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We consider the feature recombination technique in a 
multiband approach to speaker identification and 
verification. To overcome the ineffectiveness of conventional 
feature recombination in broadband noisy environments, we 
propose a new subband feature recombination which uses 
subband likelihoods and a subband reliable-feature selection 
technique with an adaptive noise model. In the decision step 
of speaker recognition, a few very low unreliable feature 
likelihood scores can cause a speaker recognition system to 
make an incorrect decision. To overcome this problem, 
reliable-feature selection adjusts the likelihood scores of an 
unreliable feature by comparison with those of an adaptive 
noise model, which is estimated by the maximum a 
posteriori adaptation technique using noise features directly 
obtained from noisy test speech. To evaluate the effectiveness 
of the proposed methods in noisy environments, we use the 
TIMIT database and the NTIMIT database, which is the 
corresponding telephone version of TIMIT database. The 
proposed subband feature recombination with subband 
reliable-feature selection achieves better performance than 
the conventional feature recombination system with reliable-
feature selection. 
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I. Introduction 

Speaker recognition, which can be classified into 
identification and verification, is a process of automatically 
recognizing who is speaking on the basis of individual 
information included in speech signal. Speaker identification 
finds the correct speaker of a given test utterance among 
registered speakers, and speaker verification determines 
whether the claimed speaker is accepted based on the score of 
the test utterance. In recent years, methods based on Gaussian 
mixture models (GMMs) [1] and the GMM universal 
background model (UBM) [2] have been dominant for text-
independent speaker identification and verification. Most 
speaker recognition systems based on these methods provide 
very good performance under laboratory conditions. However, 
in real situations, such as hand-free car applications, the 
presence of interfering noises can dramatically lower the 
accuracy of speaker recognition systems. This performance 
degradation is mainly caused by mismatch between enrollment 
and recognition conditions. To overcome this mismatch 
problem, a number of techniques have been proposed. These 
techniques can be categorized into three classes: the feature 
domain approach [3], [4], in which the noisy test speech is 
modified or enhanced to move toward clean speech as closely 
as possible; the model domain approach [5], [6], in which the 
speaker models are modified or adapted to match the statistical 
properties of noisy test speech; and the score domain approach 
[7], [8], in which the scores of speaker models are adjusted to 
minimize the effect introduced by environment variability. In 
this paper, we focus on the multiband approach and the 
reliable-feature selection included in the feature domain 
approach and the score domain approach, respectively.  

Widely used feature parameters, namely, the mel-frequency 
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cepstral coefficients (MFCCs), are obtained by using the filter-
bank approach, in which filters have equal bandwidths in the 
mel-scale frequency domain. The commonly used feature 
extraction is computed over the full band of the spectral 
representation of speech. A major drawback of the full-band-
based computation is that even partial band-limited noise 
corruption affects all the feature vector components. The 
multiband approach deals with this problem by performing 
acoustic feature analysis independently on a set of frequency 
subbands. Since the resulting coefficients are computed 
independently, a band-limited noise does not spread over all of 
the feature components. In previous works on the multiband 
approach, likelihood recombination and feature recombination 
techniques were employed. Feature recombination yields better 
performance than likelihood recombination [9]-[12] because it 
enables the modeling of the correlation between subband 
feature vectors and better class discrimination. 

Feature recombination tends to be more noise-robust than 
the full-band approach in the band-limited noise condition. 
However, in the case of the broadband noise condition, the 
improvement in the performance of feature recombination is 
not notable compared with that of the full-band approach. Even 
when the speech is corrupted by broadband noise, the 
individual subbands may be corrupted to differing degrees. 
Therefore, it is still effective to process each subband 
independently. However, in the conventional feature 
recombination technique, the likelihood scores are computed 
by using all subband features as shown in Fig. 1(c). This 
likelihood computation is not effective, even if the subband 
features are extracted separately. To cope with this drawback, 
we introduce a re-formulation of the subband likelihood 
computation and propose a new feature recombination using 
the subband likelihood computation. 

In speaker identification under noise conditions, some input 
speech frames may have very low likelihood scores for the 
correct speaker, and that can cause the correct speaker not to be 
selected as the correct speaker. In speaker verification, this 
problem occurs frequently. If the effects of these low likelihood 
scores can be removed or reduced, the performance 
degradation could be decreased. Therefore, we propose a 
reliable-feature selection method based on an adaptive noise 
model corresponding to a score domain approach. Additionally, 
we apply the reliable-feature selection method to the subband 
level. To determine whether a feature is reliable, we compare 
the likelihoods of features for a speaker model or UBM with 
those for an adaptive noise model. If the features are 
determined to be unreliable, the likelihoods of the unreliable 
features are substituted by those for an adaptive noise model to 
minimize the effect of low likelihood scores of unreliable 
features.   

