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Abstract: Dielectric cavity systems, which have been studied extensively so far, have 
uniform refractive indices of their cavities, and Husimi functions, the most widely used phase 
space representation of optical modes formed in the cavities, accordingly were derived only 
for these homogeneous index cavities. For the case of the recently proposed gradient index 
dielectric cavities called as transformation cavities designed by optical conformal mapping, 
we show that the phase space structure of resonant modes can be revealed through the 
conventional Husimi functions by constructing a reciprocal virtual space. As examples, the 
Husimi plots were obtained for an anisotropic whispering gallery mode (WGM) and a short-
lived mode supported in a limaçon-shaped transformation cavity. The phase space description 
of the corresponding modes in the reciprocal virtual space is compatible with the far-field 
directionality of the resonant modes in the physical space. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction
Maxwell's equations, the governing equations for electromagnetic fields in space-time 
including media, have fundamental symmetries under various transformations such as well-
known Lorentz transformation and gauge transformation. Maxwell's equations are also form-
invariant under general coordinate transformations [1–3]. Exploiting the form invariance of 
Maxwell's equations for general coordinate transformations, Pendry et al. theoretically 
presented transformation optics (TO) [4] which is a general methodology for designing 
electromagnetic materials including optical invisibility cloaks, and various photonic devices 
which manipulate the path of light waves [5, 6]. Particularly, very recently, applying the TO 
to the design of optical dielectric resonators, Kim et al. reported 2-dimensional (2D) gradient 
index dielectric cavities called transformation cavities by using conformal TO [7–9]. 
Surprisingly, in their transformation cavities, directional whispering gallery modes (WGMs) 
with very high quality factors (Q-factor) are possible, providing a great potential for cutting-
edge optical device design. 

Conventional 2D optical dielectric cavities with uniform refractive indices have been 
regarded as an open system version of closed quantum billiard systems and also as a potential 
candidate of low-threshold micro-lasers, so there have been vast and intensive works on these 
platform systems over the last twenty years [10, 11]. In order to analyze the characteristics of 
optical modes supported in 2D dielectric cavities, it is often more useful to represent the 
optical modes in phase space than merely depict the mode intensity patterns in real physical 
space. One of the popular phase space representations of a wave function is Husimi function, 
which can be regarded as a quasi-probability distribution in phase space. It is defined by the 
overlap of the wave function with a coherent state of a minimum uncertainty wave packet 
[12]. The so-called Poincaré Husimi functions on the billiards boundary have been widely 
used when studying quantum-classical correspondence in quantum billiards [13, 14]. For the 
case of optical 2D dielectric cavities, Hentschel et al. have derived four different Husimi 
functions in a reduced phase space, i.e., on the Poincaré surface of section (PSOS) at the 
dielectric interfaces by using a stationary phase approximation [15]. 

However, since the Husimi functions of Hentschel et al. are valid exclusively for 
homogeneous dielectric interfaces, it is inappropriate to apply their Husimi functions directly 
to the transformation cavities to see the phase space structure of optical modes formed there. 
In this paper, we show that the Husimi functions can still be useful for optical modes 
supported in transformation cavities with inhomogeneous refractive indices. To this end, we 
construct a virtual space which we call a reciprocal virtual (RV) space, through the inverse of 
the conformal mapping, then both polarized resonant modes supported in the transformation 
cavity of the physical space and the corresponding virtual modes in the unit disk cavity of the 
RV space turn out to be identical. Besides, the refractive index of the unit disk cavity in the 
RV space is uniform. Based on these facts, one can obtain a phase space description of the 
internal waves in a transformation cavity through the conventional Poincaré Husimi functions 
calculated in the RV space. 

This paper is organized as follows. In section 2, starting from a uniform index unit disk 
cavity in a fictitious space called as an original virtual space we describe the gradient index 
transformation cavity model in physical real space. In section 3, RV space is introduced to 
apply conventional Husimi functions for the internal waves in a uniform index cavity. As an 
illustration of our method, Husimi functions for a directional high-Q WGM and a directional 
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low-Q mode in a limaçon-shaped transformation cavity are calculated and analyzed in section 
4. In the last section comes our conclusion.

