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Scope and Purpese--The advent of fiber optic technology has increased coneeaxts about the survivability of 
metropolitan telecommunication networks. The network survivability usually denotes the capability of a network 
to recover services from its link or node failures. In contrast, the dual homing survivability requires each node 
to be connected to one foreign hub, in addition to its home hub, to prepare the failure of its home hub. This article 
proposes a ring-chain architecture for the dual homing survivability. The architectm'e consists of a ring and 
multiple chains. The ring contains hubs and ring nodes which have relatively high traffic with bidirectional or 
unidirectional SHR. The nodes in the chain which have relatively low traffic are connected to the ring with dual 
homing survivability. Given a ring network, the problem is to construct a set of chains to satisfy the demand 
requirements and the dual homing conslraint such that the network construction cost is minimized. 

Airliner--This article discusses a design of the ring-chain architecture with dual homing survivability for 
metropolitan telecommunication networks. A self-healing ring (SHR) and multiple chains are considered to 
cover hub, ring nodes and other offices. Offices in a chain are connected to the ring in dual homing fashion to 
increase the survivability. Given a ring topology, the problem is to minimize the link cost of the chain network 
which satisfies the dual homing constraint. An integer programming formulation and the NP-completeness of the 
problem is presented. As a solution procedure, a tabu search is proposed with two types of moves; insert and 
swap. To increase the efficiency of the search procedure, tabulists, aspiration criteria, and diversification strategy 
are discussed. The computational results show that the proposed tabu search provides near optimal solutions 
wiflfin a few seconds. Approximately 1%-4% gap from the optimum is experienced in problems with reasonable 
size of metropolitan area networks. © 1997 Elsevier Science Led 

1. INTRODUCTION 

The advent of  fiber optic technology has increased concerns about the survivability of  metropolitan 
telecommunication networks. The network survivability usually denotes the capability for a network to 
recover services from link or node failures. In contrast, the dual homing survivability, requires each node 
to be connected to another foreign hub, in addition to its home hub, in the event of  its home hub failure. 

While  there have been a lot of  studies on the survivable network with fiber-hubbing, the study on the 
dual homing architecture and its topological design has not been made enough. Most researchers have 
focused on the self  healing ring (SHR) and the point to point diverse protection (DP) architecture under 
single homing constraint [1-12]. A survivable communication network design is divided into two 
subproblems [9]: topology selection and network architecture design. Given the connectivity 
requirement, the topology selection problem is to determine the physical link layout among switching 
offices such that the installation cost o f  fiber links is minimized. In the related studies [3-5,8], efficient 
algorithms such as a tabu search or a cutting plane method are developed to design the survivable 
network with two connectivity requirement. The network architecture design relates to the demand 
requirement. In the design, the survivable network architectures such as a ring or DP are deployed to 
restore services in the event of  a link or node failure. Doverspike et al. [2] and Wu et al. [10,12] studied 
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the feasibility and economic advantages of the SHR architecture in the broadband fiber optic network. 
Some researchers studied the minimum-cost ring network design such that the demand requirements are 
satisfied [7,11]. In the study, a fiber-hubbing network including a hub office is constructed as the SHR 
network that connects the ring offices in a cost-effective manner. However, there has been no research 
on the design of ring-chain network with dual homing survivability in the literature. 

In contrast to the single homing approach, the dual homing designates two hubs for each office which 
requires high survivability. To provide the dual homing survivability in the communication network, two 
approaches may be considered. The first one is to cover the network with multiple SHRs. The second is 
to connect each node to two hubs through point to point diverse protection facilities. The multiple SHRs 
require high equipment costs because of the expensive add-drop multiplexers (ADM). The point to point 
diverse protection is also expensive as a large amount of fiber materials should be placed between each 
pair of hub and other nodes which require the dual homing survivability. 

Our study on the dual homing is motivated by Lee [13]. In his study the node set is classified into ring 
nodes, hub nodes and terminal nodes. A set of hub nodes that concentrate traffics from terminal nodes 
are connected to the ring nodes in a dual homing fashion. Then the dual homing problem seeks to find 
an optimal ring topology and traffic routing among nodes while satisfying the dual homing pattern 
constraints. This article proposes a ring-chain architecture for the dual homing survivability. The 
architecture consists of a ring and multiple chains. The ring contains hubs and ring nodes which have 
relatively high traffic with bidirectional or unidirectional SHR. The nodes in the chain which have 
relatively low traffic are connected to the ring with dual homing survivability (see Fig. 1). ADM-fiber 
chains [9,12], which provide connections between a group of ADM offices, are considered to connect 
each node in the chain to the SHR. Given a ring network, the problem is to construct a set of chains to 
satisfy the demand requirements and the dual homing constraint such that the network cost is 
minimized. 

The remainder of this article is organized as follows. In Section 2, we consider the design problem of 
ring-chain network with dual homing survivability. We present an integer programming formulation of 
the problem. The NP-completeness of the ring-chain problem is also proved. In Section 3, a tabu search 
procedure is proposed to solve the problem efficiently. Various operators of the tabu search such as move, 
tabulist, aspiration criteria and diversification strategy are examined. The efficiency of the proposed tabu 
search is illustrated by comparing with an exact solution method in Section 4. The performance of various 
tabu operators are also discussed. Finally, we conclude this article in Section 5. 