 

Fig. 1. Block diagrams of (a) full-band speaker recognition, (b) 
multiband speaker recognition by likelihood recombination, 
and (c) multiband speaker recognition by feature recombination.
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In section II, a method to compute multiband MFCCs [13] is 
briefly reviewed and the proposed subband likelihood 
computation is presented. Conventional speaker identification 
and verification methods are briefly described in section III. In 
section IV, the proposed subband feature recombination with 
reliable-feature selection for speaker recognition is explained. 
Finally in sections V and VI, the experimental results of the 
proposed methods and conclusions are given. 

II. Subband Likelihood Scoring in Multiband MFCCs 

If there is an M-subband system with a total of N channels 
and L MFCCs per subband, the j-th multiband MFCC of the  
i-th subband of a frame is  
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where )(i
nLFB  is the logarithm of the n-th channel energy of 

the i-th subband. The example of the feature extraction process 
for a two-subband system is depicted in Fig 2. By using these 
multiband MFCCs, which are combined feature vectors, 
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Fig. 2. Example of the feature extraction for 2 subbands. 
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speaker models and UBM are estimated. To compute subband 
likelihoods, we need an independent assumption and 
marginalization process. In the M-subband feature 
recombination system, the combined feature vector X is 
partitioned into subband parts, that is, ),,,( )((2)(1) MxxxX= . 
On the assumption that the feature of each subband is 
statistically independent, we can obtain 
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where λ is a GMM, )|( λwp  is the mixture weight, and W is 
the number of mixtures in the GMM. 

The feature vector x(i) of a specific subband is incomplete 
data compared with combined feature vector X. To compute 
the likelihood score of the incomplete data, marginalization is 
necessary. By marginalizing the likelihood scores of all of the 
other subbands, the likelihood score of a specific subband can 
be obtained as 
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Fig. 3. Subband likelihood scoring in the feature recombination.
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Using (3), the subband features are processed separately, and 
this process can complement the drawback of conventional 
feature recombination, which uses the total subband features to 
compute a single likelihood score. The output of multiband 
GMM, the subband likelihoods shown in Fig. 3, is different 
from the single output in Fig. 1(c). 

III. Conventional Speaker Recognition System 

The GMM-based speaker identification and GMM-UBM-
based speaker verification are simple and provide good 
performance in text-independent speaker recognition. In 
speaker identification, given a group of speakers 

{ }KS ,,2,1=  and test speech feature vector 
sequence { }TxxxX ,,, 21= , the goal is to find the speaker 
model that has maximum accumulated log-likelihood: 
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Speaker verification determines whether X was spoken by 
the claimed speaker c. In GMM-UBM-based speaker 
verification, the likelihood ratio is compared with a predefined 
threshold to decide if the claimed speaker is accepted or 
rejected as follows: 
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where cλ  is a claimed speaker model and UBMλ  is a UBM. 
If some noise exists in the recognition environment, a few 
likelihood scores of the speaker model and UBM may be very 
low. These very low likelihoods can cause the speaker 
recognition system to make an incorrect decision. To deal with 
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this problem, we propose a reliable-feature selection method as 
explained in the following section. 

IV. Feature Recombination-Based Speaker Recognition 
Using Subband Likelihood Scores and Reliable-
Feature Selection 

In this paper, we classify input features into reliable or 
unreliable features depending on the likelihood scores. When we 
use this approach, we must consider two points: how to 
determine whether a feature is reliable and how to reduce the 
effect of unreliable features. To find a reliable feature more 
effectively, we use an adaptive noise model. This noise model is 
estimated by the maximum a posteriori (MAP) adaptation 
technique [2] using noise features obtained from test speech after 
a simple voice activity detector (VAD). In the VAD, the way to 
decide if a frame is a speech or non-speech frame is to compare 
the current frame energy with the average energy of the first 10 
frames of test speech. The VAD determines that a given frame is 
a speech or non-speech frame, and the feature extracted from the 
non-speech frame is roughly assumed as a noise feature. The 
advantages of using this adaptive noise model are that we do not 
need prior information about noise. Moreover, it accurately 
reflects the characteristics of current noise because the noise 
features are directly extracted from a noisy test speech. To 
determine whether a feature is reliable or unreliable, the 
likelihood of this feature for a speaker model is compared with 
that for an adaptive noise model. If the likelihood for a speaker 
model is lower than that for an adaptive noise model, this feature 
is determined to be an unreliable feature. To reduce the effects of 
lower likelihoods of unreliable features, the likelihoods of 
unreliable features are substituted by those of an adaptive noise 
model. The likelihoods of features for an adaptive noise model 
are assumed to be the lower bound of the likelihoods of features. 
Figure 4 shows the proposed speaker recognition system using 
reliable-feature selection. The proposed reliable-feature selection 
can be applied to both full-band and subband levels. 