2. Gradient index cavities designed by optical conformal mapping
We start with a homogeneous dielectric cavity of an infinite cylinder with a unit disk cross 
section in an original virtual (OV) space with Cartesian coordinates ( , , )u v w , taking w-axis 

along the axis of the cylinder as shown in Fig. 1(a). In the OV space, the uniform refractive 
index of the cavity is n  and the refractive index of the exterior region is 1 as the refractive 
index of vacuum or practically that of air. In the physical space with Cartesian coordinates 
( , , )x y z , a realizable 2D gradient index cavity model (hereafter called as ‘transformation 

cavities’) can be built by applying a conformal coordinate transformation only to the inside 
region ( 1Ω ) of the unit disk cavity in the OV space and assigning the uniform refractive index 

of 0 1n =  for the outside region ( 0Ω ) of the transformed cylindrical cavity ( z w= ) with a 

deformed cross section as shown schematically in Fig. 1(b). For these transformation cavities 
with deformed shapes, it was demonstrated that directional WGMs called ‘conformal WGMs’ 
(cWGMs) can be formed [7]. The conformal coordinate transformation from the OV space to 
the physical space is given by an analytic function ( ) ( , ) ( , )f x u v i y u vζ η= = +  of a complex 

variable u ivη = + , that satisfies the Cauchy–Riemann equations, 

 ,
x y y x

u v u v

∂ ∂ ∂ ∂= = −
∂ ∂ ∂ ∂

. (1)

Conformal mappings preserve angles locally; both angles and the shapes of infinitesimally 
small figures are preserved, but not necessarily their size or curvature. Also the handedness of 
coordinate system is unchanged. 

Fig. 1. Schematic illustration of a transformation cavity and its pertaining two virtual spaces: 
(a) the unit disk cavity in an original virtual (OV) space, (b) a limaçon-shaped transformation
cavity in the physical space, (c) the corresponding unit disk cavity in a reciprocal virtual (RV)
space. (Refractive index profiles are expressed by common color scale.)

Due to the translation symmetry along the z-axis of the aforementioned cylindrical 
geometry, Maxwell’s equations simplify to a 2D scalar wave equation for the two polarization 
of light with respect to the z-axis [10]. Resonant modes in a transformation cavity with a 
deformed boundary are found by solving the following 2D scalar wave equation, 

2 2 ( )( 0)  n kΔ ψ + = r r , (2)

where 2 2
x yΔ ≡ ∂ + ∂ , position vector, ( , ) ( cos , sin )x y r rθ θ= =r  and the refractive index ( )n r

is given by 
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, (3)

with the radiation boundary condition, 

( ) ~ ( , ) for
i k re

h k r
r

ψ θ → ∞r           , (4)

where ( , )h kθ  is the far-field angular distribution of the radiation emission. The radiation 

boundary condition leads to solutions exponentially decaying in time with discrete complex 
eigenvalues k  with Im[ ] 0k < . Complex angular frequency is ckω = , where c  is the speed 

of light in vacuum given by 0 01 ε μ . The lifetime τ  of these so-called ‘resonant modes’ or 

‘resonances’ is given by the imaginary part of the angular frequency as 1 2Im[ ]τ ω= − ; the 

quality factor of each resonance is defined by Q 2 Re[ ] 2 Im[ ]Tπ τ ω ω= = − , where the 

oscillation period of light wave is 2π Re[ ]T ω= . The complex wave function ( )ψ r  

represents zE  and zH  components with regard to the transverse magnetic (TM) and the 

transverse electric (TE) polarizations, respectively, i.e., the TM polarized time-harmonic 
electric field is given by ( ) ˆ ˆ( , ) , z Re[ ( ) ] zi t

zt E t e ωψ −= =E r r r  and the TE polarized H-field is 

given by ( ) ˆ ˆ( , ) , z Re[ ( ) ] zi t
zt H t e ωψ −= =H r r r . The boundary conditions at the cavity–air 

interface are of a mixed type given by [10, 16] 

