
mined sign for each direction independently. The same
directed PPI can act as both activation and inhibition,
depending on a context. For example, naked cuticle (NKD)
binds to dishevelled segment polarity protein (DVL). This
PPI acts as a switch from canonical Wnt signaling pathway
to planar cell polarity (PCP) Wnt signaling pathway [14].

This means that NKD inhibits DVL in the aspect of
canonical Wnt signaling pathway, whereas NKD activates
DVL in the aspect of PCP Wnt signaling pathway. To deal
with such context dependency, we categorized effect types
of PPIs into four classes: ‘activation; ‘inhibition; both
activation and inhibition are possible depending on a
context (‘activation&inhibition’), and neither activation
nor inhibition (‘affect’).

We collected PPIs with known effect types as a
training set from Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway [15]. KEGG is a manually
curated database for pathways, and contains the largest
number of PPIs whose effect types are known. Following
the policies, we collected ‘PPrels’ whose subtypes were
one of the followings: activation, inhibition, phosphoryl-
ation, dephosphorylation, glycosylation, and methylation.

We gathered another set of PPIs with known effect
types as an independent test set from Search Tool for
the Retrieval of Interacting Genes/Proteins (STRING)
[16]. STRING is an integrated database for protein-
protein associations, including functional and inferred
associations. To secure reliable PPIs, we collected PPIs
that were experimentally validated. Moreover, we used
PPIs whose scores were higher than 800 out of 1000,
which resulted in about 1.28% of the PPIs available in
STRING. In addition, we removed PPIs that were in the
training set.
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We collected prediction set from Biological General
Repository for Interaction Datasets (BioGRID), whose
effect types were previously unknown and predicted by
our method [17]. We collected multi-validated PPIs that
were validated in at least two experimental systems or
two publications. We removed PPIs that were in the
training set or the independent test set. As a result, we
obtained 20,192 PPIs as a training set, 3420 PPIs as an
independent test set, and 28,742 PPIs as a prediction set
as shown in Table 1.

GO dataset
We collected ontologies and GO annotations from GO
[18]. We defined a concept of ‘regulators’ and ‘regulatees’
for GO terms. A regulator is a GO term that regulates
another GO term. If it positively regulates another GO
term, then it is a positive regulator, whereas it is a negative
regulator if it negatively regulates one. Hereinafter we
collectively refer to regulates, positively regulates, and
negatively regulates as (positively/negatively) regulates
when any of them are applicable. A regulatee is a GO term
that is (positively/negatively) regulated by another GO
term. For example, ‘chromatin silencing’ negatively regulates
‘transcription, DNA-templated’. Therefore, ‘chromatin
silencing’ is a negative regulator whereas ‘transcription,
DNA-templated’ is a regulatee.

To find all (positive/negative) regulators, we composed
GO relations to form a composite relation, such that

relation 1-relation 2—composite relation.
(1)

For instance, composing is a with positively regulates
becomes positively regulates. Since ‘actin nucleation’ is a
‘positive regulation of actin filament polymerization,
which positively regulates ‘actin filament polymerization,
‘actin nucleation’ becomes a positive regulator. This is
called ‘relation reasoning, and all possible composite
relations are listed in Additional file 1: Table S1. We

Table 1 PPI dataset statistics

Direction
Uni-directional  Bi-directional Total
KEGG 20,078 114 20,192
STRING 3110 310 3420
BioGRID - - 28,742
Effect type
Activation Inhibition  Activation&  Affect  Total
inhibition
KEGG 10,603 4548 207 447 15,805
STRING 2732 466 133 13 3344
BioGRID - - - - -
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iteratively applied relation reasoning to find all (positive/
negative) regulators, thereby increase coverage of our
method. Hereinafter, we do not differentiate whether
a regulator directly regulates regulatee, or indirectly
regulates by a composite relation. The statistics of
GO terms are shown in Fig. 2. Two hundred fifty six
molecular function terms were regulators among
10,940 molecular function terms. For biological process
terms, 11,820 terms were regulators out of 29,584 biological
process terms.