Speaker identification using full-band reliable-feature 
selection based on an adaptive noise model is formulated as 
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From (8) and (9), comparing )|( kxxp λ and )|( Noisetxp λ  is 
the process to determine whether feature xt is reliable or 
unreliable. Substituting )|( kxxp λ by )|( Noisetxp λ is the 

process of reducing the effect of an unreliable feature. 
In speaker verification using full-band reliable-feature 

selection, the way to determine whether a feature is reliable or 
unreliable is the same as in speaker identification. In speaker 
verification using reliable-feature selection based on an 
adaptive noise model, the likelihood ratio test is computed 
using the following equations: 
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where cλ  and UBMλ  are the claimed speaker model and the 
UBM, respectively. 

 
 

Fig. 4. Speaker recognition system based on reliable-feature 
selection. 
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Combining the subband likelihood scoring and subband 
reliable-feature selection, the speaker identification based on 
feature recombination is formulated as 
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where M is the number of subbands. In the speaker verification 
based on feature recombination using subband likelihood 
scoring and subband reliable-feature selection, the likelihood 
ratio test is modified as follows: 
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In the proposed reliable-feature selection, the likelihoods of 
unreliable features are substituted by those of the adaptive 
noise model. However, exclusion of unreliable features has to 
be considered. From the experimental results for exclusion of 
unreliable features in the next section, the substitution of 
unreliable feature yielded slightly better performance in both 
speaker identification and verification. We analyze the effects 
of substitution and exclusion on speaker identification and 
verification separately. First, to analyze this effect on speaker 
identification, we compute the mean and variance of the 
differences of normalized log-likelihoods of the best and 
second best speakers after decoding for each test utterance. 
Table 1 shows the means and variances of the differences. 
 

Table 1. Means and variances of the differences between log-
likelihoods of best and second best speakers after speaker
identification over various SNRs of airport noise from the
TIMIT database. 

Exclusion Substitution Method 

SNR Mean Variance Mean Variance 

20 dB 0.146 0.0115 0.388 0.0755 

15 dB 0.128 0.0105 0.333 0.0646 

10 dB 0.099 0.0079 0.238 0.0462 

5 dB 0.064 0.0044 0.138 0.0197 
0 dB 0.043 0.0020 0.084 0.0078 

Table 2. Means and variances of the log-likelihood ratios of test 
utterances over various SNRs of airport noise from the 
TIMIT database. 

Exclusion Substitution 

Claimed Impostor Claimed Impostor 
Method

 
SNR Mean Var. Mean Var. Mean Var. Mean Var.

20 dB 0.29 0.021 -0.22 0.024 0.22 0.021 -0.21 0.020

15 dB 0.27 0.021 -0.21 0.024 0.19 0.019 -0.20 0.017

10 dB 0.23 0.020 -0.19 0.022 0.15 0.012 -0.18 0.013

5 dB 0.18 0.018 -0.16 0.020 0.09 0.010 -0.15 0.011

0 dB 0.13 0.017 -0.12 0.018 0.04 0.006 -0.11 0.007

Table 3. Ratios of reliable features in test utterances over various 
SNRs in airport noise condition of TIMIT database.    (%)

SNR
System 

20 dB 15 dB 10 dB 5 dB 0 dB 

Speaker 
identification 80.59 77.03 72.52 63.78 54.61 

Speaker 
veritication 81.33 78.10 73.33 66.83 58.37 

 

  From Table 1, the mean of substitution is larger than that 
of exclusion. As the difference between likelihood scores of 
the best and second best speakers become smaller, the 
confusion between the best and second best speakers 
increases more than the larger one, and this higher confusion 
causes the speaker identification system to make more 
incorrect decisions. Therefore, substitution shows better 
performance than exclusion in speaker identification. Next, 
to analyze the effect of exclusion and substitution on speaker 
verification, we compute the means and variances of log-
likelihood ratios of test utterances. These test utterances are 
separated according to whether claimed speakers or 
impostors have spoken. The means and variances are shown 
in Table 2. 

As shown in Table 2, the variances of log-likelihood ratios of 
substitution are smaller than those of exclusion for both 
claimed speakers and impostors. As the variances of log-
likelihood ratios are reduced, the rates of false alarms and false 
rejects are reduced in comparison with those in the case of 
large variance. Table 3 represents the ratios of reliable features 
in test utterances over various signal-to-noise ratios (SNRs) 
under airport noise conditions from the TIMIT database during 
speaker recognition. 

