
Research Article
Large-Scale Analysis of Remote Code Injection Attacks in
Android Apps

Hyunwoo Choi and Yongdae Kim

KAIST, Daejeon, Republic of Korea

Correspondence should be addressed to Yongdae Kim; yongdaek@kaist.ac.kr

Received 14 July 2017; Revised 29 December 2017; Accepted 22 February 2018; Published 17 April 2018

Academic Editor: Po-Ching Lin

Copyright © 2018 Hyunwoo Choi and Yongdae Kim. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

It is pretty well known that insecure code updating procedures for Android allow remote code injection attack. However, other than
codes, there are many resources in Android that have to be updated, such as temporary files, images, databases, and configurations
(XML and JSON). Security of update procedures for these resources is largely unknown.This paper investigates general conditions
for remote code injection attacks on these resources. Using this, we design and implement a static detection tool that automatically
identifies apps that meet these conditions.We apply the detection tool to a large dataset comprising 9,054 apps, from three different
types of datasets: official market, third-party market, and preinstalled apps. As a result, 97 apps were found to be potentially
vulnerable, with 53 confirmed as vulnerable to remote code injection attacks.

1. Introduction

Widespread adoption of mobile technologies and significant
increases in the number of smartphone users have resulted
in a significant demand for diverse applications (“apps” for
short). As of February 2016, over 65 billion apps have been
downloaded from Google Play (the leading Android app
store, with 80.7% market share [1]) [2], which had more than
two million apps available for download up to March 2016
[3]. Further, to compete effectively in the highly competitive
app market, developers are constantly adding new features to
their apps.

With demands to support a plethora of features, apps
often rely on external servers to dynamically update their
resources at runtime. We generally refer to this class of
updates as dynamic resource update (DRU). For example, apps
often utilize dynamic code loading (DCL) to load additional
code resources (e.g., .dex, .jar, .so, and .apk) at runtime to
improve app startup performance, code reuse, extensibility,
and self-updating [4]. In such cases, the additional codes
could be downloaded from an external server while the
app is running. In addition, an advertising library (AdSDK)
included in an app may fetch ad resources such as images
and videos from its servers and display them to the user so

that advertisers can freely update their ads whenever they
desire while the app is running. As recent statistics and
studies show that over 44% of apps in Google Play include
at least one mobile advertising library [5] and 32.48% of apps
contain DCL components [6], DRUs are obviously prevalent
in today’s Android app implementations.

Unfortunately, several studies have revealed that DRUs
are susceptible to remote code injection attacks [4, 6–8].
Apps that download external resources via an insecure
protocol (such as HTTP) are vulnerable to man-in-the-
middle (MITM) attacks. Consequently, it is possible for
network attackers to modify or replace the DRU resources
being downloaded. Falsina et al. [4] and Poeplau et al. [6]
showed that if an app does not properly verify code resources
downloaded via HTTP, an attacker can perform a remote
code injection attack by injecting a malicious payload, which
is then executed when the app loads the malicious payload
at runtime. Watson [7] and Welton [8] found that remote
code injection attacks can be carried out on other resource
update procedures. If an app does not sanitize an input of ZIP
extraction, filenames containing path traversal information
may cause them to be stored or extracted outside of the
intended directory. This situation can then be exploited by
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attackers to overwrite existing arbitrary executables such
as .so, .jar, and .dex files. Consequently, when attackers are
able to modify ZIP archives being downloaded, they can
perform remote code injection attacks.

From these studies [4, 6–8], we observe that there are
three conditions that must be met for remote code injection
attacks to be successful in Android apps: no or bypassable
validation checks, file overwrite vulnerabilities, and code trig-
ger points. The first condition includes the case when (1)
apps do not perform integrity or authenticity checks on
downloadedDRU resources or (2) attackers are able to bypass
such validation checks. The second condition indicates the
case when the injected payload can overwrite executables.
The third condition is met when there exists a code trigger
point where the overwritten files are loaded and executed in
the app’s context. Remote code injection attacks are successful
when these three conditions are met.

Apps based on secure communication protocols (such as
HTTPS) are not vulnerable to remote code injection attacks
as an MITM attack is not possible unless vulnerabilities
exist in an app’s SSL/TLS implementation, such as trusting
all certificates, allowing all hostnames, trusting many CAs,
and mixed-mode/no SSL [9]. However, as shown in recent
studies, the use of HTTP and improper use of HTTPS are
widespread problems in Android apps [9–11], resulting in
remote code injection attacks still being a serious threat in
today’s Android apps.

The problem becomes complicated when apps maintain
multiple connections and downloadmultiple DRU resources,
because, in this case, all DRU updates have to be imple-
mented securely. For example, apps generally apply HTTPS
or integrity checking only to sensitive communications such
as login, posting, purchasing, and self-updating activities and
critical procedures. Remote code injection attacks can also
be accomplished via other DRU resources such as images
(.jpeg, .gif, etc.) and configurations (.xml, .json, .txt, etc.).
Listing 1 is an example of vulnerable configurations. App
developers may not be cognizant of the security implications
of all DRU resources downloaded and stored in the file sys-
tem. For example, developers usually implement the theme
updates for apps by simply downloading images via HTTP.
However, if file overwrite vulnerabilities and code trigger
points exist in the theme updates, and there are no validation
checks in update procedures, remote code injection attacks
can still be carried out. While remote code injection attacks
against code resource updates such as self-updates are well
known, attacks against other resource update activities and
their impacts are still largely unknown. In this paper, we
show that updates involving other resources, such as archives,
images, and temporary files, can also be vulnerable to remote
code injection attacks. To this end, we first investigate general
conditions for remote code injection attacks in Android apps
and then present a static detection tool that automatically
finds apps that satisfy these conditions. Our automatic detec-
tion tool uses the application binary (.apk) as input to identify
potentially vulnerable apps using static program analysis. It
combines network-aware program slicing, data dependency
analysis, and string analysis to provide a comprehensive

analysis of each condition. Finally we perform a large-scale
analysis to identify vulnerable apps in the wild.

Our main contributions can be summarized as follows:

(i) We investigate three conditions for successful remote
code injection attacks in Android apps: (1) no or
bypassable validation checks, (2) file overwrite vul-
nerabilities, and (3) code trigger points.

(ii) We present the design and implementation of the first
static detection tool that automatically identifies apps
that meet these three conditions. More specifically,
the detection tool takes only a binary (.apk), extracts
DRU-related codes, and identifies whether the codes
meet these three conditions by leveraging heuristics,
string analysis, and data dependency analysis.

(iii) Weperforma large-scale analysis using three different
types of datasets, comprising 4,718 apps from an offi-
cial market (Google Play), 2,967 from a third-party
market (Tencent Myapp), and 1,369 from preinstalled
apps (system apps). Our analysis identified a total
of 97 apps as being potentially vulnerable, and 53
apps are confirmed to be vulnerable to remote code
injection attacks.

The remainder of this paper is organized as follows:
Section 2 provides necessary background, and Section 3
presents our threatmodel. Section 4 analyzes the three condi-
tions necessary for successful remote code injection attacks.
Section 5 presents our heuristics-based static detection tool.
Section 6 presents the results of our large-scale analysis.
Section 7 discusses mitigations and limitations. Section 8
reviews related work. Finally, Section 9 concludes this paper.

2. Background

This section provides background on dynamic resource
updates and remote code injection attacks in Android apps.

2.1. Dynamic Resource Update. Android app developers often
utilize external servers to dynamically update app resources
while the app is running. As stated in the Introduction,
throughout this work, we refer to this concept as dynamic
resource update (DRU). DRUs are very commonly used for
a variety of purposes.

2.1.1. Application Code Resource Update. At various times,
Android apps may need to download additional features
(i.e., application code) from external servers at runtime.
For example, certain commercial apps such as game apps,
which are initially distributed free of charge from an official
market (such as Google Play) with minimum features, may
need to provide premium features to their users after being
purchased. In such cases, these game apps implement DRUs,
in which the codes serving premium features are downloaded
from the external server and then loaded into the app’s
context at runtime to provide the related premium service.