E l  Hub Office with DCS and ADM equipments 

[ ]  Ring Office with ADM equipments 

( ~  Chain Office for dual-homing survivability 

Ring Links - -  Chain Links 

Fig. I. Ring-chain architecture for dual homings survivability. 
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2. RING-CHAIN DUAL HOMING PROBLEMS 

In this section we first discuss the ring-chain design process for dual homing survivability in a 
metropolitan telecommunication network. We also propose a demand routing scheme for dual homing 
chain against a network failure. The ring-chain dual homing problem (RCDH) is formulated as an integer 
programming model and shown to be a NP-complete problem. To get an exact solution for the problem, 
a cutting plane procedure is described. 

2.1. Ring-chain design process in a metropolitan network 

We consider a metropolitan network that is usually covered with single SHR and several ADM fiber 
chains that are incident to the SHR. Then the ring-chain design process is divided into two phases; the 
SHR design and the design of dual homing chains. 

2.1.1. Self healing ring design. In most of the metropolitan telecommunication networks, demand 
patterns of central offices are irregular and nonhomogeneous. The total amount of demand, peak time and 
night demands, patterns in a week may be different at each office. Given a set of nodes in the network, 
the ring design phase first classifies each node either as a ring node or as a chain node. The classification 
usually depends on the following rules: 

(a) A node with high demand is assigned to a ring, while the one with low demand to a chain. 
(b) The sum of demands routed on the ring should not exceed the ring capacity (e.g. OC-48 or 192). 

The rule (b) relates to the technology of ADM equipments, whereas the rule (a) depends on the priority 
of service requirement that a network provider considers. Thus these rules may be different according to 
the technological level and the service requirement to be considered. 

After classifying each node into a ring or a chain node, we must construct a reasonable ring topology 
that spans all ring nodes. This procedure is performed by solving the well-known traveling salesman 
problem or the ring routing problem [7,8]. 

2.1.2. Dual-homing chain design. In this phase, we construct a set of dual homing chains incident to 
the SHR. We assume that the set of ring nodes and their connectedness are obtained in the ring design 
phase. Then the origin-destination pair of each demand is mapped into two classes; ring to ring demand 
(both end nodes are on the ring) and chain to ring demand (one node is on a chain and the other is on 
the ring). Any chain to chain demand can be considered as the combination of the two demands. The dual 
homing requires each chain node to be connected to at least two different ring nodes through different 
paths. The sum of traffics routed on a chain link should not exceed the chain link capacity. 

2.2. Demand routing scheme for dual homing chains 

Given the demand requirements, the ring capacity CR and the chain link capacity CL should be given 
a priori or estimated from demand requirements of nodes in the network. In the unidirectional SHR case, 
the ring capacity is given as the sum of all the traffics muted on the ring in the network. The capacity 
of the bidirectional ring can be estimated by solving the so-called load-balancing problem [ 14,15]. In this 
article, the ring capacity CR is given as the sum of all demand requirements in the network, which easily 
provides a feasible routing on the ring. Note that the ring capacity is large enough to allow all the traffics 
routed on the ring. Thus this article focuses on the design of chain networks. The capacity of chain link 
CL is obtained by considering the demands of chain nodes and a set of OC line rates (OC-3 or 6). 

Given the chain link capacity CL, the chain to ring demands are routed as follows [9,12]. In the 
network, let R and C be a set of ring nodes and a set of chain nodes, respectively. For each chain node 
v~C, we consider the node demand d(v)f~w,~l(v,w), where d(v,w) is the demand from origin v to 
destination w. Under normal operations, each demand d(v) is routed such that one half of the demand to 
one direction and the other half to opposite direction (See Fig. 2(a)). Let S be a chain, then the constraint 
of chain link capacity requires the sum of node demands in S, not to be greater than the chain link 
capacity C L. The demand routing schemes for failure in a hub and a link are also shown in Figs 2(b) and 
(c), respectively. In the event of a hub failure (see Fig. 2(b)), another alternate routing is made in the 
opposite direction by the path reatrangeraent of the chain node which is incident to the failure node. For 
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(a) Demand routing scheme under normal operations 

(b) Demand routing scheme under a hub node failure 

(¢) Demand routing sclleme under a link failure 

] Path rearrangement for alternative muting against a Nilure 

Fig. 2. Demand muting schemes for dual homing chains. 

a link failure as in Fig. 2(c), the path rearrangements are required to reroute the traffics on the failed link 
along two opposite directions. 