Feature generation for representing PPIs

To encode the directions and signs between GO terms,
we defined the concept of a pl — p2 (positive/negative)
regulation pair. A pl — p2 (positive/negative) regulation
pair is a pair of a (positive/negative) regulator and a
corresponding regulatee, in which protein pl is anno-
tated to the (positive/negative) regulator and protein p2
is annotated to the regulatee. For example, if protein
pl is annotated to ‘chromatin silencing’ and protein
p2 is annotated to ‘transcription, DNA-templated, then
‘chromatin silencing’ and ‘transcription, DNA-templated’
constitute a pl — p2 negative regulation pair as
depicted in Fig. 3a.

A pl — p2 (positive/negative) regulation pair indicates
direction and sign between GO terms. We projected
such directions and signs between GO terms to PPIs, by
using each pl — p2 (positive/negative) regulation pair
as a feature for representing PPIs. We describe feature
generation procedure with a toy example illustrated in
Fig. 3b, which is a subset of GO terms related to Wnt
signaling pathway.

Features were generated by following procedures.
Firstly, we collected all GO terms to which proteins were
annotated. In our toy example, protein pl is annotated
to four GO terms: ‘Wnt signaling pathway, ‘positive
regulation of Wnt signaling pathway, ‘regulation of Wnt
signaling pathway, and ‘positive regulation of canonical
Wnt signaling pathway’. On the other hand, protein p2
is annotated to three GO terms: ‘regulation of Wnt
signaling pathway;, ‘canonical Wnt signaling pathway, and
‘negative regulation of canonical Wnt signaling pathway’.

Secondly, for all possible pairs of GO1 and GO2 in
which pl is annotated to GO1 and p2 is annotated to
GO2, we determined whether GO1 (positively/negatively)
regulates GO2. If it did, then we regarded GO1 and GO2
as a pl — p2 (positive/negative) regulation pair. However,
in many cases, GO1 did not (positively/negatively) regulate
GO2 itself. In such cases, we regarded that if p2 is
annotated to GO2, then p2 is also annotated to ancestors
of GO2 that have is a or part of relation with GO2.
For example, despite p2 is not directly annotated to
“Wnt signaling pathway, we can say that p2 is related
to “Wnt signaling pathway’ because p2 is annotated to
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Fig. 2 The statistics of GO terms. a Among 10,940 molecular function terms, 256 terms (2.3%) were regulators. b There were 11,820 (40.0%) regulators
among 29,584 biological process terms, among which 67 terms were both positive and negative regulator
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‘canonical Wnt signaling pathway’. This kind of extending
GO annotations of a protein by using is a and part
of relations in GO is called ‘annotation grouping’. To
increase our coverage, if GOl did not (positively/
negatively) regulates GO2 itself, we applied annotating
grouping and determined whether GO1 (positively/
negatively) regulates any ancestors of GO2. If it did,
then we found the most specific ancestor of GO2
with the highest information content that is regulated
by GO1 [19]. Then, we regarded GO1 and the most
specific ancestor of GO2 that is regulated by GO1 as
a pl —p2 (positive/negative) regulation pair. Since
excessive annotation grouping might result in too
high-dimensional feature vectors in which features are
highly correlated, we did not applied annotation
grouping when GOl regulates GO2 itself. For the
same reason, we used only the most specific ancestor
of GO2, not all the ancestors.

For example, since pl is annotated ‘positive regulation
of canonical Wnt signaling pathway’ and p2 is annotated
to ‘canonical Wnt signaling pathway, the two GO terms
form a pl — p2 positive regulation pair. On the other
hand, ‘positive regulation of Wnt signaling pathway’ does
not regulate ‘canonical Wnt signaling pathway’. However,
p2 is related to “Wnt signaling pathway’ when we apply
annotation grouping. Thus, ‘positive regulation of Wnt
signaling pathway” and “Wnt signaling pathway’ constitute
another p1 — p2 positive regulation pair.

We repeated the same procedure for determining
whether GO2 (positively/negatively) regulates GO1 or its
ancestors. As a result, we found six kinds of regulation
pairs: p1 — p2 regulation pairs, p1 — p2 positive regulation
pairs, p1 — p2 negative regulation pairs, p2 — p1 regulation
pairs, p2 — pl positive regulation pairs, and p2 — pl
negative regulation pairs. The six kinds of regulation
pairs were used as features for predicting directions and
signs of PPIs.