Another example of application code resource update is
self-update. Self-update occurs when apps need to upgrade
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GET http://w.mapbar.com/update/update/3he1/update.json
← 200 application/json

{
''versionCode'': 781172467,
''size'': 20006804,
''url'': ''http://datamobile.mapbar.com/map/downloads/3in1/apk/MapbarNavi.apk'',
''mdvalue'': ''FF8AFDA9887E158F1FBF601489031AD1'',
''updateDescribe'': [. . .]
}

Listing 1: An example of metadata in self-updating app.

themselves (e.g., .apk or .dex) or import libraries (e.g., .so).
In self-update procedure, an app usually requests update
information that specifies a downloadable URL from the
external server. Listing 1 shows an example of update
information in self-updating app. After receiving update
information, the app downloads application code using the
identified URL. Finally, the downloaded code will be loaded
and executed for the purpose of self-updating. Unlike Google
Play’s update mechanism that requires user confirmation,
self-update is usually executed without any user interaction.
With the help of DCL (defined in the Introduction), apps
can load downloaded code resources during execution. (Note
that Google currently specifies the content policy of Google
Play in its “Privacy and Security” section:An app downloaded
from Google Play may not modify, replace, or update itself
using any method other than Google Play’s update mechanism
[12].) However, Poeplau et al. [6] found that this policy is not
technically enforced, to the extent that a large number of apps
on Google Play still load external code resources.

2.1.2. Advertisement Resource Update. Recent statistics [5]
show that advertising is prevalent in today’s Android app
implementations, where over 44% of apps in the Google
Play include at least one mobile ad library. Once developers
build their apps with AdSDK, it may fetch ad resources
from its servers and display them to the users of the apps at
runtime. In this manner, advertisers can freely update their
ads whenever they wish to change the currently serving ads.
(Note that ad resources are usually offered in the form of
archives, such as ZIP or GZIP format, which may include
a variety of compressed resources such as images, videos,
HTML, and JavaScripts.)

Similarly, advertising libraries (such as .so files) can also
be updated via external servers such as application code
updates. When an app starts, the library checks its version
using REST APIs (HTTP request, and JSON or XML response).
If a new version is released, the library triggers its update
logic to download the newly released library. After the library
is successfully downloaded, it is loaded and executed in the
context of the app.

2.1.3. Other Resources Updates. Apps also often need to
download other types of resources from external servers
to use at runtime. These resources can include temporary

files, images, databases, and configurations needed in the
context of the app. These are stored in the app’s data folder
(/data/data/PACKAGE NAME) or an external storage (/mnt
or /sdcard). For example, if an app needs to update a
constant string, it may download an XML file from its server
and save it to the data folder.The app then parses the constant
strings from the XML file and adds them at runtime. (Note
that whereas the Android framework defines certain types of
application resources (Animation, Color State List, Drawable,
Layout, Menu, String, Style, etc. [13]) that developers can
provide in their resources directory (res/), the “resource”
referred to in this paper includes not only those types defined
in [13] but also a wide range of others (e.g., codes or archives)
needed in app’s context.)

2.2. Remote Code Injection Attacks. As stated in Section 1,
apps communicating with external servers via a plaintext
protocol such as HTTP are vulnerable to MITM attacks
(note that apps using encrypted communications such as
HTTPS can also be vulnerable to MITM attacks if they
mis-implement TLS/SSL). Once an MITM attack is possible,
an attacker can perform remote code injection attacks by
modifying or replacing the resources being downloaded.
From the literature [4, 6–8], we observe that remote code
injection attacks can succeed under the following three
conditions (CI, CII, and CIII).

CI:No or BypassableValidationChecks.There should be either
no validation checks, or the validation checks can be bypassed
by network attackers.

CII: File Overwrite Vulnerabilities. The injected payloads are
stored in a specified location in accordance with the app’s
DRU implementations.

CIII: Code Trigger Points. The injected payload has to be
executed in the context of the app when the app starts, or
while it is running.

We investigate these three conditions in Section 4.

Example: A Remote Code Injection Attack against a Self-
Updating App. Listing 1 shows an example of metadata in a
self-updating app that is vulnerable to remote code injection
attacks. In general, the self-updating app requests update
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information from the server via HTTP and receives metadata
containing update information such as “url” and “mdvalue”
in JSON format. In this case, the self-updating app meets
all the aforementioned conditions for a successful remote
code injection attack. First, because the app communicates
with the server via a plaintext protocol (HTTP), attackers
can bypass its validation check by modifying the integrity
value (“mdvalue” in the metadata) provided by the server
(CI). In addition, owing to the nature of the self-update
mechanism, the downloaded .apk file is stored in the app’s
directory by replacing or overwriting the existing (legacy)
executable (CII), and the downloaded .apk is loaded and
executed in the context of the app (CIII).

In summary, with the aid of an MITM attack, if the
app satisfies the three conditions above, attackers can easily
perform a successful remote code injection attack by injecting
their payload (.apk) with its correct hash value.

3. Threat Model

This section introduces the threatmodel used throughout this
work.

We assume that apps are benign but potentially vul-
nerable to remote code injection attacks, that the external
servers communicating with the apps are secure, so they
cannot be compromised by an attacker, and also that users
are benign and often connect toWi-Fi networks consisting of
unencrypted or untrusted access points (APs).

3.1. Ability of an Adversary. We assume that attackers cannot
access a user’s device but can obtain an app code running the
user’s device. The attackers cannot compromise or access the
external server communicating with the app, but can install
a rogue AP in a public or private area to lure the user into
their Wi-Fi network [14]. Note that the rogue AP can be
easily installed in such a manner that it has the same SSID
as a trusted AP and has stronger signal strength than the
original one. Attackers can also exploit a vulnerable AP to
compromise it for mounting MITM attacks. For the remote
code injection attack, attackers can inject their payload into
transactions served over HTTP.

3.2. Attack Scenario. We consider the following attack sce-
nario. We assume that the user initially connects to a Wi-Fi
AP that is compromised or has been installed by an attacker,
or the user connects to the attacker’s device after connecting
to theWi-Fi APs, with the attacker performing ARP spoofing
or any other techniques needed for an MITM attack such as
DNS spoofing, so that the user’s traffic passes through the
attacker’s device. When the user downloads DRU resources
froman external server, the attacker carries out code injection
by monitoring this transaction and replacing the resource
being downloaded with his/her payload. When the injected
payload is loaded and executed in the context of the app, the
attacker gains access to the app’s shell remotely and then can
perform a privilege escalation attack to gain access to a higher
level, such as root shell.

Note that our threat model is similar to prior works
dealingwith the security implications of dynamic code loading
[4, 6]. However, the difference from prior works is that we
only focus on network attackers and corresponding attack
scenarios in which attackers can remotely inject payloads.
Code injection attacks from malicious apps running on the
same device are out of the scope of this paper.

4. Conditions for Successful Remote Code
Injection Attacks

In this section, we analyze the three conditions required for
successful remote code injection attacks againstAndroid apps
using decompiled code snippets as examples.

4.1. No or Bypassable Validation Checks. In general, apps
usually ensure that downloaded resources have not been
modified by using validation checks that verify the integrity
of the downloaded resources. In this regard, servers provide a
unique hash value produced by a hash function (such asMD5
and SHA-256) with the resource, and the app compares the
provided hash valuewith a newly computed hash value for the
downloaded resource. If the hash value that the app computes
is the same as the hash value provided, the app determines
that there is nothing wrong with the downloaded resource.
Alternatively, servers can attach authenticity information
(such as signatures) to the resource by digitally signing the
produced hash value being distributed. This enables the app
to check the downloaded resource by verifying its signature.
Attackers could then tamper with the resource only if they are
able to steal the server’s signing key.