1 0 1 0, for TM modesψ ψ ψ ψ⊥ ⊥= ∂ = ∂   , (5a)

1
1 0 02

1

 , for TE modes
n

ψψ ψ ψ⊥
⊥

∂= = ∂   , (5b)

where jψ are wave functions on the cavity boundary from the interior region ( 1j = ) and the

exterior region ( 0j = ) and jψ⊥∂  are their normal derivatives, respectively; ( ) |⊥∂ ≡ ⋅ rp r ∇
and ( )p r  is the outward normal unit vector on the cavity boundary curve Γ  at point r  and 

1n  is the gradually-varying refractive index along the boundary, i.e., 
1

1n n d dζ η −=
evaluated at the boundary. 

3. Poincaré Husimi function at transformation cavities
The Husimi function, a quasiprobability distribution in phase space is originally defined as 
the overlap of the wave function with a coherent state that represents a minimal-uncertainty 
wave packet. Crespi et al. derived so-called a Poincaré Husimi function at the boundary of 2D 
closed quantum billiard systems by projecting the conventional Husimi function from full 4-
dimensional phase space onto a 2D reduced phase space, namely on the PSOS at the system 
boundary [13]. It has been widely used in the 2D billiard systems in the context of quantum 
chaos, especially in order to study the semiclassical regime [14, 17]. For the case of dielectric 
systems with piecewise constant refractive indices, Hentschel, et al. have derived four 
different Poincaré Husimi functions, corresponding to incident and emerging waves on inside 
and outside of the interface by using a semiclassical (saddle point) approximation with a 
Green’s function technique [15]. Among them, the Husimi functions for the internal waves 
have been useful when exploring ray-wave correspondence in optical dielectric cavities. 
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Fig. 2. Incident and emerging rays at a dielectric interface with uniform refractive indices. 

Their expression for circular cavity can be readily extended to cavities with deformed 
boundaries as below. Four different Husimi functions which represent the intensities of the 
incident and emerging waves from arc length s  along the cavity boundary Γ  in the 
directions jχ  ( 1j = ; interior region, 0j = ; exterior region), respectively are (see Fig. 2) 

2

( )

0

( , sin ) ( 1) , sin ( ) ( , sin )(
2

)jinc em j
j j j j j j j

j

k i
H s h s h s

k
χ χ χ

π
′= − + −


 (6) 

with weighting factors cosj j jn χ= and the functions jh , jh′  given by 

Γ
, sin ( ; , sin )( ) ( )j j j jh s ds s s sχ ψ ξ χ′ ′ ′=   , (7a)

Γ
(( , sin ) ( ; , sin ))j j j jh s ds s s sχ ψ ξ χ⊥′ ′ ′ ′= ∂ , (7b)

which are the overlaps of the wave function ψ  and its normal derivative  ψ⊥∂ , taken on the 

respective side j  of the cavity boundary, with the minimum-uncertainty wave packet 

2

4

1 ( 2 )
( ; , sin ) exp sin 2( )

2j j j
l

s s l
s s ik s l

πξ χ χ π
σσπ ∈

′ − − +′ ′= − + 
 

  


, (8) 

which is periodic in s′  and centered around ( , sin )js χ . The uniform refractive index of 

interior region is 1n n=  and the refractive index of exterior region is 0 1n = ; the jk  are the 

wave number in each region. The width of the wave packet in the s-direction along with the 

uncertainty in sin jχ  can be controlled with the parameter 12 kσ = .