2.3. Modeling of ring-chain dual homing problem 

In this section, we propose an integer programming model for the ring-chain dual homing problem 
which is based on the cut formulation. The node set N in the network is classified into a set of ring nodes 
R which are covered with a SHR, and another set of chain nodes C which are connected to the SHR 
through an ADM fiber chain. Given a network G(N,A) and a ring topology, the ring-chain dual homing 
problem seeks to find the minimum cost chains such that the chain capacity and the dual homing 
constraints are satisfied. The electronic equipment cost such as ADMs at each chain node is not 
considered in the problem, since the total node equipment cost becomes constant when the nodes to be 
included into the chain are decided. Usually the link cost is composed of the cost of fiber materials, 
placement and repeaters. Thus the model has to reflect these cost components for realistic conditions. In 
this article, however, it is assumed that the cost of installing a chain link is linear to the distance of the 
link. 

To formulate the problem, let us define the following notations: 

A= {(v,w):v or w e C}: a set of undirected chain links in the network, 
d(w): the demand requirement of a chain node we C, 
d(W)=Ew~d(v) : the demand requirements for a subset of nodes WC_C, 
CL: the chain link capacity, 
a~,. : the cost of installing the chain link (v,w) ~A, 
x,~.: 1 if the undirectional chain link (v,w) is installed, and 0 otherwise for all (v,w) ~_A, 

F l r(W)= I---~--L | : the number of chains required to satisfy the demand requirement of a node subset 

W with the chain link capacity CL, where I'xl is the smallest integer not smaller than x. 

Then, the ring-chain dual homing (RCDH) problem is formulated as follows. 
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(RCvDH) Minimize 

subject to 

~(w.~),aaw~X,.~ (1) 

.~N x~=2 Vw E C (2) 

E ~. x~>-2r(W) VWCC (3) 
w~W v~N~W 

E E x~>r(W) Vz~R.WCC (4) 
wEW VEI~WUIz}) 

x~O/1 integers V(w.v) EA (5) 

In RCDH model, the network cost (1) consists of fiber material cost and placement of each chain link. 
The degree constraints (2) designate that the degree of each chain node is two to be connected to other 
nodes through the chain. The constraint (3), which is called as the chain capacity constraint in this article, 
is similar to the subtour elimination constraint in the vehicle routing problem [16]. The chain capacity 
constraint designates that a subset of chain nodes W should be connected to the ring through at least 
2r(W) paths. The constraint (4), which is called as the dual homing constraint, represents the dual homing 
survivability between the ring and the chain induced by a node subset W. This constraint restricts the two 
paths from a chain node to have the single homing on the ring that may occur by the constraint (3). Thus 
each chain node is connected to the ring after a ring node fails. 

Given a network G(N,A), let us define the connected polytope for the feasible solution space of the 
RCDH problem as 

RCDH(G)=conv{x~ {0,1 } ~: x satisfies the constraints (2), (3) and (4)}, where cony is the convex hull 
operator. Then the RCDH problem is to minimize arx for all xERCDH(G). Since the connected polytope 
RCDH(G) is composed of a large amount of cut constraints such as (3) and (4), the computational 
complexity gets larger as the problem size increases. Thus an efficient heuristic is necessary to solve the 
problem. 

2.4. NP-completeness of RCDH problem 

In this section, we prove the NP-completeness of the RCDH problem by transforming from the well- 
known Hamiltonian Path Problem (HPP) [17]. The following theorem states that the RCDH problem is 
NP-complete. 

Theorem 1. RCDH problem is NP-complete. 

Proof It can be shown easily that the decision problem version of RCDH problem is in the class of 
NP. We prove that the problem is NP-complete by transforming the HPP into it. Consider an instance of 
HPP defined on a network G(N,A). Then HPP asks whether there a path exists in G which spans all of 
the nodes in N. Figure 3(a) illustrates the original graph G for the HPP. In the figure a Hamiltonian path 
is shown. 

From the network G(N,A), we construct a new network G*(N*A*) such that N*=NO {r~,r2} and 
A*=A 0 {(rt, v)li= 1, 2, v ~N}, where rt and r 2 are any two different ring nodes and N are the set of chain 
nodes. Figure 3(b) shows the new graph G* which is constructed by transformation from G. Now we 
consider an instance of the RCDH problem on the new graph G*. Let a link cost ae= 1 for all e ~_A* and 
n= IN1. We also set the chain capacity CL=n and the node demand d(v)= 1 for all yEN. 

Consider the following instance of the decision problem version of RCDH which is defined on a newly 
constructed network G*. 

2.5. P Is there a feasible solution of RCDH with a network cost less than or equal to n + 17 

Let a feasible solution of RCDH with k chains be given and let n~ ..... n, be the number of chain nodes 
in each chain. Then the network cost is n+k. Hence the answer to (P) is "yes" if and only if a feasible 
solution exists to RCDH with exactly one chain. Since the chain in G* corresponds to a Hamiltonian path 
in G, we complete the proof. Note that a Hamiltonian path in Fig. 3(a) corresponds to a feasible solution 
to RCDH with exactly one chain in Fig. 3(b). Q.E.D. 

