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Threshold-Based Opportunistic Scheduling for
Ergodic Rate Guarantees in Wireless Networks
Yoora Kim, Student Member, IEEE, and Gang Uk Hwang, Member, IEEE

Abstract—In this paper, we propose an opportunistic downlink
scheduling scheme that exploits multiuser diversity in a wireless
network with threshold-based limited feedback. We assume that
each user has its own ergodic rate requirement. The design
objective of our scheme is to determine the values of thresholds
with which heterogeneous ergodic rate requirements of all users
are satisfied. In our analysis, we present a formula to check the
feasibility of given ergodic rate requirements, and then obtain the
feasible thresholds that realize them. We also obtain the optimal
thresholds that maximize the ergodic sum-rate of the network
while guaranteeing the ergodic rate requirements. Through
numerical studies and simulations, we show the usefulness of
our scheme and analysis.

Index Terms—Ergodic rate guarantee, limited feedback, mul-
tiuser diversity, opportunistic scheduling, threshold.

I. INTRODUCTION

IN wireless networks, to efficiently utilize the radio spec-
trum, opportunistic scheduling schemes exploit multiuser

diversity by e.g., selecting only one user with the best chan-
nel condition at each time. Under this strategy, the total
information-theoretic capacity of a wireless network can be
maximized [1], [2].

Opportunistic scheduling schemes necessitate the base sta-
tion (BS) to know the channel qualities of the mobile sta-
tions (MSs), which are estimated at the MSs and fed back
to the BS. Hence, as the number of MSs increases, the
feedback load becomes significant and yields the signal-
ing overhead. Moreover, the power expended for feedback
transmission by the non-scheduled MSs gets wasted [3].
To solve these problems, threshold-based feedback reduction
algorithms have been studied extensively (see [4], [5] and the
references therein). The main purpose of them is to reduce the
number of MSs transmitting feedback while conserving the
network performance. Consequently, the signaling overhead
from feedback and the power consumption of MSs can be
reduced. Motivated on this fact, we propose an opportunistic
downlink scheduling scheme that exploits multiuser diversity
with threshold-based limited feedback.

In this paper, we address the issue of guaranteeing ergodic
rate requirements of all MSs by opportunistic scheduling with
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threshold-based limited feedback. The design objective of our
scheduling scheme is to determine the values of thresholds
with which ergodic rate requirements are satisfied for all
MSs. By adjusting the values of thresholds, our scheme can
support various ergodic rate gains, which shows an advantage
of flexibility over the scheduling schemes, e.g., proportional
fair scheduling (PFS), round-robin scheduling, that provide
fixed ergodic rate gains.

The problem of guaranteeing ergodic rates was also ad-
dressed in [6], [7], where utility-based opportunistic schedul-
ing schemes are presented. There are two main differences
between our proposed scheme and those in [6], [7]. First, the
utility functions used for scheduling decisions in [6], [7] are
based on the full feedback information from all the MSs, while
our scheme is based on the limited feedback information from
a subset of the MSs. Second, our scheduling scheme uses
thresholds as network parameter, but the scheduling schemes
in [6], [7] use different network parameters such as token
counter.

The remainder of this paper is organized as follows. In
Section II, we propose our scheduling scheme and formulate
the problems considered in this paper. We solve the problems
for a heterogenous two-user case and a general N -user case
in Sections III and IV, respectively. We provide numerical
studies and simulations in Section V, and give conclusions
in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider downlink transmission in a time-slotted wire-
less network consisting of a BS and N MSs, denoted by
MSn (n = 1, . . . , N). In each time slot, a scheduler selects
one MS, and the BS transmits data to the selected MS over
a fading channel using a constant transmit power. In this
paper, we assume a Rayleigh block fading channel, where
the instantaneous received signal-to-noise ratio (SNR) γn(t)
of MSn remains constant over time slot t but varies between
time slots with the average received SNR γn.

A. Proposed Scheduling Scheme

In our scheduling scheme, the BS sets the a priori thresh-
old γthn for MSn. At time slot t, MSn is allowed to feed
back its instantaneous received SNR to the BS only when
γn(t) ≥ γthn . We call the MS, who feeds back, the feedback
MS. Among the feedback MS(s) at time slot t, the scheduler
selects only one MS with the best instantaneous received
SNR. If there is no feedback MS at time slot t, data are
not transmitted at time slot t, in which case we declare
a scheduling outage. In Sections III and IV, we show that
the event of a scheduling outage can not happen under our
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scheduling scheme when the optimal thresholds are used. Our
scheduling scheme is identical to the MaxSNR scheme if
γth1 = . . . = γthN = 0.