The ratio of reliable features increases as the SNR of test 
utterances becomes higher. The reason that the ratios of 
speaker identification and verification are different is that in 
speaker verification, there are impostor utterances.  
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V. Experiments 

1. Database 

We evaluate speaker recognition systems in noisy 
environments using the TIMIT and NTIMIT databases. The 
NTIMIT database is corresponding telephone version of the 
TIMIT database [14]. For our experiments, 100 male and 100 
female speakers are selected as enrolled speakers, and 158 
male and 42 female speakers are used as impostors in both 
the TIMIT and NTIMIT database, respectively. A UBM is 
trained from an additional 50 male and 50 female speakers. 
Of ten sentences uttered by each enrolled speaker, five 
sentences are used to estimate the speaker GMMs based on 
MAP adaptation, and the other five sentences are assigned to 
evaluate the speaker identification system. Additionally, five 
sentences of each impostor are used to evaluate speaker 
verification. For the noise condition, we artificially added 
acoustic noise from the Aurora 2 noise database [15] to clean 
test speech down-sampled to 8 kHz for various SNRs. The 
speech analysis frame rate is set to 20 ms with 10 ms intervals. 
The UBM, speaker models, and the adaptive noise model 
contain 160 Gaussian components. In the case of the full-band 
system, the eighteen-dimensional (18D) MFCCs are extracted 
from the outputs of 33 channels. The details of the front-end in 
the multiband system are presented in Table 4. The final 
dimensions of features are 18 for the two-subband and three-
subband systems and 16 or 20 for the four-subband system. 
 

Table 4. Channel numbers and dimensions of MFCCs in the
multiband system. 

Multiband system System 
Parm. 2 subbands 3 subbands

4 subbands 
(16D) 

4 subbands 
(20D) 

Channel 
number 32 33 32 32 

MFCC 
(dimension) 9 (18) 6 (18) 4 (16) 5 (20) 

 

 
2. Experimental Results of Speaker Identification 

A. Evaluation of the TIMIT Database 

Table 5 shows the error rates and error reduction rates (ERR) 
of speaker identification systems under clean conditions. 
Conventional feature recombination degrades the performance 
under clean conditions, but the proposed feature recombination 
using subband likelihoods, or subband feature recombination, 
improves performance under clean conditions.  

Table 6 shows the error rates of the full-band system for  

Table 5. Error rates of the full-band, feature recombination (FR), and 
subband feature recombination (SFR), and error reduction 
rates over full band under clean conditions (TIMIT 
database).                                     (%)

 Error rate  ERR  

Full-band 6.1 - 

2 subbands 9.9 -62.29 

3 subbands 9.5 -55.74 

4 subbands (16D) 9.8 -60.66 
FR 

4 subbands (20D) 11.6 -90.16 

2 subbands 5.0 18.03 

3 subbands 4.3 29.50 

4 subbands (16D) 5.9 3.28 

 
 

SFR 

4 subband (20D) 6.2 -1.64 

Table 6. Error rates of full-band system for various noise types with 
various SNRs (TIMIT database).                   (%)

SNR
Noise 

20 dB 15 dB 10 dB 5 dB 0 dB 

Airport 11.7 18.1 36.4 61.9 83.8 

Babble 13.3 26.8 51.0 72.2 85.1 

Car 19.9 39.0 61.4 82.4 92.6 

Exhibition 30.7 56.9 78.1 89.2 94.5 

Restaurant 13.7 25.1 45.1 68.7 85.1 

Street 9.3 14.2 24.8 41.4 69.9 

Subway 33.2 56.3 76.2 87.6 94.2 

Train 15.1 26.8 50.2 71.6 89.9 

Average 18.36 32.90 52.90 71.88 86.89 

 

eight kinds of noise with various SNRs.  
A comparison of feature recombination and subband feature 

recombination is shown in Table 7. Subband feature 
recombination achieves better performance than the 
conventional method, especially at high SNRs. The feature 
recombination system and the subband feature recombination 
system with 3 subbands achieve the best average ERRs of 
3.05% and 8.33%, respectively, over the full-band system. The 
performance improvement of the conventional feature 
recombination is not notable compared with the full-band 
system under realistic noise conditions. 

To verify the effectiveness of the reliable-feature selection, 
we employ a widely used SNR-based frame-dropping 
technique as a comparative method. To drop a frame, if the 
SNR of a given frame is lower than a threshold, this frame is 
excluded in test speech. In these experiments, the SNR 
threshold is set to 30 dB. The SNR estimation at the t-th frame is  
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Table 7. ERRs of the conventional feature recombination (FR) and
the subband feature recombination (SFR) over full-band 
system (TIMIT database).                         (%)

Error reduction rate over full-band SNR 
Method 20 dB 15 dB 10 dB 5 dB 0 dB Ave.

FR -2.25 7.18 5.60 0.77 -1.34 1.30
2 sub. 