Feature generation for predicting directions of PPls

For predicting directions of PPIs, we only considered
the directions of (positive/negative) regulation pairs;
whether it is from p1 to p2, or from p2 to pl. We did not

differentiate regulation pairs, positive regulation pairs,
and negative regulation pairs. The value of a (positive/
negative) regulation pair GO1-GO?2 is defined as:

1 if GO1-GO2 is a p1—p2 (positive/negative)
regulation pair, exclusively

if GO1-GO2 is a p2—pl (positive/negative)
regulation pair, exclusively

0 otherwise

(2)

In our toy example, since ‘positive regulation of
canonical Wnt signaling pathway and ‘canonical Wnt
signaling pathway’ constitute a p1 — p2 positive regulation
pair, but not a p2 — p1 positive regulation pair, it has the
value of one. On the other hand, ‘negative regulation
of canonical Wnt signaling pathway and ‘Wnt signaling
pathway’ form a p2— pl negative regulation pair,
exclusively. Thus, it has the value of - 1. If the direction of
a (positive/negative) regulation pair is both from p1 to p2
and from p2 to pl, then the feature value is zero. In the
toy example, since pl — p2 (positive/negative) regulation
pairs outnumber p2— pl (positive/negative) regulation
pairs, the direction of PPI is more likely to be from
pl to p2. We removed (positive/negative) regulation
pairs that were not used in the training set and the
number of features for direction was 37,617.

fdirection GO1-GO2] = (-1

Feature generation for predicting signs of PPIs

Feature generation for predicting signs of PPIs are
similar to that for directions; We used each regulation
pair as a feature. However, there are also some differ-
ences: (1) Since we predicted sign for a directed PPI, we
used regulation pairs whose directions were consistent
with the direction of the PPI. (2) Since simple regulation
pairs are uninformative for predicting signs, we used
positive regulation pairs and negative regulation pairs
only. (3) We removed regulation pairs that is both posi-
tive and negative. For example, ‘cell cycle switching,
mitotic to meiotic cell cycle’ positively regulates ‘meiotic
cell cycle’ and negatively regulates ‘mitotic cell cycle’.
Thus, ‘cell cycle switching, mitotic to meiotic cell cycle’
both positively and negatively regulates ‘cell cycle’. We
removed those regulation pairs since they are meaningless.
(4) Compared to a feature vector for direction, which
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Fig. 3 Feature generation for directions and signs. a ‘chromatin silencing’ negatively requlates ‘transcription, DNA-templated’. Thus, ‘chromatin
silencing’ is negative regulator whereas ‘transcription, DNA-templated’ is a regulatee. If protein p1 and p2 is annotated to ‘chromatin silencing’
and ‘transcription, DNA-templated’ respectively, the two GO terms compose a p1 — p2 negative regulation pair, which represents direction
and sign between two GO terms. b Feature generation procedures are explained with a toy example related to Wnt signaling pathway. There
are four regulators (GO:0030177, GO:0030111, GO:0090263, GO:0090090), among which two are positive regulators (GO:0030177, GO:0090263)
and one is a negative regulator (GO:0090090). Protein p1 is annotated to four GO terms (GO:0016055, GO:0030177, GO:0030111, GO:0090263),
whereas protein p2 is annotated to three GO terms (GO:0030111, GO:0060070, GO:0090090). Protein p2 is not directly annotated to ‘Wnt signaling
pathway’, but to ‘canonical Wnt signaling pathway'. Nonetheless, since ‘canonical Wnt signaling pathway' is a ‘Wnt signaling pathway’, protein p2 is
related to ‘Wnt signaling pathway'. ¢ For GO1 and GO2 to which protein p1 and p2 are annotated respectively, we determined whether GO1 (positively/
negatively) regulates GO2. If it did, GO1 and GO2 became a p1 — p2 (positive/negative) regulation pair. If it did not, we determined whether
GO1 (positively/negatively) regulates any ancestors of GO2. Then, GO1 and the most specific ancestor of GO2 became a p1 — p2 (positive/negative)
regulation pair. That way, we found (positive/negative) regulation pairs for p1 — p2, and p2 — p1 direction. To represent PPIs, we used regulation pairs
as features. For directions, directions of regulation pairs were encoded as feature values. p1 — p2 (positive/negative) regulation pairs had
the value of one, whereas p2 — p1 (positive/negative) regulation pairs had — 1. d For signs, signs of regulation pairs were encoded as
feature values. p1 — p2 positive regulation pairs had the value of one, whereas p1 — p2 negative regulation pairs had — 1. Abbreviations: GO,

gene ontology; WSP: Wnt signaling pathway
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signifies the direction between GO terms, a feature
vector for sign indicates signs. For predicting sign of a
directed PPI pl — p2, the value of a positive/negative
regulation pair GO1-GO2 is defined as:

1 if GO1-GO2 is a p1—p2 positive regulation pair, exclusively
fsign [GO1-GO2] = {-1 if GO1-GO2 is a p1—p2 negative regulation pair, exclusively
0 otherwise

(3)

In our toy example, since ‘positive regulation of
canonical Wnt signaling pathway and ‘canonical Wnt
signaling pathway’ is a p1 — p2 positive regulation pair, it
has the value of one. On the other hand, since ‘negative
regulation of canonical Wnt signaling pathway’ and “Wnt
signaling pathway’ is a p2 — pl negative regulation
pair, not pl — p2, it has the value of zero. In the toy
example, since pl — p2 positive regulation pairs outnum-
ber pl — p2 negative regulation pairs, pl more likely
activates p2 rather than inhibits p2. We removed
regulation pairs that were not used in the training set. The
number of features for sign was 20,077.

Model generation for performance evaluation

We used L2-regularized logistic regression for predicting
directions and signs of PPIs. We used logistic regression
because it is interpretable [20]. Moreover, L2-regularization
reduces overfitting that might be caused by high-
dimensionality of feature vectors. As shown in Table 1, we
had much more activating PPIs than inhibiting ones.
To overcome this imbalance, we adopted cost-sensitive
learning in which class-weight was inversely proportional
to the class frequency [21].

Model generation for predicting directions of PPIs

We trained two L2-regularized logistic regression
models that shared the same feature vectors for predict-
ing directions of undirected, unsigned PPIs; they
predicted whether a signal could flow in left-to-right
direction and right-to-left direction, respectively. By
combining outputs from the two models, we determined
final directions as one of the followings: ‘left-to-right;
‘right-to-left; or ‘bi-directional’. For example, if a signal
is predicted to be able to flow in ‘left-to-right’ direction,
but not in ‘right-to-left’ direction, then the final direction
of PPI is ‘left-to-right’. If a signal can flow in both
direction, then the final direction of PPI is ‘bi-directional’.
Instead of training one classifier that predicts three
outcomes, we trained two classifiers separately
because uni-directional PPIs highly outnumbered bi-
directional ones as shown in Table 1. During the
training and test phase, we randomly divided uni-
directional PPIs into two equal-sized sets: left-to-right
PPIs, and right-to-left PPIs.
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Model generation for predicting signs of PPIs

For each directed, unsigned PPI, we predicted its
effect type as one of ‘activation; ‘inhibition; ‘activatio-
n&inhibition, and ‘affect’. Similar to directions, signs
of PPIs were highly imbalanced; the number of ‘acti-
vation&inhibition’ and ‘affect’ class were very low.
Thus, we trained two classifiers, rather than a single
classifier that predicts four possible outcomes. The
two classifiers shared the same feature vectors and
predicted whether a directed PPI can act as activation
and inhibition, respectively. Then, final effect types
were determined by combining outputs of two classifiers.
If a directed PPI can act as ‘activation, but not as
‘inhibition, then its effect type were determined as
‘activation, and vice versa.

Results and discussions

Cross-validation performances

We applied our method to KEGG dataset, and conducted
10-fold cross-validation. In 10-fold cross validation, KEGG
dataset is split into ten disjoint subsets. Then, we trained
logistic regression models by using nine subsets, and
tested the models on the remaining one subset. This
procedure was repeated such that the models can be
evaluated for each subset. The performance was obtained
for each subset, and the mean performance is listed in
Table 2. For directions, the performance of left-to-right
and right-to-left classifiers were almost identical. F1-score
and accuracy were as high as 0.89 for both left-to-right
and right-to-left classifiers. Area under receiver operating
characteristics (AUROC) and area under precision-recall
curve (AUPRC) was 0.95 and 0.94 for both classifiers,
respectively [see Additional file 1: Figure S1].