2.6. Cutting plane procedure for exact solutions 

In spite of the NP-completeness of the RCDH problem, we sometimes need to find an exact solution, 
which is necessary to measure the solution quality of a heuristic procedure. With the cut-based integer 
programming model in Section 2.3, we propose a cutting plane procedure to obtain an exact solution for 
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~N',A) A Hamiltonian Path 

(a) Original Graph in Hamiltonian Path Problem 

G*(N*,A*) A Feasible Chain for (P) 

(b) Reduced Graph by Transformation from I-IPP 

Fig. 3. Graphical illustration of the theorem. 

the RCDH problem. The cutting plane procedure presented in this article is based on the simple 
separation routine. Starting from an initial integer linear program with the constraints (2) and (5), we 
solve it by minimizing the network cost. In the separation routine, the constraints for the RCDH(G) 
polytope, which is violated by the current integer solution, are generated and added into the integer 
program. These steps are repeated until an optimal solution is obtained which satisfies the RCDH(G) 
polytope. 

2.6.1. Cutting plane procedure. 
Step 1. Optimization routine 

1-1. Solve the following integer program (IP); 
Minimize {arx: xE {0,1 } 0tL satisfies the constraints (2) and the constraint (3) with W=C}. 

/* The integer program can be solved by using a commercial IP solver such as CPLEX [18] */ 
1-2. Let x* = {(w,v) EAIxwv= 1 } be the optimal integer solution of the integer program. 

Step 2. Separation Routine 
Find the constraints (3) and (4) that are violated by the solution x* as the following cases [21]; 
A. Subtour elimination constraints (Case A of Fig. 4) 

A-1. For all v~C, Mark[v]=0./* Mark[v] identifies whether the node v is searched or not */ 
Do the following search process until Mark[v] = 1 for all v ~ C. 

A-2. Select a chain node v with Mark[v] =0 and set S= {v}./* a subtour S is a list of nodes *! 
A-3. For  (v,w)~x*, 

If  Mark[w] =0 and w~C, then Mark[w]= 1, S=SU {w}, v=w. Go to A-3. 
Else if weR,  then S is not a subtour. Set S=O. Go to A-2. 
Else if Mark[w] = 1, then generate the constraint (3) for S, insert it into IP, Go to A-2. 

B. Dual homing (Case B of Fig. 4) and chain capacity constraints (Case C of Fig. 4) 
B-1. For all vER, Mark[v]=0. Do the following search until Mark[v]= 1 for all vER. 
B-2. Select a ring node v with Mark[v] =0 and (v,w) ~x* for a chain node w. 
B-3. Mark[v]= 1, z=v and set S={v}.l*z is the starting node of the chain S*I 
B-4. For (v,w) ex* 

If weC,  then S=SU {w}, v=w and go to B-4. 
Else if w ~ R { 

If  w=z, then generate the constraint (4) for S and insert it into IP. 
Else if w~z  (In this case, the chain S satisfies the dual homing constraint) { 

If  r(S)= 1, then the chain S is a normal chain. 
Else if r(S)> 1, then generate the constraint (4) and insert it into IP. 
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v 

Case A : Subtour Constraint 

Case B : DuabHoming CaaV.raint 
Case C (r(S) > I) : Chain Capacity Constraint 
Case C (r(S) = I) : Normal Chain 

Fig. 4. Illustrative examples of the separation procedure. 

} 
Go to B-2. 

} 
Step 3. Stopping routine 

IfxeRCDH(G), that is, no violated constraint is generated in Step 2, then stop. 
Otherwise, go to Step 1. 

Let x* be an optimal solution obtained by solving the initial IP in Step 1. Clearly, x* is an integer 
solution which satisfies the degree constraints (2). This implies that the network induced by the solution 
x* is composed of subtours and chains. The subtour designates a cycle which is not connected to the ring. 
The chain represents an incident cycle which is connected to the ring. Each subtour is removed by adding 
the constraint (3) as Case A of Step 2. The chain, which is connected to the ring with only one ring node, 
is removed by adding the constraint (4) as Case B. Now, consider a chain S which is connected to the 
ring with two distinct nodes. Note that r(S) is the number of chains required to satisfy the demand 
requirement of a node subset S. Thus the chain induced by S with r(S)> 1 should be splitted into more 
than two chains as Case C. In Fig. 4, the chain of the Case C with r(S)= 1 is a normal chain which satisfies 
the dual homing survivability. 

3. APPLICATION OF TABU SEARCH 

Tabu search techniques are used to solve combinatorial optimization problems. These methods 
suggested by Glover [19,20] can be sketched as follows: starting from an initial feasible solution, at each 
step we choose a move to a neighboring solution in such a way that we move stepwise towards a solution 
giving hopefully the minimum value of some objective function. Up to this point, this is close to a generic 
steepest decent technique in which tabu search could be implemented as a meta-heuristic. 

The interesting feature of tabu search is the construction of a list T (tabulist) of tabu moves: these are 
moves which are not allowed at the current iteration. The reason for this list is to exclude moves which 
would bring a current solution back where it was at some previous iteration. A move remains a tabu move 
only during a certain number of iterations (it is called "tabusize"), so that we have a cyclic list T where 
at each move s i s ' ,  the opposite move s'--*s is added at the end of T while the oldest move in T is 
removed. Another characteristic of tabu search is "aspiration strategy". For each move labeled as tabu, 
if it gives a better solution than a predetermined local optimum, the move is taken even if it is in tabu 
status. 