However, a hash value match does not necessarily guar-
antee that the downloaded resources have not been tampered
by attackers. This is because if the provided hash value is
transmitted via a plaintext protocol, with the aid of MITM
attacks, attackers can bypass the validation checks by simply
changing the hash value. Furthermore, andmost importantly,
developers often forget or do not recognize the importance of
validation checks for downloaded resources [6]. For example,
as discussed in Section 2, if a self-updating app does not verify
the downloaded resource during the self-update procedure,
attackers can successfully carry out a remote code injection
attack by simply modifying the update information or by
replacing the resources being downloaded.

Although the self-updating app verifies downloaded
resources using a hash value provided by the correspond-
ing server, this does not guarantee that the downloaded
resources have not been modified by attackers. For example,
in Listing 1, the self-updating app verifies the downloaded
resource by examiningwhether the providedMD5 hash value
(“mdvalue”: “FF8AFDA9887E158F1FBF601489031AD1”) is
equal to the hash value computed by the app. In this case, if
the hash value is transmitted via a plaintext protocol (HTTP),
with the aid of MITM attacks, attackers can bypass the
validation check by modifying the hash value (“mdvalue” in
Listing 1).Therefore, remote code injection attacks can still be
successful in cases where the validation checks are bypassed.
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(1) protected java.lang.String doInBackground(java.lang.Void[]) {
(2) . . .
(3) URL url = new URL(''http://www.appnext.com/android/images2.zip'');
(4) HttpURLConnection conn = (HttpURLConnection)url.openConnection()
(5) int length = conn.getContentLength();
(6) byte[] buf = new byte[length];
(7) ...
(8) DataInputStream dis = new DataInputStream(url.openStream());
(9) dis.readFully(buf);
(10) . . .
(11) File dir = getDir(''appnext'', MODE PRIVATE);
(12) File file = new File(dir, ''images2.zip'')
(13) . . .
(14) DataOutputStream dataOut =

new DataOutputStream(new FileOutputStream(file));
(15) dataOut.write(buf);
(16) . . .
(17) String path = getFilesDir().getAbsolutePath().append(''/appnext/'');
(18) unzip(file.getAbsolutePath(), path)
(19) ...
(20) }

Listing 2: Resource download without validation checks (decompiled from Appnext SDK [15]).

Another example in which the DRU resource is down-
loaded without validation check is illustrated in Listing 2.The
code snippets give the details of an image being downloaded
in Appnext SDK [15], a mobile monetization and app distri-
bution platform.The SDK downloads image files in the form
of ZIP archives from an external server with a fixed download
link “http://www.appnext.com/android/images2.zip” (line (3)
in Listing 2), which is hardcoded within the app. Then, it
stores the downloaded ZIP archive in the “appnext” directory
without any validation checks. In this case, if the DRU can
be abused to overwrite the existing executables, attackers can
successfully carry out a remote code inject attack. Note that
DRUs such as image resource update occur with very high
frequency in today’s app implementations.

4.2. File Overwrite Vulnerabilities. After attackers inject their
payloads bypassing the validation checks for resources,
the injected payloads are stored in a specified location in
accordance with the app’s DRU implementations, usually
in the app’s data directory (/data/data/PACKAGE NAME)
or in external storage (such as an SD card). If the DRU
that an attacker targets is the application code update, the
injected code is replaced with the existing code resource
(e.g., .dex, .jar, or .so) and then loaded and executed when
the app triggers the update logic. In such cases, the attacker
only needs to inject the payload without any considerations
to carry out a successful remote code injection attack.

On the other hand, there could be no DCLs in the
app, which is common in the majority of apps. However,
attackers can still successfully perform remote code injection
attacks bymeans of file overwrite vulnerabilities. If there is an
arbitrary write vulnerability in the app, attackers can exploit
it to overwrite the existing executables such as .dex, .so,

and .jar. Watson [7] and Welton [8] showed that an unsafe
ZIP extraction can be used for arbitrary write vulnerability;
thus, remote code injection attacks can be successful with the
aid of file overwrite vulnerabilities.

In this section, we further analyze other file overwrite
vulnerabilities that can be used for remote code injection
attacks.

Unsafe ZIP Extraction. Android apps often implement ZIP
archives to efficiently download or upload resource files
from/to their external servers over the network. However, as
shown by Watson [7] and Welton [8], if developers do not
consider the security implications of unsafe ZIP extractions
[16], arbitrary overwriting vulnerabilities that allow attackers
to overwrite the existing fileswith their injected payloadsmay
be present.

Listing 3 shows an example of an unsafe ZIP extraction
implemented in Appnext SDK [15]. The Appnext SDK
updates its image resources by directly downloading a
ZIP archive (images2.zip) that contains multiple .png
files from its server (doInBackground() in Listing 2).
After downloading the ZIP archive, the Appnext SDK
decompresses the downloaded ZIP archive, which is
stored in the app’s internal directory (/data/data/
PACKAGE NAME/appnext/image2.zip), so that the image
files can be located in the intended directory (/data/
data/PACKAGE NAME/appnext/files/). To achieve this,
the unzip() method first gets a filename (line (6)),
which it then uses to create a file output stream to write
to the image file (line (14)). Therefore, if the input of
filename is not sanitized and contains path traversal
information, it may cause the file to be extracted outside
of the intended directory. For example, if the filename is
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(1) public void unzip(String str1, String str2) {
(2) . . .
(3) Object obj = new ZipInputStream(new FileInputStream(str1));
(4) String str3 = ((ZipInputStream)obj).getNextEntry();
(5) . . .
(6) String str4 = str2 + str3.getName();
(7) if (!paramString1.isDirectory()) {
(8) extractFile((ZipInputStream)obj, str4);
(9) }
(10) . . .
(11) }
(12)
(13) private void extractFile(ZipInputStream is, String str) {
(14) BufferedOutputStream out =

new BufferedOutputStream(new FileOutputStream(str));
(15) byte[] arrayOfByte = new byte[4096];
(16) . . .
(17) int i = is.read(arrayOfByte);
(18) out.write(arrayOfByte, 0, i);
(19) . . .
(20) }

Listing 3: Unsafe ZIP extraction (decompiled from Appnext SDK).

“./../../../data/data/PACKAGE NAME/files/target.so,” the
target.so file would be replaced. Attackers can exploit this
fact to overwrite the existing arbitrary code resources with
their injected payload. Note that this vulnerability occurs
when the app does not sanitize the input of the pathname or
verity its location.

Unsafe Content-Disposition Implementation. Modern web
browsers often utilize an HTTP header to forcefully down-
load an external resource instead of rendering it on the
browser. To forcefully download with the HTTP header,
the server adds a Content-Disposition field that includes a
filename parameter in the HTTP response header (line (3)
in Listing 4) and, during the downloading of the external
resource on the client side, the browser retrieves a filename
from the HTTP response header and stores the downloaded
resource with the provided filename.

Android developers often use the HTTP response
header as metadata to retrieve the information of the
downloaded resource. For example, an app can retrieve the
filename of the downloaded resource from the HTTP
response header to display the resource name on a
screen or save the downloaded resource into internal
storage. To do this, the app first obtains the value of the
Content-Disposition field using network APIs such as org
.apache.http.HttpResponse.getFirstHeader() and
the java.net.HttpURLConnection.getHeaderField()
method. The app then parses the filename using a
dedicated API such as guessFileName() in the
android.webkit.URLUtil class or a user-defined parser
that implements a regular expression match. In this case,
however, if the app does not properly parse the filename and
simply uses this as a filename to create a file, an arbitrary

overwriting vulnerability may exist. For example, when
using regular expression matching with the pattern string
attachment; “s∗filename “s∗=“s∗““([̂ “”]∗)“”, if the matcher
evaluates the attachment; filename=“./../../../target” string,
the matcher would find a match in “./../../../target” string that
contains path traversal information. Thus, as with the unsafe
ZIP extraction, attackers can overwrite the arbitrary files by
modifying theContent-Disposition field in theHTTPheader.

4.3. Code Trigger Points. To successfully carry out a remote
code injection attack, the injected payload has to be executed
in the context of the app when the app starts, or while it is
running.Therefore, the attacker has to identify a code trigger
point that loads the injected payload and executes it. A self-
update is a good example of code containing a code trigger
point, by which the payload is loaded and executed after
downloading newly released code.