For signs, f1-score of activation and inhibition classifier
were 0.91 and 0.80, respectively. Fl-score of activation
classifier was higher because activating PPIs outnumbered
inhibiting ones. Accuracy of two classifiers were identical
as 0.88. AUROC were 0.94 and 0.93 for activation
and inhibition classifiers, respectively. Also, AUPRC
were 0.96 and 0.89 for activation and inhibition classifiers,
respectively [see Additional file 1: Figure S1].

Table 2 Performance of classifiers for 10-fold cross validation

Classifier Precision Recall F1-score Accuracy

Direction
Left2right 0.894 + 0.025 0.890 + 0.029 0.892 + 0.027 0.892 + 0.027
Right2left 0.893 £ 0.029 0.892 + 0.023 0.892 + 0.025 0.892 + 0.026
Effect type
Activation 0923 + 0.031 0902 + 0.059 0.912 + 0.040 0.881 + 0.050

Inhibition  0.791 £ 0.103 0.819 + 0.088 0.800 + 0.077 0.876 + 0.052

The performance is shown as mean + standard deviation
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Independent test performances

To see how well our model generalizes to datasets
from different sources, we conducted an independent
test. In an independent test, we trained logistic
regression models with KEGG dataset, and tested
with STRING dataset. The performance for predicting
directions and signs are listed in Table 3. The
performance of left-to-right classifier and right-to-left
classifier were similar. Accuracy of left-to-right classifier
and right-to-left classifier were around 0.6 and 0.59,
respectively. The AUROC of left-to-right classifier and
right-to-left classifier were 0.64 and 0.63, respectively
[see Additional file 1: Figure S2].

The performance for predicting sign was higher
than predicting directions. The accuracy of activation
classifier and inhibition classifier were both 0.69.
However, because the dataset was imbalanced, fl1-
score was much higher in activation classifier than in-
hibition classifier. AUROC of activation classifier and
inhibition classifier were 0.67 and 0.63, respectively
[see Additional file 1: Figure S2].

Comparison with the previous GO-based method
To demonstrate the effectiveness of GO relations, we
compared the performance of our method to the
performance of the previous GO-based method that did
not use GO relations. Since the previous work did not
consider directions of PPIs, we slightly modified our PPI
dataset and feature values for the comparison. For PPI
datasets, we originally defined effect types for directed
PPIs. Therefore, bi-directional PPIs have two effect
types, one effect type for each direction. To compare
performance with the previous work, we mapped effect
types of directed PPIs to undirected PPIs by using ‘OR’
operation so that bi-directional PPIs have only one effect
type. For an undirected PPI p1-p2, if either directed PPIs
pl—p2 or p2—pl can act as activation, then pl-p2
has ‘activation’ as its effect type. Likewise, if either p1 —
p2 or p2—pl can act as ‘inhibition, then pl-p2 has
‘inhibition’ as its effect type. The statistics of PPI dataset
that were used for the performance comparison is listed
in Table 4.

For feature generation, when we predict effect type of
a directed PPI p1 — p2, originally we considered p1 — p2

Table 3 Performance of classifiers for independent test

Classifier Precision Recall F1-score Accuracy
Direction
Left2right 0.64 0.60 0.62 0.60
Right2left 0.64 0.58 061 0.59
Effect type
Activation 091 071 0.79 0.69
Inhibition 0.29 049 0.37 0.69
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Table 4 Statistics of PPl datasets that were used for comparison
with previous GO-based method

Activation Inhibition Activation& Affect Total
inhibition

KEGG Previous 14,054 5478 382 552 20,466
work

Our work 12,309 4787 369 517 17,982

STRING  Previous 2849 465 152 15 3481
work

Our work 2729 455 152 15 3351

The previous GO-based method covers all PPIs whose constituent proteins are
annotated to at least one GO term. However, our method requires at least one
positive/negative regulation pair to predict effect type, thereby decreasing

our coverage

positive/negative regulation pairs only. p2 — p1 positive/
negative regulation pairs were omitted because the direc-
tion between GO terms were inconsistent with the direc-
tion of the PPI. However, since the directions were not
considered in the performance comparison, we used both
pl — p2 positive/negative regulation pairs and p2— pl
positive/negative regulation pairs.