SFR 16.32 14.24 8.92 2.03 -0.45 8.21

FR 2.18 8.40 5.27 0.82 -1.40 3.05
3 sub. 

SFR 17.29 16.11 8.13 1.06 -0.92 8.33

FR -0.41 5.47 3.57 -0.45 -1.65 1.994 sub. 
(16D) SFR 1.91 4.41 4.99 -0.50 -1.70 1.82

FR -14.77 3.31 5.95 4.31 2.88 0.344 sub. 
(20D) SFR 12.39 16.75 11.03 4.30 2.88 9.47

Table 8. Error rates of conventional feature recombination (FR), and
ERRs of the conventional feature recombination with frame
dropping (FR+FD) or full-band reliable-feature selection
(FR+FRFS), and subband feature recombination combined
with frame dropping (SFR+FD) or subband reliable-feature 
selection (SFR+SRFS) (3 subband system, TIMIT
database).                                        (%)

Error reduction rate over FR 

FR SFR 
Method 

 
SNR 

FR 
error rate (%) 

+ FD + FRFS + FD + SRFS

20 dB 17.96 2.85 8.28 25.26 30.34

15 dB 30.14 7.63 11.90 23.14 33.51

10 dB 50.11 10.48 13.79 17.98 30.41

5 dB 71.29 6.87 11.12 9.84 21.34

0 dB 88.10 3.72 6.85 1.84 12.57

Average ERR 6.31 10.39 15.61 25.63
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where k is the frequency index, )(kX t and )(kSt are the 
magnitude spectra of noisy speech and estimated speech, 
respectively, and )(kNt is the averaged magnitude spectrum 
of noise. Noise power is estimated by averaging the non-
speech frames in each utterance. Whether a frame is speech or 
non-speech is determined by simply comparing the current 
frame energy with the average energy of the first 10 frames in  

Table 9. Speaker identification accuracy of subband feature 
recombination using the reliable-feature selection in the 
exclusion or substitution process (3 subband system, 
TIMIT database).                               (%)

Subband feature recombination Method
SNR + SRFS (exclusion) + SRFS (substitution) 

20 dB 84.82 87.49 

15 dB 77.40 79.96 

10 dB 61.96 65.13 

5 dB 40.24 43.93 

0 dB 19.25 22.98 

 

 

Fig. 5. Average speaker-identification accuracy of conventional 
feature recombination (FR), conventional feature 
recombination combined with full-band reliable-feature
selection (FR+FRFS), and subband feature recombination 
together with sub-band reliable-feature selection 
(SFR+SRFS) (3 sub-band system, TIMIT database). 
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input test speech.  

The performance improvements of the proposed methods 
are shown in Table 8. Combining the subband feature 
recombination with subband reliable-feature selection 
techniques yields much better performance improvement than 
combining the conventional feature recombination with full-
band reliable-feature selection. 

In Table 9, the likelihood of the unreliable feature is excluded 
from the accumulated likelihood computation instead of the 
substitution process of the proposed method. The results 
demonstrate that the substitution process achieves better 
performance than the exclusion process.  

Figure 5 shows the accuracy averages of speaker 
identification for various noise types at SNRs of 20 dB, 15 dB, 
and 10 dB. These SNRs are the minimum SNRs at which the 
speaker identification system has to guarantee satisfactory 
performance in real applications. These results demonstrate 
that the subband feature recombination system together with 
subband reliable-feature selection shows the best performance 
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Table 10. Error rates of full-band system for various noise types at
various SNRs (NTIMIT database).                 (%)

SNR 
Noise 

20 dB 15 dB 10 dB 5 dB 0 dB

Airport 35.4 42.2 51.7 64.5 81.8 

Babble 34.8 41.2 57.8 76.9 89.7 

Car 37.3 48.8 65.0 83.4 93.3 

Exhibition 42.6 56.6 78.0 90.6 96.7 

Restaurant 34.2 39.8 53.6 68.6 86.5 

Street 34.6 41.1 51.3 68.8 84.2 

Subway 52.6 65.3 83.8 95.4 97.4 

Train 42.1 52.1 61.3 74.9 87.8 

Average 39.19 48.39 62.81 77.89 89.68

Table 11. ERRs of conventional feature recombination (FR) and
subband feature recombination (SFR) over full-band 
system (NTIMIT database).                      (%)

Error reduction rate over full-band SNR 
Method 20 dB 15 dB 10 dB 5 dB 0 dB Ave.

FR -0.32 1.83 -0.16 -1.20 -1.02 -0.17
2 sub. 

SFR 2.62 1.78 -1.93 -1.65 -0.71 0.02

FR 4.15 6.97 4.43 3.18 1.21 3.99
3 sub. 