In this subsection, we investigate possible code trigger
points that can be used for remote code injection attacks.

Runtime Library. Android apps can include runtimes libraries
(such as .jar or .so file), which are loaded when the app
starts or while the app is running by using loadLibrary
(in case of .so) or DexClassLoader (in case of .jar) method.
The Native Development Kit (NDK) allows developers to
build their own C/C++ source code, or to take advantage of
prebuilt libraries. Developers can utilize the native libraries
to improve the app’s performance or reuse their own or
another developer’s libraries. In addition, developers can load
classes from .jar or .apk to execute methods that are not
contained as part of an application. These runtime libraries
can be used as a target for code trigger points. In Android,
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HTTP Response Header
(1) 200 OK
(2) Content-Type: text/html; charset=utf-8
(3) Content-Disposition: attachment; filename=''filename.txt''
(4) Content-Length: 22

Listing 4: Content-Disposition field in HTTP header.

when an app uses native libraries, which is built by Android
NDK, these libraries are stored in /lib directory and have
system privilege. Therefore, native libraries in /lib cannot
be used for trigger points. However, when developers create
libraries (including .so and .jar) and mark them as writeable
and put them in the app’s /assets directory, these libraries
can be considered as potential trigger points. After the app
is installed, these libraries can be stored in the app’s inter-
nal directory such as /data/data/PACKAGE NAME/files.
Attackers who know this path information can overwrite one
of these libraries to execute their injected payload.

Multidex. The Android platform supports a multidex to deal
with the 64k reference limit that limits the total number
of methods that can be invoked within a single DEX file
to 65,536, including Android framework methods, library
methods, and user-defined methods [17]. To support the
multidex, during build time, anAndroid build tool constructs
a primary dex (classes.dex) and other secondary dexes
(e.g., classes2.dex and classes3.dex) as needed and
packages them into a .apk file for distribution. While
installing the app, the secondary dexes are extracted into the
/data/data/PACKAGE NAME/code cache/secondary-
dexes/ directory and loaded when the app starts.
For example, the Runtastic [18] app containing the
multidex (classes2.dex) extracts the secondary dex
into the corresponding directory and rename it as com
.runtastic.android-1.apk.classes2.dex. Therefore,
if attackers can overwrite this secondary dex, they can trigger
their injected payload when the app starts.

Runtime.exec(). As with Java applications (an application
cannot create an instance of the Runtime class, but can
obtain an instance by invoking the getRuntime()method),
Android apps can also get an instance of the Runtime class
by invoking the getRuntime() method. Using the exec()
method of the Runtime class, the apps can execute arbitrary
executables in a separate native process by simply providing
the specified shell command as an argument. This operates
similar to Linux’s system() method, and thus Android app
developers often utilize thismethod for easy implementation.
However, the exec() method of the Runtime class can
be used for the code trigger point to launch remote code
injection attacks. If an attacker knows the argument to be
passed to the exec() method and replaces the existing file
that the argument points to, she can execute her payload.

For example, Umeng PushSDK [19], one of China’s
popular push notification services, implements the exec()

method to provide their push notification service through a
shell command. Specifically, it creates an instance of Process
by invoking Runtime.getRuntime().exec("sh") and
redirects its data stream to DataInputStream/
DataOutputStream instances so that the app can execute
the commands by writing to DataOutputStream or reading
from DataInputStream. When the app starts, the push
library checks whether a ServerDaemon file exists in the app’s
files directory (/data/data/APP PACKAGE NAME/files/),
and if it exists, it executes the file through the exec()
method with the specified arguments. In the case where the
ServerDaemon file does not exist in the files folder, the library
creates a new DaemonServer file and then executes it as well.
Attackers can take advantage of this fact to identify the code
trigger point; that is, they can execute their injected codes
by overwriting the target file passed as a parameter of the
exec() method, such as an example of the DaemonServer
file.

5. Automatic Detection

In order to detect apps that are potentially vulnerable to
remote code injection attacks, we developed a static analy-
sis tool (https://gitlab.com/zemis0ls0l/remote code injection
attack) that automatically identifies code snippets that meet
the three conditions described in Section 4. In this section, we
outline the design and implementation of our static detection
tool.

5.1. Overview. Figure 1 illustrates the threemain components
of our detection tool: preprocessor, program slicer, and vul-
nerability checker. At a high level, our static detection tool
takes a .apk file as input and converts it to Jimple (Jimple
is a popular intermediate language based on three compo-
nents per statement in code that is often used for bytecode
optimization) intermediate representation by means of Soot
[20], a static analysis framework that provides Jimple for
both Java and Android (Soot framework includes Dexpler
[21] that converts Dalvik bytecode to Jimple) and call graph
analysis.Then, based on program slicing [22] with interesting
points (i.e., APIs) and heuristics, the detection tool analyzes
DRU-related code to identify code snippets that meet the
three conditions. The output of the tool includes a set of
information that can be used to identify whether the app is
vulnerable to remote code injection attacks. Note that the
detection tool operates on top of Jimple and does not require
the source code of the app to be analyzed.

https://gitlab.com/zemis0ls0l/remote%20code%20injection%20attack
https://gitlab.com/zemis0ls0l/remote%20code%20injection%20attack
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Figure 1: Design overview of the static detection tool.

5.2. Preprocessor. As with other state-of-the-art static anal-
ysis studies for Android apps (such as Bartel et al. [23],
Geneiatakis et al. [24], Woodpecker [25], Chex [26], and
Paddyfrog [27]), our detection tool first translates Dalvik
bytecode to an intermediate representation and then con-
structs an interprocedural control-flow graph (ICFG) (it is
also known as a super control-flow graph (sCFG)) represent-
ing all possible execution paths of an app, for a given .apk file.
Because the accuracy of static analysis relies on the control-
flow graph, a precise ICFGneeds to be constructed in order to
improve the precision of static analysis. However, unlike Java
applications, because Android apps are framework-based as
well as event-driven, generating the corresponding ICFG is
challenging. For example, instead of amainmethod, Android
apps contain many entry points that are implicitly called by
the Android framework. In addition, the Android framework
allows apps to register various types of callbacks, which are
also invoked by the framework.Thismeans that code snippets
contained in callback methods cannot be analyzed without
recognizing such implicit edges because an incorrect ICFG
does not have an outgoing control-flow edge to the callback
method.

In this work, to construct precise ICFGs, we leverage
FlowDroid [28], a static taint analysis framework that pro-
vides flow- and context-sensitive and interprocedural data
flow analysis for Android apps. FlowDroid models the com-
ponent lifecycle of theAndroid framework and incrementally
reconstructs the control-flow graph when identifying newly
discovered callbackmethods. Unfortunately, FlowDroid does
not support identifying thread-related classes in Android
apps (including AsyncTask, Thread, and Runnable) that
generate implicit control flows through callbacks. How-
ever, in Android, resource download tasks are generally
implemented by utilizing threading classes because network
operations cannot be run on the main thread (developers
can use Thread, AsyncTask for short-running tasks and
Service for long-running tasks to do network operations).
Thus, identification of thread-related edges is necessary for
our detection tool. To correctly analyze the apps, we add
extensions to support such threading classes. For example,
to support the AsyncTask class, we identify all AsyncTask
instances and augment the call graph by adding edges that
connect to the AsyncTask instance. This can be accom-
plished by replacing the invocation of execute() with
invoke calls to onPreExecute(), doInBackground(), and
onPostExecute(). Finally, we reconstruct the ICFG by
combining FlowDroid’s incremental CFG construction with
our extensions. The reconstructed ICFG is used for the next
bidirectional program slicing step.