We conducted independent test for the previous work
and our work. In the independent test, logistic regres-
sion models were trained with KEGG dataset, and tested
with STRING dataset. The independent test results are
shown in Fig. 4. For activation classifier, the performance
was identical or slightly better in our method. On the
other hand, in inhibition classifier, our method outper-
formed the previous work, especially in terms of recall.
These results show that our method solved the second
and third limitations of the previous work that we
mentioned. The second limitation was that even if one
protein inhibits another protein, the two proteins might
share the same GO terms because they interact with
each other. This may result in similar feature vector
between activating PPIs and inhibiting PPIs in the previ-
ous work, suggesting that simply considering whether
two proteins share the same GO terms are not sufficient
for predicting signs of PPIs. We solved this problem by
using positively regulates and negatively regulates
relations in GO, not using which was the third limita-
tion. Enhanced performance demonstrates that those
relations help to predict signs of PPIs, especially for
inhibiting ones.

Even though our method outperformed the previous
GO-based method, our method has one drawback;
slightly lower coverage. Since we need at least one
positive/negative regulation pair for predicting effect
types, we covered 89% of PPIs that were covered by the
previous method, as shown in Table 4.

Annotation of effect types to human PPIs
We applied our method to the prediction set. We
validated top five most confident predictions against
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a Performance for activation classifier
1 091091 091091
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b Performance for inhibition classifier
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Fig. 4 Performance comparison with the previous GO-based method. We conducted independent test to compare performance with the previous
GO-based method that did not consider GO relations. We compared the performance of activation and inhibition classifiers in terms of AUROC, AUPRC,
precision, recall, f1-score, and accuracy. Since the previous work did not consider directions, performance for predicting signs was compared.
a For predicting activation, our work performed equally, or slightly better than the previous work. b For predicting inhibition, our work outperformed
the previous work by all metrics. These results show that overlap or difference between GO annotations of two proteins are not sufficient
discriminating factor for signs of PPIs, given that inhibiting PPIs also participate in the same biological process. Moreover, positively regulates and negatively
regulates relations in GO can be used for enhancing performance for predicting signs of PPIs. Abbreviations: AUROC, area under receiver
operating characteristics; AUPRC, area under precision-recall curve

literature, each for activation and inhibition. We were able
to find five publications supporting our prediction, as
shown in Table 5.

Case study

To demonstrate that our method can predict effect types
of PPIs even when one direction is activation and the
other direction is inhibition, we conducted a case study.
Hras proto-oncogene, GTPase (HRAS) activates mitogen-
activated protein kinase 1 (MAPK1) in axon guidance, a
process in which axon growth cone migrates in specific
direction. On the other hand, MAPK1 inhibits HRAS
in neutrophin signaling pathway. In 10-fold cross-
validation, our method correctly predicted effect types
of two directions, even when one direction is activation
and the other is inhibition. This means that since we
predict signs for each directed PPI, and use positive/
negative regulation pairs only when their directions
are consistent with the directions of PPIs, our method
is able to predict effect types of PPIs independently

for both directions. Regulation pairs used for the
prediction is illustrated in Fig. 5. For predicting that
HRAS activates MAPK]1, ‘positive regulation of MAPK
cascade’ and ‘positive regulation of MAP kinase activity’
were used. On the other hand, ‘negative regulation of
cell differentiation’ was used for predicting that
MAPK1 inhibits HRAS, which is related to the
function of neutrophin signaling pathway. This means
that some regulation pairs reflect the context in which
the PPI occurs.

Conclusions

In this work, we predicted effect types of PPIs by using
regulates, positively regulates, and negatively regulates
relations in GO. We hypothesized that directions and
signs between GO terms can be used to predict direc-
tions and signs of PPIs. For an undirected, unsigned PPI,
we predicted its direction first. We trained two logistic
regression models to predict whether a signal can flow
in left-to-right direction and right-to-left direction,
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Table 5 Literature validation of top five activating and inhibiting
PPIs from effect type-annotated human PPIs

Protein1 Predicted effect type Protein2 Supporting evidence
KIT Activation STATI [24]
NRG1 Activation LIMK1 [25]
ADAM17 Activation MAPK1

ABL1 Activation BRCA1 [26]
FGF2 Activation RPS19

AXINT Inhibition GSK3A

GRB10 Inhibition IRS1 [27]
MAD7 Inhibition SMAD4

GRB10 Inhibition AKT1 [28]
TLE1 Inhibition LEF1

respectively. The directions of (positively/negatively)
regulates relations were encoded as features for repre-
senting direction of PPI. Then, we predicted sign for
each directed PPI, thereby predicting effect type of PPL
We also trained two logistic regression models for
predicting whether a directed PPI can act as activation
and inhibition, respectively. We represented a directed
PPI with features whose values were signs of positively/
negatively regulates relations. As a result, we annotated
effect types to PPIs, thereby turning PPI network into a
directed, signed graph.