SFR 3.00 5.71 3.44 3.51 2.70 3.67

FR -2.39 0.03 -0.40 -0.05 0.53 -0.464 sub. 
(16D) SFR -6.35 -2.61 -0.68 1.46 1.80 -1.27

FR 10.11 13.77 13.51 11.15 6.87 11.084 sub. 
(20D) SFR 11.64 15.27 15.36 13.71 9.65 13.12

 

for all kinds of noise. 

B. Evaluation of NTIMIT Database 

Table 10 shows the identification error rates of the full-band 
system under various noise conditions. Table 11 presents a 
performance comparison of feature recombination and 
subband feature recombination under noise conditions 
according to the number of subbands. As Table 11 shows, in 
the case using 4 subbands with 20 dimensional feature vectors, 
feature recombination and subband feature recombination 
achieve the best performance, and subband feature 
recombination yields better performance than feature 
recombination.  

Table 12 shows the performance of various speaker 
identification systems. The proposed system, which uses 
subband feature recombination and subband reliable-feature 
selection, obtains the highest performance improvement 
compared with the other systems in terms of average ERR;   

Table 12. Error rates of conventional feature recombination (FR), 
ERRs of the conventional feature recombination combined 
with frame dropping (FR+FD) or full-band reliable-feature 
selection (FR+FRFS), and subband feature recombination 
together with frame dropping (SFR+FD) or subband 
reliable-feature selection (SFR+SRFS) (4 subband system
(20D), NTIMIT database).                       (%)

Error reduction rate over FR 

FR SFR 
Method

SNR 
FR error rate

+ FD + FRFS + FD + SRFS

20 dB 35.23 -1.85 4.05 -0.57 2.16 

15 dB 41.73 0.87 6.95 2.31 6.74 

10 dB 54.33 4.53 6.53 8.12 12.98

5 dB 69.20 4.71 7.19 7.37 14.11

0 dB 83.51 3.25 5.57 1.26 13.65

Average ERR over FR 2.30 6.06 3.70 9.93 

Table 13. Speaker identification accuracy of subband feature 
recombination using the subband reliable-feature 
selection in exclusion or substitution process (4 subband 
system (20D), NTIMIT database).                (%)

Subband feature recombination Method
SNR + SFRS (exclusion) + SFRS (substitution)

20 dB 60.4 65.54 

15 dB 54.65 61.09 

10 dB 44.35 52.73 

5 dB 30.46 40.56 

0 dB 17.50 27.88 

 

however, at high SNRs of 20 dB and 15 dB, feature 
recombination combined with full-band reliable-feature 
selection shows slightly better performance than subband 
feature recombination together with subband reliable-feature 
selection. The results of Tables 8 and 12 demonstrate that, 
compared with the conventional method, the proposed reliable-
feature selection method yields better performance 
improvement in cases in which there is no convolution noise 
than in cases in which there is convolution noise. This is 
because the proposed method is not a method to compensate 
the effects of convolution noise; rather, it is a method to 
compensate the effects of additive noise. Table 13 shows 
speaker identification accuracy for cases in which the 
likelihoods of unreliable features are substituted or excluded. 
As in the previous section, the substitution process shows 
slightly better performance than exclusion. Figure 6 shows the 
average speaker identification performance at SNRs of 20 dB, 
15 dB, and 10 dB. With some noise types, namely, exhibition 
noise and street noise, subband feature recombination with 
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Fig. 6. Average speaker identification accuracy of conventional 
feature recombination (FR), conventional feature 
recombination together with full-band reliable-feature 
selection (FR+FRFS), and subband feature recombination 
together with subband reliable-feature selection 
(SFR+SRFS) (4 subband system, NTIMIT database). 
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subband reliable-feature selection yields slightly worse 
performance than feature recombination with full-band 
reliable-feature selection; however, this results demonstrates 
that the proposed reliable-feature selection technique is 
effective in noisy environments. 

3. Experimental Results of Speaker Verification 

A. Evaluation of the TIMIT Database 

To investigate the operational characteristics of the 
conventional and the proposed speaker verification systems, 
two error terms are used: false alarm rate and false rejection 
rate. As the threshold changed, we found equal error rates 
(EERs). The EER is the error rate when the false alarm rate is 
equal to the false rejection rate. Table 14 shows a comparison 
with the full-band using feature recombination and subband 
feature recombination under clean conditions.  

Tables 15 and 16 present the performance of the full-band 
system, feature recombination, and subband feature 
recombination under noisy conditions. Conventional feature 
recombination obtains slightly better performance than the full-
band system as in the experiment of speaker identification, but 
subband feature recombination is more effective than 
conventional feature recombination under noisy conditions. 