B. Problem Formulation

In this paper, we focus on the ergodic rate performances of
both the MSs and the network under our proposed scheduling
scheme. Since we consider the ergodic rate, we drop the
time index t in γn(t) and use γn from now on. Under our
proposed scheduling scheme, the ergodic rate of MSn, denoted
by Cn(γth1 , . . . , γthN ) [b/s/Hz], can be expressed as follows:

Cn(γth1 , . . . , γthN ) =
∫ ∞

γthn

log2(1 + x)

· Pr

(
max

k
{γk · I(γk ≥ γthk

)} = x
∣∣γn = x

)
fγn(x)dx

(1)

where I(·) denotes the indicator function, and fγn(x) :=
e−x/γn/γn denotes the probability density function of the
received SNR γn under the Rayleigh fading model. Here, the
first term is the Shannon capacity per unit bandwidth with
the received SNR γn = x. The second term represents the
conditional probability that MSn is selected by the scheduler
given that its received SNR γn is x. The ergodic rate of
MSn is obtained by averaging the Shannon capacity per
unit bandwidth over the distribution of the received SNR γn

multiplied by the probability of being scheduled.
Suppose that MSn has the ergodic rate requirement

Tn [b/s/Hz]. In our model, it is assumed that the ergodic
rate requirements Tn can be different from MS to MS. To
clarify the problems considered in this paper, we introduce
the following two definitions.
Definition 1: (Feasibility) A set of ergodic rate requirements
{Tn}N

n=1 is called feasible if there exists a corresponding set
of thresholds that satisfy Cn(γth1 , . . . , γthN ) = Tn for all
1 ≤ n ≤ N. Such thresholds {γthn}N

n=1 are called the feasible
thresholds.

To emphasize the feasibility, we denote the feasible ergodic
rate requirements and the corresponding feasible thresholds
as {T̃n}N

n=1 and {γ̃thn}N
n=1, respectively. Definition 1 says

that if ergodic rate requirements {T̃n}N
n=1 are feasible, then

the ergodic rate requirements of all MSs are guaranteed by
choosing feasible thresholds {γ̃thn}N

n=1. The region in R
N

formed by {T̃n}N
n=1 is called the feasible region and denoted

by R
N
fsb. The first problem considered in this paper is to

obtain the feasible region R
N
fsb, hence we can easily check

the feasibility of given ergodic rate requirements.
Definition 2: (Optimality) For given feasible ergodic rate
requirements {T̃n}N

n=1 in R
N
fsb, the thresholds, denoted by

{γ̂thn}N
n=1, are called the optimal thresholds if

Cn(γ∗
th1

, . . . , γ∗
thN

) ≥ T̃n, n = 1, . . . , N,

Csum(γ̂th1 , . . . , γ̂thN ) = max
{γ∗

th1
,...,γ∗

thN
}
Csum(γ∗

th1
, . . . , γ∗

thN
),

(2)

where Csum(·) :=
∑N

n=1 Cn(·) denotes the ergodic sum-rate
of the network.

To emphasize the optimality, for each feasible ergodic rate
requirements {T̃n}N

n=1, we denote the ergodic rates obtained

by using the corresponding optimal thresholds as {T̂n}N
n=1

and call them the optimal ergodic rates. Obviously, we have
T̂n ≥ T̃n for all 1 ≤ n ≤ N . Definition 2 says that, for given
feasible ergodic rate requirements, the optimal thresholds can
maximize the ergodic sum-rate of the network while guaran-
teeing the ergodic rate requirements of all MSs. The second
problem considered in this paper is to obtain the optimal
thresholds for given feasible ergodic rate requirements.

III. HETEROGENEOUS TWO-USER CASE

We start our analysis with a simple two-user model (N =
2). In this section, we assume that each MS is subject to in-
dependent but not necessarily identically distributed Rayleigh
fading. Under this assumption, the ergodic rate expression
in (1) when n = 1 can be rewritten as follows:

C1(γth1 , γth2) =
∫ ∞

γth1

log2(1 + x)
{
Pr(γ2 < γth2)

+ Pr(γ2 ≥ γth2 , γ2 < x)
}
fγ1(x)dx.

(3)

To compute the integral on the right-hand side of (3), we
define H(γ, γth) :=

∫ ∞
γth

log2(1 + x) fγ1(x)dx. Then, using a
similar derivation as in [8, Appendix B], we have H(γ, γth) =
log2(1 + γth)e−γth/γ + e1/γE1 ((1 + γth)/γ) / ln 2, where
E1(x) :=

∫ ∞
x e−y/y dy is the exponential integral of order 1.

By using the function H(·, ·), the ergodic rate of MS1 can be
written as follows:

C1(γth1 , γth2)

= H(γ1, γth1) −
γ2

γ1 + γ2

· H
(

γ1 γ2

γ1 + γ2

, max
i

γthi

)

+ e−γth2/γ2 ·
[
H

(
γ1, max

i
γthi

)
− H(γ1, γth1)

]
.

(4)

Similarly, we can derive the ergodic rate of MS2 as follows:

C2(γth1 , γth2)

= H(γ2, γth2) −
γ1

γ1 + γ2

· H
(

γ1 γ2

γ1 + γ2

, max
i

γthi

)

+ e−γth1/γ1 ·
[
H

(
γ2, max

i
γthi

)
− H(γ2, γth2)

]
.

