
Relative Scale Estimation between Two Camera Motions

Yekeun Jeong and In-So Kweon
RCV Lab, KAIST

373-1 Guseong-dong Yuseong-gu Daejeon, Korea
ykjeong@rcv.kaist.ac.kr, iskweon@kaist.ac.kr

Abstract

In structure from motion, if two metric structures are
given, the unknown scale between them can be resolved
by constraining the rigidity of the metric space. There
exist two well-known approaches. The first one is the
pose estimation which aims to find the pose of a camera
for known 3D points. The second one is the scale esti-
mation whose goal is to resolve the scale after estimat-
ing the motion between cameras. Recently, the former
way is preferred because of the vulnerability of the scale
estimation, the weakness to the image noise. In this pa-
per, we thus propose a robust method which can over-
come the weakness of the scale estimation by consider-
ing the uncertainty of reconstructed 3D points. Addi-
tionally, the rotation matrix is directly corrected under
the structural consistency constraint. To illustrate the
performance of the method, we demonstrate some ex-
amples of large-scale reconstructions and compare the
results.

1. Introduction

Structure From Motion(SFM) is the recovery of
structures in a scene using camera motions, and it is cur-
rently one of the most active research areas in computer
vision. Basically, SFM includes numerous estimations
of the camera motion and the structure. Each estimation
causes an error because of the uncertainty in measure-
ments and the errors are accumulated over the entire
estimation process. In order to minimize these errors,
we can use Sparse Bundle Adjustment(SBA) for post-
processing. However, the SBA has drawbacks such as
the local minima problem and the requirement of heavy
computations. Therefore, in the initial result, we need
to obtain the finest estimation.

In this paper, SFM implies that the camera setup is
weakly calibrated. Then, existing SFM can be classi-
fied into two groups: motion(relative pose) estimation

based and pose estimation based methods. The motion
estimation has a scale ambiguity. Shum et al.[7] per-
formed motion estimation for SFM. They constructed a
local structure with an image pair. Subsequently, they
merged the local structures by resolving the unknown
scales through the minimization of the sum of squared
distances between corresponding 3D points. However,
their method cannot be applied to a scene with a large
depth range unless the accuracy of triangulation for the
near and far points is fixed. On the other hand, Nister et
al.[5] and Mourag et al.[4] used pose estimation in order
to avoid resolving the scale ambiguity. However, pose
estimation essentially needs accurate 3D points corre-
sponding to the feature points. Therefore, they care-
fully reconstructed an initial structure using the infor-
mation of tracked points between the first and the last
frames before beginning the pose estimation. In [5], a
re-triangulation scheme and a firewall for propagating
errors were additionally used to reduce the error accu-
mulation and Local Bundle Adjustment was used for
the same purpose in [4].

In this study, we basically use a relative-motion-
based approach, and the scale ambiguity is the same as
that in [7]. In a scene that has plenty of features, the de-
termination of the optimal geometric relation between
two frames has already been extensively investigated
[2, 8, 3]. Because the relative scale between two mo-
tions is the only cause of ambiguity, a slight mismatch
between the scale factors of the two motions can cause
severe distortions. To solve the ambiguity, we propose a
novel scale estimation method involving outlier removal
and optimization. A method is designed to measure the
error in each stage to cancel or alleviate the negative ef-
fects of the uncertainties of the 3D points due to their
large depth. The M-estimator approach can help deal
with 3D points that have a potential uncertainty caused
by their large depth. A reprojection process can cancel
degradations resulting from triangulations. We also pro-
vide an additional correction. Through this procedure,
an optimal scale that is sufficient to provide a good ini-



Figure 1. Geometric relations between
an image triplet and structures from two
pairs.

tial result for certain global optimizations can be effi-
ciently obtained.

This paper is organized as follows. Section 2 ex-
plains details of the proposed relative scale estimation
method, while section 3 introduces SFM implementa-
tion. The experimental results are presented in section
4, and section 5 provides the conclusions.