The boundary Husimi function of each region is valid when the refractive index is 
constant in each region. Therefore, in the case of the transformation cavities the Eq. (6) can be 
used for the exterior region where the refractive index is 1, but the formula cannot be directly 
applied to the interior region. However, fortunately, if we construct a virtual space through 
inverse conformal transformation, a transformation cavity is mapped back to the original unit 
disk cavity with the same uniform refractive index, so the boundary Husimi function for the 
resonant modes in the interior region can be calculated there by the above formula. In other 
words, it becomes possible to look at the phase space structure that shows the emission 
direction of the resonant modes and the location on the boundary where the major emission 
leaks out. 
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So, we introduce the reciprocal virtual (RV) space with Cartesian coordinates ( , , )u v w , 

which is obtained from the physical space by the inverse conformal mapping, 1( )fη ζ−= , as 

shown in Fig. 1(c). It is noted that the inverse conformal mapping is not a one-to-one 
mapping and therefore the RV space corresponding to the OV space should be selected. 
Functions, differential operators, and relevant symbols in the RV space will be expressed with 
tildes. Under the inverse conformal mapping, the scalar wave Eq. (2) is transformed to 

2 2( ( ) 0)n kΔ ψ + = r r    , (9)

where 2 2
u vΔ ≡ ∂ + ∂ , position vector ( , )u v=r , and refractive index ( )n r  is given by 

1

1

0

 , (interior)
( )

, (exterior)d
d

n
n

η
ζ

−

 ∈Ω= 
∈Ω

r
r

r




 
. (10)

Notice that the intracavity refractive index in the RV space is the same as that of the OV 
space but the exterior index varies spatially as shown in Fig. 1(c). Incidentally, if we take the 
RV space as an OV space, the transformation cavity in the physical space can be obtained 
from the RV space without artificial setting of 0 1n =  for the outside region. 

In the RV space, the Husimi functions for the incident and the emerging waves in the unit 
disk cavity with uniform index n  can be written as below. 

2

( ) 1
1 1 1 1 1 1 1

1 1

, sin , sin ( ) ( , si( ) ( n )
2

)inc em k n
H s h s i h s

k
χ χ χ

π
′= − +    


 (11) 

with weighting factor 1 1cosn χ=   and the functions 1h , 1h′  given by 

1 1 1 1( ), sin ( ; , si( )) nh s ds s s sχ ψ ξ χ
Γ

′ ′ ′=           , (12a)

1 1 1 1( , sin ) ( ; ,( sin ))h s ds s s sψχ ξ χ⊥Γ
′ ′ ′ ′= ∂          , (12b)

which are the overlaps of the wave function ψ  and its normal derivative ψ⊥∂  , taken on the 

inside ( 1j = ) of the unit disk cavity at arc length s′  along the boundary Γ  in the RV space, 

with the minimum-uncertainty wave packet 

2

1 1 14

1
( )

( 2 )
( ; , sin ) exp sin 2

2l

s s l
s s ik s l

πξ χ χ π
σσπ ∈

′ − − +′ ′= − + 
 

       


, (13) 

which is periodic in s′  and centered around 1( , si )ns χ  . The parameter 12 kσ =  controls

the uncertainty in s  and 1sin χ . For a resonant mode, 1 Re[ ]k n k=  where k  is a complex 

wave number of the resonant mode. 
In order to calculate the Husimi function in the RV space, it is necessary to obtain ψ , 

ψ⊥∂   on the boundary of the unit disk cavity. To obtain these from the ψ , ψ⊥∂  along the 

boundary of a transformation cavity in physical space, we need to know the transformation 
rules between them. According to TO [4, 18], 3-dimensional transformation rules for 
electromagnetic fields and gradient operators between the physical space and the RV space 
can be expressed as follows, 
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1 1 1( ) , ( ) , ( )T T TΛ Λ Λ− − −= = =E E H H   ∇ ∇ . (14)

where ,T T
x y z u v w= (∂ ∂ ∂ ) = (∂ ∂ ∂ )∇ ∇ and the Jacobian matrix Λ  and its inverse 1Λ−  are

given by 

1

0 0

0 , 0

0 0 1 0 0 1

x u x v u x u y

y u y v v x v yΛ Λ−

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
   
   = =   
   
   

(15)

because z w= , 0x w y w∂ ∂ = ∂ ∂ = , and 0z u z v∂ ∂ = ∂ ∂ = . Due to the Cauchy–Riemann 

equations, the scale factor of conformal mapping ( )fζ η=  is given by 1det ( )Λ−  which 

equals 
2

d dζ η −
. 