In this section, we present a tabu search procedure and its implementation for the RCDH problem. In 
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particular, the tabu search in this article employs a diversification strategy to explore much better 
solutions. After a solution region is highly searched by the move and tabulist strategy, the diversification 
strategy of tabu search drives the search into a new area that has not been explored until then. 

3.1. Initial chain construction 

Before applying the tabu search, we need to construct an initial chain. Given the ring topology, the 
following three heuristics are suggested to construct chains that are connected to the ring. 

3.1.1. Nearest neighbor. This construction method is based on the well-known nearest neighbor 
procedure in the traveling salesman problem. The following steps are continued until all chain nodes are 
connected to the ring. 

Step 1. Select a ring node rl. 
Step 2. Find a chain node c~ such that the link cost of (rl,Cl) is the minimum among all links 

connected to r~. 
Step 3. Construct a partial chain S={r~, Cl} by using one-dimensional array. 
Step 4. Set d(S)=d(c~) and k=l .  
Step 5. Find a chain node Ck+~ satisfying d(S)+d(Ck+l)<-CL such that the link cost of (Ck,Ck+ 0 is the 

minimum among all links connected to CR. Then S=S LI { CR+ 1} and k--k+ 1. Repeat this step. 
Step 6. I f  there is no chain node Ck+l satisfying d(S)+d(Ck+l)<-CL, 

then construct a feasible chain S by adding a ring node r 2 to the chain such that the link cost 
of (Ck,r2) is the minimum among all links connected to Ck and go to Step 1. 

3.1.2. Chain expansion. This procedure first constructs a small chain with a chain node and two ring 
nodes, and then expands it by adding the other chain nodes. The following steps are continued until all 
chain nodes are connected to the ring. 

Step 1. Select a chain node c~. 
Step 2. Find two ring nodes r~ and r: such that the cost of two links (r~,cO and (r2,cl) is the minimum 

among all links connected to Cl. 
Step 3. Construct a chain S={r~, c~, r2} by using one-dimensional array. 
Step 4. Set d(S)=d(cl) and let S= {v 1, v 2 ...... v k} where v~=r I and vk=r2. 
Step 5. Find a chain node c* satisfying d(S)+d(c*)<-CL such that the cost of two links (vi,c*) and 

(c*,v~+ 0 is the minimum for i= l ,  2 ..... k - 1. Then S=SU {c*}. Repeat this step. 
Step 6. I f  there is no chain node c* satisfying d(S)+d(c*)<-CL, then go to Step 1. 

3.1.3. Random chains. Based on the chain expansion procedure, this method repeatedly inserts nodes 
into a chain as far as the chain capacity is satisfied. However, two ring nodes and chain nodes to insert 
are randomly selected among those that are not included to other chains. Since this method does not use 
the information about link cost, it usually produces a solution with high cost. However, this procedure 
is useful for generating random initial solutions to which we apply an improvement heuristic. 

3.2. Design of move 

Starting from the initial chain, the solution is improved by applying moves. In this article we define 
a move as a transformation of a node from a chain into another chain. Let C~ and C2 be two incident 
chains in the network. Then the following two types of moves are considered. 

3.2.1. Insert move. Let us consider a chain node v in CL and another chain C2={wl, w2 ..... w~}. If  
d(C2)+d(v)<-C~., then node v is excluded from C1 and included into C2. Two nodes w~ and wi+~ in C~ are 
selected which minimize the difference between the cost of inserted new links ((wi,v), (v, wi, i) and (p,q)) 
and that of deleted old links ((w~,w~÷~), (p,v) and (v,q)) as shown in Fig. 5(a). 

3.2.2. Swap move. In the insert move, ifd(C2)+d(v)>CL, it is not possible to take an insert move. In 
this case, a swap move is considered. Let us consider two chains C~={v~, v~ ..... Vm} and C2={w~, w 2 ..... 
Wk}. TwO node pairs v~ and wj are selected which satisfy the chain link capacity; d(C0 - d(vi)+d(wj)~-C L 
and d(C2)-d(wj)+d(v~)<-CL, for i=1 .... m a n d j = l  ..... k. Then two nodes v t and wj are exchanged which 
minimize the cost difference between the inserted links and deleted ones, In Fig. 5(b), thick and dotted 
lines represent the inserted link and deleted one, respectively. 

The formal steps for the move procedure in the tabu search are presented as follows. 
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P_ q 
• ~ -. .  ' " ' " - . . . ~ . " V  

| 

w 

(a) Insert Move 

(b) Swap Move 

Inserted links ............ deleted links 

Fig. 5. Insert and swap move in tabu search. 

3.2.3. Move  procedure 
Step 1. Let Ca, C: ..... Ck be a set o f  chains in the current solution. 
Step 2. Initialize the variables move_type,  cost, m in=a  larger number. 