2. Relative Scale Estimation

Fig.1 shows the geometric relations between three
image frames and we shall consider this case in detail.
X1, X2(≡ HX1), X̃1(= HX1) andX̃2(= H−1X2)
are 3D points and correspond to relative structures. We
need to find the 3D homographyH. If we find H, we
can transformX1 to X2 and vice versa. This means
that structures and motions can be expressed in the same
coordinate system.

Hmet =
[

sR st
0 1

]
, Haff =

[
DaR Dat

0 1

]
(1)

In the metric space, we can decomposeHmet into
a rotation matrixR and a translation vectort. In the
above discussion, the words “scale” and “scale factor”
are used with reference tos. In the affine space, we can
find Haff that can be decomposed intoDa, R and t.
Da is an upper triangular matrix and transformsHmet

toHaff . For an ideal case that noise-free measurements
are available,s is constant and all the 3D points have the
same scale,s with their corresponding points. Unfortu-
nately, this is not true in practical cases.

In real experiments, the obtained image can suffer
from many types of degradations. A noisy image usu-
ally causes one or more pixel errors within matched fea-

ture points and the errors affect the accuracy of the ray-
triangulation. A small pixel error in the image could
result in a very large depth uncertainty, especially in the
case where the corresponding 3D point of a poorly lo-
calized feature is far from the camera. Similar ray di-
rections or a relatively small baseline also causes the
same problem. Finally, most of the points have incon-
sistent scale values. In order to remove the points con-
taminated by a large localization error or a mismatch,
we use RANSAC for determining scale values and the
M-estimator technique.

Let us assume thatXR is a real structure, and is the
ground truth of the relative structures in Fig.1. All the
structures are being viewed from three cameras. Fur-
thermore, letXj

i andxj
ik be the coordinates of thejth

point ofXi and its projection on the image plane ofCk

(and therefore, ofX̃j
i and x̃j

ik), respectively.ijk is the
observation which corresponds toxj

ik. Then, we can
define

sj = ‖X̃j
2‖/‖X

j
1‖ (2)

ej
s = w(sj)[‖sref − sj‖] (3)

w(sj) =

{
1 , Z(Xj

1) < Zmed

1 + kw∗(Z(Xj
1)−Zmed)

(Zmax−Zmin) , otherwise
(4)

wheresj is a sample scale,ej
s is an error of the sample

scale andsref is the reference scale for each iteration
of RANSAC. Z(Xj

i ) is the depth ofXj
i , and Zmed,

Zmin andZmax are the median, minimum and maxi-
mum depth values ofX1. It is important to note that
w(sj) acts as theρ() function in the M-estimator.w(sj)
penalizes scale samples that come from a large-depth
point, because of its larger uncertainty. Settingkw to
1 or 2 is appropriate. Using them, we can apply the
RANSAC algorithm in which the number of elements
in the sample set of each iteration is only one, which is
equal to the sample scale. Therefore, if we haven corre-
sponding points, we test all then sample scalessj and
finally obtain sinit, the best supportive scale. Subse-
quently, we perform an optimization process using an-
other error measure,

ej
r =

(
‖x̃j

21 − ij1‖
Z(X̃j

2)
+
‖x̃j

13 − ij3‖
Z(X̃j

1)

)
(5)

This is a reprojection error inversely weighted by the
depth of the corresponding 3D point. Actually, the re-
projection cancels some amount of uncertainty. There-
fore, the denominators in equation (5) could be removed
when the scene has a small depth range. With densely
distributed scale samples aroundsinit, we seek the op-
timal scale,sopt, that minimizes the sum ofej

r. Another
way is to use the Levenberg-Marquardt algorithm which



Figure 2. Matched structures. Top left, top
right : Before and after the estimated s is
used. Bottom left, bottom right : An ex-
ample of motion correction.

is based on the abovementioned error measure. We have
now estimated the optimal scalesopt and thus, we can
obtain a scale matching result like that shown at the top
of Fig.2. The processing time is less than 0.05s. Thus,
the optimal scale estimation does not affect the perfor-
mance in terms of computation time.