First of all, for TM and TE polarizations, wave functions in the physical space and their 
counterpart functions in the RV space are identical as can be shown by using the above field 
transformation rules; 

0 0 0

0 0 0

0 0 1

u x v x

u y v y

ψψ

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
     
     =     
     
     

. (16)

So, ( , ) ( , )x y u vψ ψ=   with ( )x i y f u iv+ = +  between the physical space and the RV space. 

Secondly, from the complex analysis [19], the transformation rule between unit normal 
vectors x yp i p+  and u vp i p+  at the cavity boundaries in the respective spaces can be written 

as 

1

( )x y u v
d d
d dp i p p i p ζ ζ
η η

−

+ = + . (17)

Using the Cauchy–Riemann equations, Eq. (17) can be rewritten in 3-D Cartesian vector 

notation with ( 0)T
x yp p=p  and ( 0)T

u vp p=p  as detΛ Λ=p p . Thus, normal 

derivative transforms as 

1 1(

det

)T T
d
d
ζ
η

Λ Λ
Λ

− −

⊥ ⊥∂ ≡ ⋅ = ∂⋅ =p p  ∇ ∇ . (18)

Therefore, through the relations ( ) ( )s sψ ψ=    and 
1

( ) ( )s d d sζ η ψψ −
⊥ ⊥∂∂ =    , one can obtain 

the ψ , ψ⊥∂   on the boundary of the unit disk cavity in the RV space from the ψ , ψ⊥∂  on 

the boundary of a transformation cavity and calculate the Husimi functions (Eq. (11)) for the 
internal waves in the RV space. 

4. Examples: a limaçon-shaped transformation cavity
As examples, we calculate the Husimi function for incident waves in the unit disk cavity in 
the RV space for a high-Q resonance (cWGM) and a low-Q resonance in a limaçon-shaped 
transformation cavity. The conformal mapping which transforms the unit circle to the limaçon 
[7, 20], is given by 

2( )ζ β η η= + , (19)
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where u ivη = +  and x i yζ = +  are complex variables that denote positions in the respective 

complex planes,   is a deformation parameter, and β  is a positive scaling factor. We use 

0.23= , 0.685β = , and 1.8n = , the refractive index of unit disk cavity in the OV space. 

Wave functions of resonant modes formed in the transformation cavity can be calculated by a 
boundary element method (BEM) exploiting the RV space [7, 21] or finite element method 
(FEM) based electromagnetic field solvers e.g., COMSOL Multiphysics. 

Fig. 3. A high-Q TM resonance (cWGM) in a limaçon-shaped transformation cavity 
( 12.2333 0.0022k i= − ) (a) the mode intensity distribution; two yellow arrows denote the 

directions of tunneling emissions at 0s =  in Fig. 3(c), (b) the far field pattern, (c) the 
intracavity Husimi plot for incident waves in the RV space; two yellow solid curves are critical 

lines of total internal reflection and the ±  signs in 
1

sin χ  denote the counterclockwise (CCW) 

and clockwise (CW) circulations of light waves, respectively. ( s  is normalized with 2π , the 
total arc length of the unit disk cavity.) 