5.3. Program Slicer. In order to extract the Jimple slices,
we implement a forward and backward slicing algorithm
(see Appendix A), which are based on the network-
aware program slicing approach proposed by Choi et
al. [29, 30]. The slicing algorithm works bidirectionally
based on the ICFG constructed in the previous step.
The algorithm starts at the predefined interesting
points (network I/O APIs and its parameters) such as
java.net.URL.openConnection() and org.apache
.http.client.HttpClient.execute() by adding the
variables of these points to a worklist. Then, it walks
forward and backward on the ICFG while analyzing the data
dependency between the variables in the worklist and the
current variable in the Jimple statements. For interprocedural
forward/backward analysis, our algorithm keeps a call stack
that records the current method (i.e., caller) and its location.
In this way, the program slicer provides a context-sensitive
data flow analysis. The program slicer continues this analysis
recursively in this manner. The analysis terminates when
there is no entry in the worklist, when it reaches the entry
point of the app (in the case of backward slicing), or when it
encounters sink APIs (in the case of forward slicing) such as
FileOutputStream.write().

For example, in Listing 2, the program slicer starts
at java.net.URL.openConnection() and walks forward
and backward while analyzing the data dependency. The
backward slicing terminates at line (3) in Listing 2, and the
forward slicing terminates at line (18) in Listing 3. Note that,
for readability, we used Java code instead of Jimple IR and
listed only the results of the program slicing in the code
snippets.

Once the program slicer has extracted slices, the interslice
dependency analyzer identifies dependencies between the
extracted slices. The goal of this analysis is to identify any
dependencies between HTTP response and HTTP request.
Figure 2 shows an example of how the interslice dependency
analysis operates on request (requestA and requestB)
and response (responseA and responseB) slices. In the
figure, an app receives metadata (line (5) in requestA) and
then parses it (line (2) in responseA) to obtain a resource
download URL. Then, using the obtained URL, the app
downloads and stores the resource (line (2) in requestB and
line (3) in responseB, resp.). In this case, a dependency exists
between responseA and requestB. To identify this, we
leverage the taint-based approach proposed by Choi et al. [29,
30], in which the dependency is determined by identifying
the data flow from the source (line (1) in responseA) to the
sink (line (1) in requestB).



Security and Communication Networks 9

(1) String str = “http://test.com/”;

(3) URL url = new URL(str + “info.json”);
(4) HttpURLConnection conn = url.openConnection();
(5) responseA(conn.getInputStream());

requestA

requestB

(1) InputStream in = BufferedInputStream(param);
(2) String url = parseURL(in);
(3) requestB(url);

responseA

responseB

(1) URL url = new URL(param);
(2) HttpURLConnection conn = u.openConnection();
(3) responseB(conn.getInputStream());

(2) Sring filename = zEntry.getName();

(4) File fp = new File(dir, filename);

Metadata request

GET http://test.com/info.json

Resource download request

GET http://test.com/a.zip

Metadata response
← 200 application/json

{“url”: “http://test.com/a.zip” }

Resource download
response

← 200 application/zip

Interslice dependency analysis

URL building

String analysis

(1) · · ·

(3) · · ·

(2) · · ·

Figure 2: URL building, string analysis, and interslice dependency analysis.

Finally, the program slicer records Jimple slices consisting
of HTTP request/response and its dependencies for the next
step, in which code snippets meeting the three conditions for
vulnerability to remote code injection attacks are identified.

5.4. Vulnerability Checker. After the program slicer extracts
all the slices that affect network operations, as well as their
dependencies (HTTP request and response), the vulnera-
bility checker identifies code snippets that meet the three
conditions for remote code injection attack vulnerability.
The vulnerability checker achieves this by implementing
the following heuristics. Note that the vulnerability checker
utilizes FlowDroid’s taint analysis that provides flow- and
context-sensitive and interprocedural data flow analysis.

(1) Identifying No or Bypassable Validation Checks. To
identify instances where there are no validation checks,
we find where the message digest class is used, such as
java.security.MessageDigest, from the given response
slices. If there is no use of invocation of message digest
methods such as update() or digest(), we consider
that no validation checks exist. However, although the app
validates the resource using a provided hash value, if the hash
value is transmitted via HTTP, the validation check can be
bypassed as described in Section 4. Consequently, to identify
bypassable validation checks, we utilize a URL builder that
generates a URL that feeds into the network I/O APIs given
HTTP request slices produced via backward slicing.TheURL
builder models high-level Java and Android APIs such as
append() and toString(), which are often used for string
manipulations (we further describe the URL builder below).
If the generated URL is HTTP, we consider the validation

checks to be bypassed even if the message digest functions
are present in the slices.

(2) Detecting File Overwrite Vulnerabilities. Given HTTP
response slices produced by forward slicing, to identify
an unsafe ZIP extraction, we first find an instance of
java.util.zip.ZipInputStream and file classes such as
java.io.File. We then check whether the code validates
the name of each entry before extracting it. To achieve this,
the string analyzer randomly assigns an initial string that
contains path traversal information (e.g., “./../../../target”) as
the value of java.util.zip.ZipEntry.getName(), and
then the string analyzer tracks slices while updating its
manipulations (based on API models) until it encounters the
filemethod.When the initial string is passed to the parameter
in the file method, if the path traversal information of the
initial string does not change (or is filtered out), we consider
it to be file overwrite vulnerabilities; that is, it is an unsafe ZIP
extraction.

Similarly, in order to identify an unsafe Content-
Disposition implementation, we first find a method
invocation (either org.apache.http.HttpResponse
.getFirstHeader() or java.net.HttpURLConnection
.getHeaderField()) commonly used for parsing values
in HTTP headers, and file write methods, and then check
whether the code properly parses the filename from the
Content-Disposition field. Either of two methods can be
used to parse a filename from the Content-Disposition
field: string manipulation APIs or regular expression
matching. The first method usually finds a certain string
using indexOf() and splits the string using subString().
Thus, the same approach used to find unsafe ZIP extractions
can be leveraged to model these string manipulation APIs
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using the string analyzer. The second method parses the
filename by matching a regular expression. To facilitate this
method, we extract a constant string that is passed to the
parameter in java.util.regex.Pattern.compile()
and then evaluate this pattern string with our test string
(“./../../../../../target.so”). After matching the regular
expression, if the result is the same as our initial test string,
we consider it to be a file overwrite vulnerability as well.

(3) Identifying Trigger Points. To identify trigger points,
we utilize three different properties of Android apps.
Identifying multidex is straightforward. Android apps
contain dex files (.dex) in root directory inside a .apk file,
which is a ZIP archive format. Thus, we can easily identify
multidex by decompressing the .apk file and then checking
whether secondary dex files (such as classes2.dex)
exist. Unlike the multidex, identifying runtime library and
Runtime.exec() need string analysis. The string analyzer
starts by detecting dalvik.system.DexClassLoader(),
java.lang.System.loadLibrary(), and java.lang
.Runtime.exec() methods. If method invocations are
found, the string analyzer performs backward analysis with
respect to the parameter value of the method in order to
build a constant string. Once the constant string is generated,
the string analyzer examines it by comparing it with known
executables. In case of runtime library, we compare the
constant string with the names of executables, which are
extracted in /assets directory inside the .apk file. If there
is a match, we consider it contains a trigger point. In case
of Runtime.exec(), we filter out cases in which the generated
constant string contains one of the executables located in the
“/bin” and “/sbin” directories. After filtering, if there are
any remaining constant strings, we consider it as a trigger
point. In this way, we can identify the possible trigger points.

(4) Distinguishing Whether the Communication Protocol Is
Secure. Even though apps may meet the three conditions
identified for successful remote code injection attacks,
if the apps use the HTTPS protocol, they may not be
vulnerable to remote code injection attacks. Thus, we
further analyze the apps to identify whether they use
HTTPS. To this end, we implemented a URL builder
module that generates URLs by walking back from a
URL initializer such as java.net.URL.URL() or the
org.apache.http.client.methods.HttpGet() meth-
od. During the backward analysis, the URL builder
models string manipulation APIs such as java
.lang.StringBuilder.append where the constant
strings are appended to build a full URL. In addition, the
URL builder handles references to resource objects, such
as Android.R, whose values are stored as user-defined
files in the .apk (e.g., res/values/strings.xml). On
generation of the full URL, the URL builder distinguishes
between a static URL, which is hardcoded in the codes,
and a dynamic URL, which comes from other network
inputs. This is achieved by identifying the results of interslice
dependency analysis (using the interslice dependency
analyzer in Section 4). In the case of the static URL, if
the URL starts with “HTTP://,” we consider it vulnerable

to remote code injection attacks. However, in the case of
dynamic URL, because we cannot identify dynamically
generated URLs, owing to the limitation of static analysis, we
consider it potentially vulnerable.