Step 3. F o r  i =  1 ..... k, do  
F o r  a chain j # i  do { 

F o r  each chain node v in Ci, do { 
If d(v)+d(Cj)<-CL, 
Then cost= Insert(v,C~,Cj). 

If cost<O then insert v into Cj and go to Step 3. 
If cost<rain then rain =cost, move type = Insert. 

Else { 
For each chain node w in Cj, do { 

If d(w)+d(¢i) - d(v)<-CL, and d(v)+d(Cj) - a(w)-< C~ 

Then cost=Swap(v, Ci,w, Cj). 
If cost<O then swap v and w and go to Step 3. 
If cost < rain then rain = cost, move._type = Swap. 

} 
} 

} 
} 

Step 4. I f  there is no cost improvement  for any chain in the network in Step 3, 
T h e n  do the best candidate move (min, move  type) that has been examined.  

3.2.4. Insert(v, Cl, Cz) 

Stela 1. Let Cl={Vl,  V 2 ..... p, V, q ..... Vm} and C2={wl,  w2 ..... Wk}. 
Step 2. cos t=the  m i n i m u m  cost o f  awi, v+a~,wi+l +ap, q -  awi, wi÷ 1 - a p . v -  av, q for i=  1 ..... k - 1 (Fig. 5(a)). 
Step 3. Return(cost) .  

3.2.5. Swap(v, Cl, w, C2) 

Step 1. Let C l = [ v  l, v 2 ..... v, .... Vm} and C2={wl,  w 2 ..... w, .... Wk}. 
Step 2. cost  = the mi n i m um cost o f  a~ _ ~,~ + ~ + a~ + ~,wj + a~  _ 2.~ + a~,~ _ ~ + a~  _ ~.~ + ~ - a~ _ l.vi - -  avi,~ + ~ - 

a ~ ÷ l . ~ + 2 - a ~ j _ 2 . ~ _ l - a ~ _ t . ~ - a ~ . ~ + l  for i=1  .... m - - 2  and j = 2  ..... k -  1 (Fig. 5(b)). 
Step 3. Return(cost) .  



892 Chae Y. Lee and Seok J. Koh 

3.3. Tabulist and tabu parameters 

To escape the search from trapping into local optimality, an effective tabulist needs to be designed. The 
tabulist is a list of forbidden moves. If a candidate move is one of the forbidden moves in the list, the 
candidate is a tabu move so that the move cannot be chosen unless it satisfies the aspiration criteria. A 
candidate move that can be chosen is called admissible and the best admissible candidate is finally 
executed. In this article we consider two tabulists; tabu-add and tabu-delete. Each tabulist keeps a number 
of predicates in a circular list. 

3.3.1. Tabu-add: (node w, chain y). This tabulist restricts a node w to be added back to the chain y. 
In Fig. 5(a) if the node v in chain 1 was inserted into chain 2 then a predicate (v, C1) will be enrolled into 
the tabu-add list. In the following moves, the node v can not be added back into the chain C~. In a swap 
move of Fig, 5(b), two predicates (v, C1) and (w, C2) are enrolled into the tabulist. 

3.3.2. Tabu-delete: (chain y, node w). This tabulist is applied to a move in the reverse form of tabu- 
add. If a node w was inserted into the chain y, the tabulist restricts the node w to be deleted from the chain 
y. In case of a swap move, two predicates (C1, w) and (C2, v) are enrolled into the tabu-delete list. 

Note that the tabu-delete is more restrictive than the tabu-add for a candidate move. In Fig. 5(a), a 
predicate (C 2, v) in the tabu-delete prohibits the node v to be added into CL as well as the other 
neighboring chain. For the implementation of the tabu moves we also employ a hybrid method which 
applies tabu-add and tabu-delete in turns. That is, if a move is enrolled into the tabu-add, the next move 
is enrolled into the tabu-delete. 

Tabusize is defined as the number of predicates in tabulist. The determination of a reasonable tabusize 
gives an impact on the performance of tabu search. If the size is too small, cycling behavior which revisits 
some earlier solutions may occur during the search. If it is too large, it may induce the search to follow 
new trajectory too frequently. Thus a reasonable number of tabusize needs to be considered depending 
on the problem size. 

3.4. Aspiration criteria 

Compared with the constraining effect of tabu restrictions, aspiration criteria make the search process 
free. An aspiration criterion is designed to overrule tabu status and make a candidate move in tabu status 
admissible. In this article, we use two aspiration criteria. For a candidate move which is in tabu status, 
if the network cost is less than the following aspiration criteria, the search overrules the tabu status. 

(1) global aspiration criterion: the network cost is less than the current best solution. 
(2) local aspiration criterion: the network cost is less than the local minimum obtained most recently. 
In the local criterion, the local minimum is updated whenever an uphill move occurs. Since the local 

criterion is less restrictive than the global one, more explorative search is expected by the local criterion. 
However, it may produce unnecessarily many moves compared to the global criterion. We thus compare 
the two criteria in Section 4. 