The performance of feature recombination and subband 
feature recombination together with frame dropping, full-band 
reliable-feature selection, or subband reliable-feature selection 
are shown in Table 17. When frame dropping or reliable-
feature selection is combined with subband feature 
recombination, the performance is dramatically improved 
compared with that of conventional feature recombination. 
Therefore, reliable-feature selection is more effective than the 

Table 14. EERs of the full-band, feature recombination (FR), and 
subband feature recombination (SFR), and ERRs over full 
band under clean condition (TIMIT database).       (%)

 EER  ERR 

Full-band 2.7 - 

2 subbands 3.5 -29.63 

3 subbands 3.1 -14.81 

4 subbands (16D) 2.8 -3.7 
FR 

4 subbands (20D) 4.4 -62.96 

2 subbands 2.0 25.93 

3 subbands 2.1 22.22 

4 subbands (16D) 2.3 14.81 
SFR 

4 subband (20D) 2.3 14.81 

Table 15. EERs of full-band system for various noise types with 
various SNRs (TIMIT database).                   (%)

SNR
Noise 

20 dB 15 dB 10 dB 5 dB 0 dB 

Airport 3.6 5.1 7.6 13.9 21.1 

Babble 4.2 6.5 11.6 19.0 27.0 

Car 5.1 8.3 15.4 24.2 32.3 

Exhibition 7.3 14.6 23.4 33.2 42.0 

Restaurant 3.8 5.9 10.8 18.0 27.6 

Street 3.3 3.8 5.8 8.7 16.1 

Subway 8.1 14.3 24.1 32.6 40.0 

Train 4.0 6.5 10.6 17.0 23.6 

Average 4.93 8.13 13.66 20.83 28.71 

Table 16. ERRs of the conventional feature recombination (FR) and 
the subband feature recombination (SFR) over full-band 
system (TIMIT database).                        (%)

Error reduction rate over full-band SNR
Method 20 dB 15 dB 10 dB 5 dB 0 dB Ave.

FR -14.21 -2.31 2.84 2.88 0.09 -2.14
2 sub.

SFR 16.50 25.23 24.79 18.49 8.88 18.78

FR -10.91 2.92 10.61 9.66 4.92 3.44
3 sub.

SFR 5.84 18.00 22.60 21.07 14.37 16.37

FR -10.21 -4.30 10.80 12.30 6.53 3.034 sub.
(16D) SFR 3.30 15.08 18.21 16.69 12.28 13.11

FR -48.73 -24.62 -9.42 -0.84 -0.78 -16.884 sub.
(20D) SFR 4.65 18.46 22.05 19.75 12.58 15.68

 

frame dropping. A comparison of the exclusion and 
substitution of the likelihoods of unreliable features is shown in 
Table 18. Substitution achieves better performance than that of 
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Table 17. EERs of conventional feature recombination (FR) and
ERRs of the conventional feature recombination
combined with frame dropping (FR+FD) or full-band 
reliable-feature selection (FR+FRFS), and subband
feature recombination combined with frame dropping 
(SFR+FD) or subband reliable-feature selection
(SFR+SRFS) (3 subband system, TIMIT database).  (%)

Error reduction rate over FR 

FR SFR 
Method 

SNR 
FR EER 

+ FD + FRFS + FD + SRFS

20 dB 5.46 -6.18 6.18 18.99 21.97

15 dB 7.89 0.63 7.77 25.83 29.00

10 dB 12.21 4.30 8.50 29.58 33.47

5 dB 18.81 2.79 8.64 23.06 35.81

0 dB 27.28 2.34 10.68 14.12 35.61

Average ERR 0.77 8.35 22.31 31.17

Table 18. EERs of subband feature recombination using reliable-
feature selection with exclusion or substitution (3 subband
system, TIMIT database).                        (%)

Subband feature recombination Method 
SNR + SRFS (exclusion) + SRFS (substitution)

20 dB 4.38 4.26 

15 dB 5.96 5.60 

10 dB 8.84 8.13 

5 dB 13.36 12.08 

0 dB 18.16 17.56 

 

 

Fig. 7. Average EERs  of speaker verification using conventional
feature recombination (FR), conventional feature
recombination together with full-band reliable-feature 
selection (FR+FRFS), and subband feature recombination
together with subband reliable-feature selection
(SFR+SRFS) (3 subband system, TIMIT database). 
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the exclusion as in speaker identification.  

The average EERs of speaker verification for various noise 
types at SNRs of 20 dB, 15 dB, and 10 dB are given in Fig 7. 