On the other hand, there are cases where the HTTPS
is not properly implemented, meaning that attackers exploit
mis-implemented HTTPS to carry out MITM attacks. To
deal with such cases, using Mallodroid by Fahl et al. [9], we
identify the mis-implemented HTTPS, such as trusting all
certificates or allowing all hostnames. If mis-implemented
HTTPS is found, we also consider it vulnerable to remote
code injection attacks.

6. Large-Scale Analysis

In order to assess the current state of vulnerable apps to
remote code injection attacks in the wild, we applied our
detection tool to three different types of datasets. In this
section, we first describe the three datasets analyzed and then
present the results of our large-scale analysis for each dataset.

6.1. The Datasets. To evaluate our detection tool and identify
apps potentially vulnerable to remote code injection attacks,
we collected three different datasets comprising thousands
of apps. Table 1 gives a summary of the datasets. The first
dataset is an official market dataset (Google Play), the second
is a third-party market dataset (Tencent Myapp [31]), and
the third is a system application dataset extracted from
manufacturers’ firmware images, including Samsung [32] and
Huawei [33].

More details can be found in Appendix B.

6.2. Results. As described in Section 5, even where an
app has file overwrite vulnerabilities, it is not necessarily
vulnerable to remote code injection attacks, because if the
app uses HTTPS properly, attackers cannot perform MITM
attacks to inject their payload. Therefore, whether the app is
vulnerable to remote code injection attacks depends on the
request protocol (i.e., the URL string); URL strings starting
with “http://(.∗)” are vulnerable whereas those starting with
“https://(.∗)” are not. In addition, if the URL is from another
HTTP transaction (in the case of dynamic URLs), we also
cannot identify whether the app is vulnerable, because the
URL string could not be determined via static analysis.
For this reason, we divided the results into two groups: e
potentially vulnerable apps and f flagged vulnerable apps.
Potentially vulnerable apps contain a static HTTP URL and a
dynamic URL, whereas flagged vulnerable apps contain only
a static HTTP URL. Note that a mis-implemented HTTPS
can also be vulnerable to MITM; flagged vulnerable apps
contain HTTPS mis-implementation as well.

Official Market (Google Play). Tables 2 and 3 show the
results obtained for the Google Play market dataset. Using
our detection tool, we analyzed 4,718 diverse apps from
28 categories. Table 2 shows the number of vulnerable
apps that met two conditions, CI (no validation check or
bypassable validation check) and CII (arbitrary overwriting
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Table 1: Summary of dataset.

Dataset Type Number of applications
Google Play Official market 4,718
Tencent Myapp Third-party market 2,967
System apps Preinstalled apps 1,369

Total number of applications 9,054

Table 2: Results of Google Play dataset (𝐶𝐼 ∩ 𝐶𝐼𝐼). All vulnerable apps were manually confirmed.

Category Type e Number of potentially vuln
apps

f Number of flagged vuln
apps

File overwrite
vulnerabilities

Unsafe ZIP 75 (1.5%) 49
Unsafe Content-Disposition 15 (0.3%) 0

e = static HTTP URL + dynamic URL;f =e− dynamic URL.

Table 3: Results of Google Play dataset (CIII).

Category Type gNumber of apps in this class h Number of flagged vuln
apps (f ∩g)

Code trigger points
Runtime library 188 (3.9%) 0

Multidex 631 (13.3%) 17
Runtime.exec() 174 (3.6%) 22

vulnerability). We found that 90 apps (1.9%) contained file
overwrite vulnerabilities, of which 75 (1.5%) implemented
the decompressing ZIP archives in an unsafe manner and 15
(0.3%) contained unsafe Content-Disposition implementa-
tions. After excluding the dynamicURLs,we found 49 flagged
vulnerable apps, in which all apps implementing the unsafe
Content-Disposition used only dynamic URLs.

Table 3 shows the number of apps that satisfied CIII
(trigger point). In the table, 188 (3.9%) of the 4,718 apps
contain the runtime libraries, 631 (13.3%) contain secondary
dex files, and 173 contain the Runtime.exec(). Among them,
39 (= 0 + 17 + 22) apps contain file overwrite vulnerabilities
(i.e., meeting all conditions, CI ∩ CII ∩ CIII). Finally, after
removing multiple trigger points, we consequently obtained
25 apps vulnerable to remote code injection attack in the
Google Play dataset. Particularly, some of vulnerable apps
that we found are extremely popular such as Opera browser,
Pandora Radio (with more than 500,000,000 downloads),
and CM Locker Repair Privacy Risks (with more than
100,000,000 downloads).

Third-Party Market (Tencent Myapp). Tables 4 and 5 show the
results for the Tencent Myapp market dataset. We analyzed
2,967 apps (from 29 categories). As shown in Table 4, we
found 82 apps (2.7%) that satisfied CI and CII, that is,
containing no or bypassable validation checks and file over-
write vulnerabilities. More specifically, 72 apps (2.4%) con-
tained unsafe ZIP extraction, and 10 (0.3%) contained unsafe
Content-Disposition implementation. This rate is almost
twice that of the Google Play marketplace. After ruling out
dynamic URLs, we identified 45 flagged vulnerable apps, 43
of which contained unsafe ZIP extraction and the remaining
two containing unsafe Content-Disposition implementation.

In addition, Table 5 shows the number of trigger points in
the dataset. In the third-party dataset, 1,828 apps (61.6%)
contain runtime libraries, which is much more than the
Google Play dataset. Other rates of trigger point were 440
(14.8%) for multidex and 368 (12.4%) for the Runtime.exec().
The number of apps with trigger point, no or bypassable
validation checks, and file overwrite vulnerability simulta-
neously present was 20 for runtime library, 6 for Multidex,
and 12 for Runtime.exec(). After removing multiple trigger
points, we found 28 vulnerable apps, including extremely
popular apps such as com.tencent.qqlive (1,200,000,000
downloads), com.baidu.BaiduMap (770,000,000 down-
loads), cn.kuwo.player (470,000,000 downloads), cn
.eclicks.wzsearch (111,000,000 downloads), and com
.og.danjiddz (32,370,000 downloads).

Preinstalled Apps. In Android, preinstalled apps are gen-
erally granted many more capabilities with critical per-
missions than a normal app. This means that if a prein-
stalled app is vulnerable to remote code injection attacks,
attackers can have a much greater impact on the device.
For example, an app holding an INSTALL PACKAGES per-
mission can install another .apk silently. Therefore, if an
attacker successfully gains target app’s privilege by per-
forming remote code injection attack, s/he could use the
INSTALL PACKAGES permission to install malware on the
device without any difficulty. Table 6 shows the vulnerable
apps results from the system app dataset. In our study,
two preinstalled apps that met two conditions (CI ∩ CII)
for successful remote code injection attacks were found.
TheWildTangent Game app (http://www.wildtangent.com/),
which is included in AT&T’s Galaxy S6 (SM-G890A) model,
contains an unsafe ZIP extraction and uses a dynamic

http://www.wildtangent.com/
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Table 4: Results of Tencent Myapp dataset (𝐶𝐼 ∩ 𝐶𝐼𝐼).

Category Type Number of potentially vuln
apps

Number of flagged vuln
apps

File overwrite vulnerability Unsafe ZIP extraction 72 (2.4%) 43
Unsafe Content-Disposition implementation 10 (0.3%) 2

Table 5: Results of Tencent Myapp dataset (CIII).

Category Type Number of apps in this class Number of flagged vuln apps

Code trigger points
Runtime library 1,828 (61.6%) 20

Multidex 440 (14.8%) 6
Runtime.exec() 368 (12.4%) 12

Table 6: Results for system apps dataset (preinstalled apps).