3.5. Diversification strategy 

The diversification strategy is helpful for the search to explore new regions of the solution space. It 
thus enables the search process to escape the trap of local optimality. In this study, a spilt-merge operation 
is presented for the diversification strategy. The split-merge operation divides a chain into two chains or 
merge two separate chains into one. Any chain, the demand of which is larger than CLI2, is splitter into 
two by deleting the most expensive link of the chain. Also, each splitted chain can be merged into other 
chain as far as the chain capacity constraint is satisfied. Figure 6 illustrates the split-merge operation. In 
the figure chain 1 and 2 are splitted into two chains respectively. One splitted part of chain 2 is then 
merged to chain 3. 

3.6. Tabu search procedure 

Based on the previous discussion, we present a tabu search procedure for the RCDH problem. For 
termination criteria, Short-Term and Long-Term are used for pure tabu search and diversification phase, 
respectively. 
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added links ................... deleted links 

Fig. 6. Split-merge operation in diversification. 

Tabu search procedure 
Step 1. Initialization phase 

1.1. Construct an initial chain for a given ring topology. 
1.2. Initialize the tabulist and aspiration criteria. 
1.3. Short_Term = Long_Term = 5 and short_term = long_term = 0. 

Step 2. Pure tabu search phase 
2.1. For each chain in the network, do the move procedure in Section 3.2 

by checking tabu status and applying aspiration criterion. 
2.2. i f a  new best solution is found by the move, then short_term=0. 

else short_term = short_term + 1. 
2.3. if short_terra-<Short_Term, then go to Step I. 

else go to diversification phase. 
Step 3. Diversification phase 

3.1. long__term =long_term + 1; 
3.2. if long_term>Long__Term, then stop the tabu search. 

else do the split-merge operation and initialize tabulist. 
3.3. Go to pure tabu search phase. 

4. C O M P U T A T I O N A L  R E S U L T S  

To test the performance of the proposed tabu search algorithm for the RCDH problem, two types of 
problems are considered: fixed demand and random demand. In each type 25 problems are generated 
such that each set of five problems has different number of chain nodes. The numbers of chain nodes 
examined are 16"1=10, 20, 30, 40, 50. The number of ring nodeslRI is fixed to 10 and the ring topology 
is given. All the computational results in this section are coded by C language and tested on WorkStation 
HP/9000 Series. 

Table 1 specifies problem to be tested. In the table d(v) and C L respectively represent the demand of 
a chain node v and the chain link capacity. In problems with fixed demands, a fixed demand is given for 
each node in the network, while in problems with random demands the demand at each node follows 
uniform distribution over 0.2, 0.4, 0.6, 0.8 or 1.0 with equal probability. Note that the problems with 
random demands are more difficult than those with fixed demands. When the demands are fixed, the 
number of nodes to be inserted into a chain can be predetermined. However, when demands are random, 

Table 1. Test problems 

Problem Set IC1 d(v) CL 

Fixed demands Set 1 10.00 1.00 OC-3 
Set 2 20.00 1.00 0C-6 
Set 3 30.00 0.50 0C-3 
Set 4 40.00 0,50 0C-6 
Set 5 50.00 0.40 0C-6 

Random demands Set l I0.00 Uniform* OC-3 
Set 2 20.00 Uniform* 0C-3 
Set 3 30.00 Uniform* OC-6 
Set 4 40.00 Uniform* 0C-6 
Set 5 50.00 Uniform* 0C-6 

*Demands are generated uniformly over 0.2, 0.4, 0.6, 0.8 and 1.0. 
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Table 2. Comparison of initial chain construction methods 

Number of nodes 10.00 20.00 30.00 40.00 50.00 

Nearest neighbor 1375.00 2118.00 2960.00 3156.00 3427.00 
Chain expansion 1406.00 2363.00 2997.00 3335.00 3464.00 
Random chains 1380.00 2319.00 3008.00 3514.00 3740.00 

Each value is averaged over five instances. 

each chain might have different number of nodes. Thus, in problems with random demands, additional 
move steps are necessary to decide the nodes that can be inserted into a given chain capacity. This clearly 
makes the tabu search difficult in steps with insert and swap moves. 

In the experiments, chain nodes are randomly generated in the 300 by 300 Euclidean plane. A set of 
potential links are also generated in the underlying network with each node degree ranged from 6 to 10. 
Each link cost is given as the Euclidean distance between two end nodes in the network. 

Table 2 shows the performance of three initial chain construction methods in the problems with fixed 
demands. In the table, random chains means the network cost of the best solution obtained by applying 
the random chain construction method. The nearest neighbor method gives better solutions than two other 
methods in all problems. Thus the nearest neighbor is employed as an initial chain construction method 
for all experiments to follow. 

To solve the RCDH problem we performed the tabu parameter tuning experiments for various tabu 
operators and tabusizes. The experimental results for the problems with fixed demands are illustrated in 
Figs 7-10. 

In Fig. 7, three tabulists, tabu-add, tabu-delete and hybrid method, are compared with a simple local 
search in which only moves are applied without tabulists, aspiration criterion and diversification strategy. 
The hybrid method is the combination of the two tabulists discussed in Section 3.3. From the figure we 
conclude that tabu-add is the most appropriate tabulist for the RCDH problem. 