Using the BEM, we obtained a high-Q TM mode which is identified as a cWGM with a 
complex wave number 12.2333 0.0022.k i= −  The Q-factor of the resonance is 2776.23. The 

mode intensity distribution, the far field pattern and the intracavity Husimi function for 
incident waves are depicted in Fig. 3 ( s  is normalized with 2π , the total arc length of the 
unit disk cavity). As can be seen in Fig. 3(a), the cWGM is well confined by total internal 
reflection of light around the rim of the limaçon-shaped transformation cavity and this feature 
is reflected in the Husimi plot as the two band-type intensities located in the regions 

1

1 ( )
sin

s
d d nχ η ζ −> r

  where the r.h.s. of the inequality represents the critical lines of total 

internal reflection depicted by two yellow solid curves in Fig. 3(c) (the ±  signs in 1sin χ  

denote counterclockwise (CCW) and the clockwise (CW) circulations of light waves, 
respectively). The bi-directional far field emission shown in Fig. 3(b) can be explained by the 
Husimi plot in the RV space in Fig. 3(c); the closest position between the intensity bands and 
critical lines in s  is 0s =  or 1  which corresponds to the position ( , ) (0.842 ,0)55x y =  on the 

boundary of the limaçon-shaped transformation cavity where maximum evanescent leakage 
or tunneling emissions come out in tangential directions i.e., parallel to the y-axis [7]. 

Also, we obtained a low-Q TM mode with 12.5960 0.1302k i= −  whose intensity pattern 

is depicted in Fig. 4(a). The Q-factor of the resonance is 48.37. The far field emission shown 
in Fig. 4(b) is refractive emission as can be seen clearly from the Husimi plot in Fig. 4(c) 
where the intensity peaks of CW and CCW waves are located below the critical lines, i.e., in 

the regions 
1

1 ( )
sin

s
d d nχ η ζ −< r

 . To analyze this refractive emission approximately, we 

resort to Snell’s law, 1 1 0sin sinn χ χ=  in the physical space. Because of conformality of the 

transformation, one can take 1 1sin sin ~ 0.385,χ χ= −  the peak position of lower intensity in 

the Husimi plot. The peak position in s  coordinate is 0.1256s =  which can be converted 
into 0.1732s = , normalized value with the whole boundary length of the limaçon. The 
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intracavity refractive index at this position is 1 1.9314.n =  So, the refraction angle, 

0 48.04χ °= −  is obtained from 0sin ~ 0.7436.χ −  In polar coordinate, angular coordinate of 

the main emission point on the boundary of the limaçon-shaped transformation cavity is 0.929 
(rad) or 53.226°  and the outward normal direction at the point is 58.93 .°  Thus, we can 
conclude that the main refractive emission comes out at the boundary point of angular 
coordinate 53.226°  in the direction 10.89 .°  By the mirror symmetry with respect to the x-
axis, the peak of upper intensity in the Husimi plot corresponds to the refractive emission at 
the boundary point of angular coordinate 53.226°−  in the direction .10.89°−  Thus the far 

field pattern in Fig. 4(b) can be understood as the interference of the two dominant (out of 
phase) refractive emission. 

Fig. 4. A low-Q TM resonance in a limaçon-shaped transformation cavity 
( 12.5960 0.1302k i= − ) (a) the mode intensity distribution; two yellow arrows designate 

dominant refractive emissions at the corresponding peak positions 0.1256s =  and 
0.8744s =  in the Husimi plot of Fig. 4(c), (b) the far field pattern, (c) the intracavity Husimi 

plot for incident waves in the RV space; two yellow solid curves are critical lines of total 
internal reflection same as in Fig. 3(c) and two yellow arrows point the intensity peaks of CW 
and CCW waves ( s  is normalized with 2π , the total arc length of the unit disk cavity.) 

5. Conclusion
A method to find a widely used phase space representation i.e., the Husimi representation for 
the internal waves on the boundary of a transformation cavity was presented by constructing a 
virtual space with a uniform dielectric cavity via inverse conformal transformation. As a 
verification of the method, Husimi plots for a high-Q and a low-Q resonance were obtained in 
the virtual space and their emission characteristics could be revealed from the plots. The 
phase space description of the corresponding modes in the virtual space agrees well with the 
far-field directionality of the resonant modes of a transformation cavity in the physical space. 
We expect that our method will be useful in studying waves in transformation cavities. 
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