App (.apk) Type HTTP(S) Model Carrier
ZinioReader Unsafe ZIP extraction HTTP (static) SGH-T769 (Galaxy S) T-Mobile
WildTangent ATT Unsafe ZIP extraction HTTP (dynamic) SM-G890A (Galaxy S6) AT&T

HTTP URL. Consequently, if there is a trigger point (we
did not find possible trigger points), attackers can take
control of the device by injecting and overwriting their
payload. Meanwhile, because theWildTangent Game app has
INSTALL PACKAGES permission, after taking control of the
device, attackers can install malware silently. Zinio Reader
(https://gb.zinio.com/www/apps/desktop.jsp#/download), a
magazine app included in the Galaxy S device (SGH-
T769) of T-Mobile, also contains unsafe ZIP extraction.
However, unlike the WildTangent Game app, the Zinio
Reader app contains a static HTTP URL and does not have
INSTALL PACKAGES permission.

Vulnerable Libraries (SDKs). A vulnerable Android SDK is
very serious as a single vulnerability can be present in a
large number of apps and developers usually do not focus
on the security implications of these SDKs. In our results, we
identified four popular vulnerable SDKs that have unsafe ZIP
extraction. Specifically, these vulnerable SDKs include three
Ad libraries (AppNext (http://www.appnext.com/), AdMar-
vel (http://www.admarvel.com/), andMadhouse SmartMAD
(http://www.smartmad.com/)) and one social library (QQ
SDK). To measure how many apps can be affected by these
vulnerable SDKs, we identified the proportion of vulnerable
apps by referring to recent statistics [5]. As these libraries
have around 0.91% market share overall (approximately
300,000 apps inGoogle Play), we can approximately guess the
proportion of vulnerable apps in the wild.

Dangerous Permissions. Once an attacker carries out a remote
code injection attack by exploiting the three conditions, the
attacker obtains the target app’s privilege to more effec-
tively perform sensitive operations (e.g., tasks that can cost
money or access private user data). In our threat model, we
assumed that after gaining the app’s privilege the attacker can
additionally perform a privilege escalation attack to obtain
higher privilege (i.e., system or root). However, if the target

device does not have such vulnerabilities that can be used
for privilege escalation attacks, the attacker can only do
limited operations (i.e., attacks) such as reading contacts,
sending SMS, or getting location information, according to
the permissions specified in the manifest of the app.

In our evaluation, we further analyzed flagged vulnera-
ble apps to identify what operations can be conducted by
attackers even without escalating local privilege. To do this,
in accordance with the Android Developers Guide [34], we
first categorized permissions into nine permission groups
(because the vulnerable apps that we found did not have
sensor permissions, we ruled out the SENSORS permission
group in the graph) and then counted the number of permis-
sions belonging to each group. Figure 3 shows the number
of dangerous permissions associated with each group. From
the results, we found that most of vulnerable apps have at
least PHONE, LOCATION, or STORAGE permission. This means
that once an attacker gains the app’s privilege on performing
a remote code injection attack, s/he can attempt various
attacks even without system level privilege. For example, with
CALL PHONE permission, the attacker may make premium
phone calls in the background, an overbilling attack [35].
The attacker can also perform a race condition attack via a
shared SD card directory to install malware when the app has
WRITE EXTERNAL STORAGE permission [6].

Manual Review. Finally, we manually review 97 apps which
are confirmed vulnerable or potentially vulnerable (53 apps)
in the static analysis tool. Given these results, we first
decompile the apps and identify the DRU code points
that the tool reported. Then, we verify whether the code
snippets indeedmet the aforementioned three conditions.We
also test whether the code snippets are reachable from the
entry points. The more complex the app is, the more time-
consuming and challenging such a review process becomes.
For that reason, we also install the app and run it on an
emulator to complement the static analysis. In this way, we

https://gb.zinio.com/www/apps/desktop.jsp
http://www.appnext.com/
http://www.admarvel.com/
http://www.smartmad.com/
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Figure 3: Number of dangerous permissions.

take a best-effort approach in combination with static and
dynamic analysis. In the end, we confirmed that the reported
apps are all vulnerable to remote code injection attacks.

7. Mitigations and Limitations

In this section, we discuss how remote code injection attacks
in Android apps can be mitigated and the limitations of our
static detection tool.

7.1. Mitigations. Mitigation can be considered from two
perspectives: the app developer level (filename sanitization
and secure communication protocol) and the framework
level (secure code execution).

Filename Sanitization. As described above, filenames contain-
ing path traversal information may cause them to be stored
or extracted outside of the intended directory. Attackers can
exploit this vulnerability by overwriting the existing arbitrary
executables. To defend against remote code injection attacks
caused by file overwrite vulnerabilities, appdevelopers should
sanitize an input of filename. For example, before storing
external resources coming from networks, it is important to
filter out any characters that should not be included in a
filename such as “./../”.

In addition, recently, theCERTDivision (http://www.cert
.org/) updated its secure coding standards to show how to
prevent arbitrary overwriting vulnerabilities using unsafe
ZipInputStream. In the CERT Oracle Coding Standard for
Java [16], with the compliant code example, the standard
shows that directory traversal or path equivalence vulnera-
bilities can be eliminated by canonicalizing the path name
and then validating the location before extraction. To prevent
remote code injection attacks, developers should comply
with this coding style when they need to implement ZIP
archive downloads from external servers. Note that filename
sanitization eliminates CII.

Secure Code Execution. If app developers can employ secure
APIs (such as SecureDexClassLoader [4]), which load
and execute the downloaded executables in a secure manner,
attackers would not be able to execute any arbitrary code
within the context of an app even when successfully injecting
their payload. During secure code execution, the involved
API retrieves the certificate of the developer that signed

and published the given code and verifies the downloaded
code, which is cryptographically signed, using the retrieved
certificate. Naturally, to implement such secure APIs, all
possible trigger points described in Section 4.3 should be
considered. Note that secure code execution eliminates CIII.

Use of Secure Communication Protocol. An ideal solution for
preventing remote code injection attacks is to use a secure
communication protocol (such as HTTPS) to download
external resources. However, applying HTTPS for all com-
munications is virtually impossible due to performance issues
and operational costs. Because DRUs (such as downloading
image files) occur very frequently in Android apps nowadays,
applying HTTPS for all DRUs may affect performance. Brian
Jackson [36] showed that making a lot of short requests
over HTTPS will be slower than HTTP. In addition, the
servers that provide HTTPS involve issuing and managing a
certificate. Because of this, operational costs will increase as
opposed to HTTP. Furthermore, there may be vulnerabilities
in SSL/TLS implementations [9, 11]. App developers should,
at the very least, apply HTTPS to their sensitive communica-
tions such as downloading of executables (.dex, .so, etc.), self-
updates, or other critical procedures. Note that use of secure
communication protocol eliminates CI.

7.2. Limitations

Implicit Control Flows. Our detection tool is subject to the
limitations of static flow analysis. Consequently, it does not
identify all implicit control flows introduced by callbacks.
This can potentially affect our program slicing component. If
code snippets that download external resources are invoked
from a callback that is not handled by the detection tool,
we cannot locate the code snippets inside the ICFG, which
is required for accurate program slicing. Although we have
added extensions that support threading classes such as
AsyncTask, Thread, and Runnable, it is not complete.
Discovering Android’s implicit callbacks is an active area
of research, and a number of studies [37–39] are currently
devoted to addressing this issue.

Dynamic URLs. Even though DRU code snippets have been
shown to be vulnerable to remote code injection attacks
(meaning that there are file overwrite vulnerabilities and
trigger points in the app), our detection tool cannot defini-
tively conclude whether a remote code injection attack can
be accomplished by a network attacker. This is because of
dynamic URLs. Unlike static URLs, which are hardcoded
in apps, dynamic URLs are only present at runtime. For
example, if an app requests update metadata from a server
and retrieves its update URL from the received metadata, the
possibility of an attacker launching an attack is contingent
on the retrieved URL. That is, if the URL starts with
“https://,” the app is not vulnerable to remote code injection
attacks, whereas with “https://” it is vulnerable. Because of
the limitation of static analysis, our detection tool cannot
detect this, and hence, we consider dynamic URLs to be
potentially vulnerable to remote code injection attacks. Note
that, for the same reason, the detection tool cannot handle

http://www.cert.org/
http://www.cert.org/
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runtime libraries of dynamically loaded classes. We believe
that these dynamic issues can be addressed by leveraging
dynamic program analysis, as exemplified by Rocha et al. [40]
and Sounthiraraj et al. [11].