Figure 8 shows the tabu search with different tabusizes. Tabu-add is employed as a tabulist for each 
problem. From the figure, it seems reasonable to use tabusize of 3 for the 10 node problems, 5 for 20, 
30 and 40 node problems and 7 for 50 node problems. 

In Fig. 9 we compare the performance of tabu search using two aspiration strategies; local and global 
aspiration criteria. The network cost and number of moves generated by each method are compared with 
the method without an aspiration strategy. The local criterion gives better performance than the global 
one at the expense of more number of moves. However, since the number of moves generated is not 
explosive, the local aspiration strategy is employed in the experiments to follow. 

In Fig. 10, the diversification strategy and the multiple startings with random initial solutions are 
compared with the pure tabu search without the diversification. The power of the diversification strategy 
is prominent compared with the multiple starting strategy in problems with large number of chain 
nodes. 
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Tables 3 and 4 show the performance of the tabu search procedure with operators and parameters as 
recommended above. The CPLEX [18] is used to obtain optimal solutions of the RCDH problem by 
employing the cutting plane procedure of Section 2.5. The network cost in the table represents a relative 
percentage compared with the optimal solution. Unfortunately, for problems with 40 and 50 nodes, the 
RCDH problem cannot be solved within three hours. For those cases, we only present the lower bound 
for each instance. 

From the tables, it is clear that the proposed tabu search is very effective both in solution quality and 
CPU seconds. The gap from the optimal solution is approximately 1%--4% for problems with 10, 20 and 
30 nodes. Even if the effectiveness of the proposed tabu search could not be verified in problems with 
more than 40 nodes, it is clear that the gap is approximately 10% from the lower bound. 

5. CONCLUSIONS 

A ring-chain architecture with dual homing survivability is considered for metropolitan tele- 
communication networks. In the architecture, hub and high traffic nodes are covered with a SHR and 
other nodes with chains. Given a ring topology, the ring chain dual homing problem is formulated as an 
integer programming model which minimizes the link cost of chains while satisfying the dual homing 
constraint. It is shown that the problem is NP-complete. 
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Table 3. Computational results of tabu search in problems with fixed demands 

Number of 10 20 30 40 50 
nodes 

Tabu Optimal Tabu Optimal Tabu Optimal Tabu Lower Tabu Lower 
search solution search  solution search solution search  b o u n d  search  bound 

Problem 1 101.88 100.00 100.00 100.00 101.81 100.00 103.36 100.00 111.66 100.00 
Problem 2 100.00 100.00 100.00 100.00 104.01 100.00 104.11 100.00 105.45 100.00 
Problem 3 100.74 100.00 100.95 100.00 104.42 100.00 102.09 100.00 112.33 100.00 
Problem 4 100.00 100.00 100.71 100.00 100.26 100.00 110.75 100.00 112,34 100.00 
Problem 5 100.00 100.00 101.65 100.00 101.92 100.00 109.39 100.00 107,07 100.00 
Average 100.53 100 100.66 100 102.55 100 105.86 100 109.78 100 

(1.41) (38.20) (4 .60)  (782.40) (8 ,77)  (9766)  (10.60) (3 h) (16.22) (3 h) 

The values in the parenthesis are the CPU seonnds. 

Table 4. Computational results of tabu search in problems with random demands 

Number of 10 20 30 40 50 
nodes 

Tabu Optimal Tabu Optimal Tabu Optimal Tabu Lower Tabu Lower 
search solution search  solut ion sea rch  solution search  b o u n d  s e a r c h  bound 

Problem 1 100.00 100.00 102.13 100 .00  103.76 100.00 106.34 100.00 111.92 100.00 
Problem 2 102.65 100.120 101.39 100 .00  103.69 100.00 105.21 100.00 108.69 100.00 
Problem 3 101.18 I00,00 102.56 I00.00 104.69 I00.00 107.78 I00.00 110.38 I00,00 
Problem 4 101.28 100.00 102.43 100 .00  104.34 100.00 107.48 100.00 111.21 100.00 
Problem 5 100.33 100.00 101.76 100 .00  103.56 100.00 108.42 100.00 109.31 100.00 
Average 101.09 100 102.05 100 104.01 100 107.05 100 11031 100 

(3.21) (88.23) (7 .43)  (1131.89) (18.93) (10032) (64.28) (3 h) (105.14) (3 h) 

The values in the parenthesis are the CPU seconds. 

An efficient tabu search procedure is proposed to solve the problem. Two types of moves, insert and 
swap, are employed to improve the solution starting from an initial chain construction. To avoid the 
cycling of the search, two tabulists, tabu-add and tabu-delete are proposed and examined. As a 
diversification strategy, the split-merge procedure is employed to help the search explore new regions of 
solution space. 

Computational results show that the proposed tabu search provides near optimal solution within a few 
seconds. The difference is at most 4% from the optimum in problems with 10, 20 and 30 nodes. Even 
in 40 node problems the average gap is 7% from the lower bound. 
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