In some cases, an erroneous motion could occur. To
correct it, we employ an additional correction step. Us-
ing the matched scale (denoted by a “hat”), we should

find H that satisfiesX1 = H ∗ ˜̂
X2. If the motion is cor-

rect,H should equal toI and if the motion is incorrect,
H would be a projective transformation. We approxi-
mately estimate an affine transformation,Haff , instead
of the projective one and can back-propagate the esti-
matedR to R1 or R2 (refer to equation (1) and fig.1). In
experiments, the motion that causes a large reprojection
error is corrected, and the corrected motion is finally
used only if it reduces the error. It is effective when the
translation error is relatively small and the total amount
of error is not very large (cf. Fig.2(bottom)). When the
translation error is large, we should takeDa andta into
account for correction and the process of correction is
more complicated.

3. Structure From Motion Implementations

Our entire framework is iterative and can be divided
into several parts.

Feature Extraction and Tracking The Harris corner
detector[1, 5] is used to extract feature points and the
KLT tracker is used for tracking[6].

Table 1. Pagoda results obtained by the
proposed and the pose-based methods.

SFM type Keyframes Err. Init. Err. SBA

proposed 48.25 0.6972 0.6218
pose 46.75 0.6537 0.6173

Table 2. Temple results obtained by the
proposed and the pose-based methods.

SFM type Keyframes Err. Init. Err. SBA

proposed 79.5 0.5438 0.4577
pose 81.25 0.5400 0.4648

Figure 3. Pagoda result. Middle: A sample
image. Left and Right: Reconstructions
before and after the SBA.

Keyframe Selection In order to achieve a sufficiently
wide baseline, we perform keyframe selection. The se-
lection of the keyframe is made according to the fraction
of remaining inliers and the number of tracks observed
in the last three keyframes.[4].

Motion Estimation and Model Selection A funda-
mental matrix and a homography are used for the esti-
mation of the relative motion with the robust methods
specified in [2, 3, 8]. We detect the degeneracy of in-
liers using a single homography test in order to switch
between motion models.

Scale Recovery and 3D Point managementOur
method for scale recovery has been explained in the pre-
vious section, and re-triangulation scheme is adopted to
obtain the fairly accurate 3D points for each keyframe
[5, 4].

4. Experimental Results

In this section, we discuss verification of the perfor-
mance of the proposed method by presenting the repro-
jection errors, 3D reconstructions and camera motions



Figure 4. Temple result. Top and Bottom: Reconstructions before and after the SBA.

Figure 5. Graph of reprojection errors
obtained by the third reconstruction of
Pagoda data-set.

obtained by the proposed and the pose-based methods
with and without the SBA. For each data-set and each
method, SFM is performed four times. The errors and
the number of keyframes are averaged. Table 1 com-
pares the results of Pagoda data-set, and Table 4 com-
pares those of Temple data-set. The pose-based method
shows better results. However, the gaps between two
methods are very narrow.

Fig.3 shows the third reconstruction of Pagoda data-
set (49 keyframes among 1184 frames). The total mean
reprojection error is reduced (0.665 to 0.612 pixel) by
the SBA. The octagonal shapes of the fence and pagoda
are nearly preserved even without the SBA. Fig.5 shows
the mean and maximum reprojection errors for the
keyframes, and also shows that the correction reduces
the mean and maximum errors effectively.

Fig.4 shows the first one out of four reconstructions
of Temple data-set. Two views are observed: the re-
constructed structures with(bottom) and without(top)
the SBA. The total mean reprojection error is reduced
(0.547 to 0.462 pixel) by the SBA is applied. However,
two images look very similar. Thus, the results show
that the proposed method provides a near-optimal ini-
tial reconstruction.

5. Conclusion

A robust scheme for estimating relative scale is pro-
posed, and a sequential SFM framework is also de-
scribed. To obtain an accurate relative scale, we con-
sider the similarity of structures and the minimization of
the reprojection error to handle noisy observations. The
structures are matched in 3D space, and a fine alignment
that minimizes reprojection error is achieved. Thus we
can observe that the proposed scale estimation is effec-
tive. Additionally, when the estimated motions are in-
correct, we perform a rotation correction on the basis of
the estimated 3D homography between the structures.
Finally, experimental results show the improved accu-
racy and alleviation of the error accumulation problem
and also indicate that the proposed method can be ap-
plied to the 3D reconstruction of large-scale scenes.
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