8. Related Work

Code Injection Attacks in Android Apps. Poeplau et al. [6]
showed that code-loading techniques are often implemented
in a vulnerable manner that allows attackers to replace the
legitimate codes with malicious codes. They categorized the
code-loading techniques into five different groups: class load-
ers, package context, native code, APK installation, and Run-
time.exec. Subsequently, they showed that attackers can abuse
these techniques via insecure downloads or unprotected
storage to execute their malicious codes.Their work is related
to our study as it also covers remote code injection attacks,
and some of the code-loading techniques they categorized
can be considered as code trigger points. However, there
are several differences between this work and ours: (1) They
only focused on code resource (executables such as .apk, .so,
and .dex) downloads, while we also focus on other resources
such as ZIP archives and image files as well as executables.
(2) They only checked the existence of DCL component (i.e.,
they did not confirm if network attacks are feasible or not),
while we checked if remote code injection is feasible using
automatic static data flow analysis.

OS Update Attacks. Xing et al. [41] focused on the upgrading
logic in the Android platform (specifically, the Package
Management Service (PMS)) and found a new type of privi-
lege escalation vulnerability, called Pileup, that occurs when
the user upgrades the operating system on the device. By
exploiting Pileup vulnerabilities, malicious apps can silently
acquire system capabilities that are valid only in the new
operating system after an upgrade whereas they did not exist
in the old one. Note that threat model and the target (OS) of
this work are different from ours.

Script Injection Attacks in Android Apps. Several studies have
been conducted on script injection attacks in Android apps
[42–46]. Jin et al. [43] found a new class of script injection
attacks on HTML5-based mobile applications. They identi-
fied many channels for script injections including barcode,
SMS, file system, Contact, Wi-Fi, and NFC and showed
that all these channels can be abused for script injection
attacks such as Cross-Site Scripting (XSS). Hassanshahi et al.
[42] presented web-to-app injection (W2AI) attacks, which
allow malicious web attackers to inject malicious scripts by
exploiting a web-to-app communication bridge, and showed
that a successful attack can abuse WebView and Android
native app interfaces. Zhang and Du [46] analyzed Android
Clipboard and found that Clipboard data manipulation can
lead to common script injection attacks, such as JavaScript
injection and command injection.

Smith [45] analyzed injection attacks on Android OS
and subsequently developed a detection tool based on taint
analysis.The developed tool finds data flows in Android apps
that lead from the input points to SQLite or OS Shell APIs.

The OS Shell APIs that load and execute injected scripts
are the same as one type of our trigger points; however, by
contrast, our work does not rely on data flows between input
points and APIs. As described in Section 4, attackers can
trigger injected codes using arbitrary overwriting vulnerabil-
ities even without abusing the inputs. Therefore, the trigger
points are independent of data flows. Hence, we only identify
whether the trigger points are reachable or not.

Program Analysis in Android Apps. Prior studies on Android
app analysis focused on either discovering information leak-
age [25, 28, 47, 48] or identifying appmisbehaviors [11, 26, 49,
50].

Taint analysis tracks information flows to reveal unin-
tended information leakage. TaintDroid [47] monitors an
app’s behavior in real time and performs dynamic taint anal-
ysis to detect privacy-sensitive information leaks in Android.
While it is more accurate than static analysis, achieving high
code coverage is a significant challenge. Dynamic analysis can
also be fooled by malicious apps that act benign when they
recognize that they are being analyzed [47, 48].

To overcome this challenge, many studies employ static
analysis [25, 26, 28, 48, 49, 51]. These studies commonly
reconstruct interprocedural control-flow graphs (ICFGs) by
modeling the Android app’s lifecycle. By analyzing the ICFG
and data dependencies, they identify whether a path exists
from a source to a sink (usually network I/O APIs). In this
work, we leverage FlowDroid [28], a static taint analysis tool,
to reconstruct the ICFG. CryptoLint [49] detects misuse
of cryptographic libraries via static program slicing. SMV-
Hunter [11] identifies Android apps that fail to properly
validate SSL certificates based on a combination of static and
dynamic analysis.

9. Conclusion

Android apps often rely on external servers to dynamically
update a variety of resources such as executables, images, and
temporary files, at runtime.However, these dynamic resource
updates can be vulnerable to remote code injection attacks.
For example, apps that download code resources (such as .so
and .jar) can be abused by network attackers attempting to
replace or modify the downloading codes.

While remote code injection attacks against such code
resource updates are known, attacks against other resource
updates and their impact are still largely unknown. As
we have shown in this paper, when an app contains file
overwrite vulnerabilities in the dynamic resource update
and also contains possible trigger points, attackers can still
carry out remote code injection attacks by exploiting these
vulnerabilities.

In this work, to identify these kinds of threats, we first
investigated three conditions for successful remote code
injection attacks: no validation checks or bypassable validation
checks, file overwriting vulnerabilities, and trigger points. We
then developed a static detection tool that automatically iden-
tifies these conditions based on heuristics, string analysis, and
data dependency analysis. Finally, we applied the detection
tool to a large dataset comprising 9,054 apps, consisting of
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official market (Google Play), third-party market (Tencent
Myapp), and preinstalled apps (system apps). Consequently,
we discovered a total of 53 vulnerable apps comprising
25 official market apps and 28 third-party apps (including
popular apps and libraries). Our results can provide a lower
bound on the number of vulnerable apps in the wild.

Appendix

A. Program Slicing

The goal of the program slicer is to output all statements
that affect network operations and to identify dependencies
between slices for further analysis. After the ICFG is recon-
structed, the program slicer analyzes all of the converted Jim-
ple statements to extract the set of Jimple statements that keep
the interesting program behaviors (i.e., network behaviors),
such as downloading external resources. Given a variable V
in program 𝑝, the output of the program slicing component
consists of all statements {𝑠} in 𝑝 that possibly affect the value
of V. In other words, this implies that the program slicer
identifies data dependencies between the value of V and the
statement 𝑠 that would exist when executing the app.

B. Dataset Collection

The first dataset consists of 4,718 diverse Android apps. To
download the apps from the official Google Playmarketplace,
we implemented a crawler that uses the Google Play API
with a device ID and a Google account. Using this crawler,
we downloaded apps from 28 categories in the market. The
second dataset consists of 2,967 apps collected from the
Tencent Myapp market, which is the most popular Android
market in China and dominates the market with a 24%
market share inMay 2016 [52].We crawled the app download
URL links from the Tencent Myapp website and directly
downloaded .apk files from 29 categories on the site.

The third dataset is a system application set containing
1,369 apps. In accordance with recent reports [53, 54], we
selected two popular smartphone manufacturers (Samsung
and Huawei) and eight carriers (Verizon, AT&T, Sprint,
US Cellular, T-Mobile, SK Telecom, KT, and LG U+) from
two countries (USA and South Korea) to analyze their
preinstalled system apps. We downloaded 148 of the latest
factory images from two sources: 118 Samsung images from
[32] and 30 Huawei images from [33]. To extract system
apps from the images, we first decompressed each image to
get a system.img file, which is a /system/ directory for
a running Android and contains all the system apps. Then,
we converted the Android sparse image format to ext4
format to mount the image. Finally, we extracted all the .apk
files under the /system/app and the /system/priv-app
directories. Note that, to remove duplicates, we selected the
latest .apk based on time created when we ran into apps
with the same name. In total, we gathered 1,369 system
apps covering 46 smartphonemodels havingAndroid version
ranging from 4.1.2 to 6.0.1.
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