Our contribution is two-fold. Firstly, we proposed a
concept of pl — p2 (positive/negative) regulation pair,
which is effective for predicting directions, as well as
signs of PPIs. This solves the limitation of previous
works that were not able to predict directions of PPlIs.
Secondly, we demonstrated usefulness of (positively/
negatively) regulates relations in GO. Up to date, most
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of GO-related works have used only is a and part of
relations. In this work, we showed that (positively/
negatively) regulates relations are effective for predicting
directions and signs of PPIs, suggesting their extension to
other types of interactions. For example, those relations
might be used for predicting signs of protein-DNA
interactions; whether a transcription factor activates
or represses expression of a target gene.

Even though our work improved the performance for
predicting signs of PPIs, we have some drawbacks. Since
we need at least one positive/negative regulation pairs
for predicting signs, our method has lower coverage
than the previous GO-based method. We applied
relation reasoning and annotation grouping to compensate
low coverage of (positively/negatively) regulates relations,
nevertheless, some PPIs were not covered. At this
moment, our method did not consider specificity of
GO terms. However, more specific GO terms have
clearer meaning. This suggests that reflecting specificity of
GO terms might improve our method. In addition, the
performance of inhibition classifier was much lower
than activation classifier since there were much more
activating PPIs than inhibiting ones. This imbalance
was so significant that cannot be perfectly corrected
by cost-sensitive learning. We expect that accumulation of
more inhibiting PPIs will enhance the performance
in future.

To facilitate signaling pathway reconstruction and net-
work biology research, we provided effect type-annotated
human PPIs in Additional file 2. The annotated effect
types turned PPI network into a directed signed graph,
opening up opportunities for discovering new characteris-
tics of PPI network or signaling pathways. For example,
signs of PPIs can be used for measuring stability of PPI

~

=3 activation
=49 inhibition

HRAS ._) MAPK1

Positive regulation of positively
MAPK cascade regulates MAPK cascade
Positive regulation of positively . .
MAP kinase activity requlates MAP kinase activity
Cell differentiation negatively Negatl\{e regulgtlpn
regulates of cell differentiation

Fig. 5 A case study for PPl where one direction is activation and the other is inhibition. HRAS activates MAPKT in axon guidance, whereas MAPK1
inhibits HRAS in neutrophin signaling pathway. Both effect types were correctly predicted in 10-fold cross validation, showing that our method
can predict sign for each direction independently. Positive/negative regulation pairs that contributed to the sign prediction are shown in the figure.
Interestingly, ‘negative regulation of cell differentiation” and ‘cell differentiation” were used to predict the inhibition, which is related to the function of
neutrophin signaling pathway. Abbreviations: HRAS, hras proto-oncogene, GTPase; MAPK1, mitogen-activated protein kinase 1
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network [10, 22]. In addition, effect types of PPIs can be
used for discovering novel regulators of signaling path-
ways [10, 23], and improving performance for predicting
efficacies of drugs [8].

Additional files

Additional file 1: Table S1. Lists all possible combinations of GO
relations where relation reasoning can be applied. Figure $1-S2. shows
ROC and PRC along with their area under the curves obtained from
cross-validation, and independent test results. (PDF 799 kb)

Additional file 2: Effect type-annotated human PPIs. This file contains
effect type-annotated human PPIs in xIs format. Each row is a triplet of
(protein 1, effect type, protein 2), in which protein 1 is a upstream protein
whereas protein 2 is a downstream protein. (XLS 1547 kb)
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operating characteristics; DVL: Dishevelled segment polarity protein;

GO: Gene ontology; HRAS: Hras proto-oncogene, GTPase; MAPK1: Mitogen-
activated protein kinase 1; NKD: Naked cuticle; PCP: Planar cell polarity;

PPI: Protein-protein interaction; RNAi: RNA interference
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