Table 19. EERs of full-band system for various noise types with 
various SNRs (NTIMIT database).                (%)

SNR
Noise 

20 dB 15 dB 10 dB 5 dB 0 dB 

Airport 9.0 10.9 11.8 15.2 21.8 

Babble 9.3 10.5 14.2 20.7 31.1 

Car 9.7 10.6 15.2 23.6 31.0 

Exhibition 11.0 14.7 21.8 29.6 37.1 

Restaurant 9.4 9.7 12.3 18.1 27.6 

Street 9.4 9.9 12.9 16.4 22.1 

Subway 12.0 16.0 23.2 31.7 36.5 

Train 11.1 12.2 14.9 17.8 24.9 

Average 10.11 11.81 15.79 21.64 29.01 

Table 20. ERRs of conventional feature recombination (FR) and 
subband feature recombination (SFR) over full-band 
system (NTIMIT database).                       (%)

Error reduction rate over full-band SNR
Method 20 dB 15 dB 10 dB 5 dB 0 dB Ave.

FR 0.49 -2.12 -5.94 -6.12 -7.28 -4.19
2 sub.

SFR 7.58 6.11 6.80 6.86 1.45 5.76

FR 7.91 -1.90 3.64 3.87 -1.29 2.45
3 sub.

SFR 10.26 7.94 10.61 12.71 10.43 10.39

FR 0.37 -1.74 1.74 -1.10 -2.97 -0.754 sub.
(16D) SFR -0.25 1.38 7.10 9.01 7.71 5.01

FR 2.10 0.95 2.85 1.62 -0.17 1.474 sub.
(20D) SFR 17.92 15.87 19.56 22.13 18.74 18.84

 

From this result, the subband feature recombination system 
together with subband reliable-feature selection achieves the 
best performance for all kinds of noise as in speaker 
identification.  

B. Evaluation of NTIMIT Database 

Tables 19 and 20 present EERs of the speaker verification 
system for full-band, and a performance comparison of feature 
recombination and subband feature recombination in terms of 
ERR over the full-band system. Subband feature 
recombination with 4 subbands (20D) achieves the best 
performance.  

Table 21 shows ERRs of the various speaker verification 
systems over conventional feature recombination. Subband 
feature recombination together with subband reliable-feature 
selection make speaker verification more noise-robust than 
conventional feature recombination together with full-band 
reliable-feature selection. Figure 8 shows the average EERs of 
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Table 21. EERs of conventional feature recombination (FR),
conventional feature recombination together with frame
dropping (FR+FD) or full-band reliable-feature selection
(FR+FRFS), and subband feature recombination together
with frame dropping (SFR+FD) or subband reliable-
feature selection (SFR+SRFS) (4 subband system (20D),
NTIMIT database).                            (%)

Error reduction rate over FR 

FR SFR 
Method 

SNR 

FR 
EER 
(%) + FD + FRFS + FD + SRFS

20 dB 9.90 -6.44 4.29 17.42 18.31 

15 dB 11.70 -3.74 5.98 19.23 21.26 

10 dB 15.34 0.08 6.11 21.52 26.89 

5 dB 21.29 1.94 9.10 20.78 33.71 

0 dB 29.06 4.30 8.34 22.19 35.74 

Average ERR -0.77 6.77 20.23 27.18 

Table 22. EERs of subband feature recombination using subband
reliable-feature selection with exclusion or substitution
(4 subband system (20D), NTIMIT database).        (%)

Subband feature recombination  Method 
SNR + SRFS (exclusion) + SRFS (substitution) 

20 dB 8.66 8.09 

15 dB 10.06 9.21 

10 dB 13.25 11.21 

5 dB 17.75 14.11 

0 dB 25.18 18.68 

 
 

Fig. 8. Average EERs of speaker verification using conventional 
feature recombination (FR), conventional feature 
recombination together with full-band reliable-feature 
selection (FR+FRFS), and subband feature recombination 
together with subband reliable-feature selection 
(SFR+SRFS) (4 subband system (20D), NTIMIT database).
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the conventional and proposed methods for various noise types 
at SNRs of 20 dB, 15 dB, and 10 dB. The proposed method 
shows better performance with all kinds of noise. 

VI. Conclusions 

In this paper, we introduced a method to compute subband 
likelihoods for feature recombination in a multiband approach 
to speaker recognition and verification. We proposed subband 
feature recombination using subband likelihood. The proposed 
subband feature recombination method is more effective than 
conventional feature recombination for both speaker 
identification and verification under broadband noisy 
conditions. In addition, reliable-feature selection for noise 
robust speaker recognition is proposed. The experimental 
results demonstrate that the proposed reliable-feature selection 
achieves better performance than the conventional SNR-based 
frame-dropping technique for both speaker identification and 
verification. When the proposed method is used together with 
subband feature recombination and subband reliable-feature 
selection, the performance improvements are remarkable in 
speaker identification and verification. Finally, we analyzed 
and tested the cases of likelihood exclusion and substitution of 
unreliable features. Experimental results demonstrated that the 
proposed likelihood substitution is more effective than 
likelihood exclusion in speaker recognition.  
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