(5)

Note that, when γth1 ≥ γth2 , the ergodic rate of MS1 in (4) is
reduced to C1(γth1 , γth2) = H(γ1, γth1) − γ2/(γ1 + γ2) ·
H (γ1 γ2/(γ1 + γ2), γth1), and depends only on the value
of its threshold γth1 for the fixed γ1 and γ2. Similarly,
the ergodic rate of MS2 in (5) depends only on the value
of its threshold γth2 when γth1 ≤ γth2 . Hence, we use
Cn(γthn) to denote Cn(γth1 , γth2) when arg maxi γthi = n.
As mentioned before, the ergodic rate gain of the MaxSNR
scheme can be feasible under our proposed scheduling scheme
by choosing the thresholds {γth1 , γth2} = {0, 0}, and is given
by Cn,MaxSNR = Cn(0, 0) = H(γn, 0) − γ1 γ2/(γn(γ1 +
γ2)) · H (γ1 γ2/(γ1 + γ2), 0) (n = 1, 2).

By using Cn(γth1 , γth2) (n = 1, 2) in (4) and (5), we can
obtain the feasible region R

2
fsb as follows.

Theorem 1: The feasible region R
2
fsb is given by

R
2
fsb = {(x, y) ∈ R

2 | 0 ≤ x ≤ C1,bd, 0 ≤ y ≤ f(x)}
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where C1,bd := limγth2→∞ C1(0, γth2) = H(γ1, 0) repre-
sents the upper bound of C1(·, ·), and

f(x) := max
C1(γth1 ,γth2 )=x

C2(γth1 , γth2)

=
{

C2(γ∗
th1,x, 0), 0 ≤ x ≤ C1,MaxSNR,

C2(0, γ∗
th2,x), C1,MaxSNR < x ≤ C1,bd.

Here, γ∗
th1,x and γ∗

th2,x are uniquely determined from
C1(γ∗

th1,x, 0) = x and C1(0, γ∗
th2,x) = x.

Proof: See Appendix A.
In Fig. 1, as an example, we show the feasible region R

2
fsb

for γ1 = 15 dB and γ2 = 20 dB by using Theorem 1. The
result in Fig. 1 is discussed in more detail in Section VI. A.

Our proposed scheduling scheme can guarantee any ergodic
rate requirements that are located in the feasible region by
properly choosing the corresponding feasible thresholds. The-
orem 2 gives a formula to obtain the feasible thresholds.
Theorem 2: For given feasible ergodic rate requirements
{T̃1, T̃2} in R

2
fsb, the corresponding feasible thresholds

{γ̃th1 , γ̃th2} are uniquely determined from Cn(γ̃thn) = T̃n

and Cm(γ̃th1 , γ̃th2) = T̃m, where argmaxi γ̃thi = n and
arg mini γ̃thi = m. Further, they satisfy max{γ̃th1 , γ̃th2} =
γ̃th1 if T̃1 ≤ C1,MaxSNR and T̃2 ≥ C2(γ∗

th), where γ∗
th is

uniquely determined from C1(γ∗
th) = T̃1. Otherwise, they

satisfy max{γ̃th1 , γ̃th2} = γ̃th2 .
Proof: From the proof of Theorem 1, our theorem imme-

diately follows.
For given feasible ergodic rate requirements, the use of

optimal thresholds can maximize the ergodic sum-rate of the
network while guaranteeing the ergodic rate requirements of
all MSs. Theorem 3 gives a formula to obtain the optimal
thresholds.
Theorem 3: For given feasible ergodic rate requirements
{T̃1, T̃2} in R

2
fsb, the optimal thresholds {γ̂th1 , γ̂th2} are given

by

{γ̂th1 , γ̂th2}

=

⎧⎨
⎩

{0, 0}, if T̃1 ≤ C1,MaxSNR and T̃2 ≤ C2,MaxSNR,

{γ∗
th1

, 0}, if T̃1 ≤ C1,MaxSNR and T̃2 > C2,MaxSNR,

{0, γ∗
th2

}, if T̃1 > C1,MaxSNR and T̃2 ≤ C2,MaxSNR,

where γ∗
th1

and γ∗
th2

are uniquely determined from
C2(γ∗

th1
, 0) = T̃2 and C1(0, γ∗

th2
) = T̃1.

Proof: See Appendix B.
The result in Theorem 3 implies that the event of a schedul-

ing outage can not happen under our scheduling scheme when
the optimal thresholds are used.

IV. GENERAL N -USER CASE

In this section, we assume a general N -user model (N ≥
2) where each MS is subject to independent and identically
distributed Rayleigh fading, i.e., γ1 = γ2 = . . . = γN (:= γ).
Without loss of generality, we assume that T1 ≤ T2 ≤ . . . ≤
TN or, equivalently, γth1 ≥ γth2 ≥ . . . ≥ γthN . Under these
assumptions, the ergodic rate of MSn in (1) can be rewritten

as follows:

Cn(γth1 , . . . , γthN )

=
∫ ∞

γth1

log2(1 + x)
N∏

l=1,l �=n

Pr(γl < x)fγn(x)dx

+
n∑

i=2

i−1∏
k=1

Pr(γk < γthk
)
∫ γthi−1

γthi

log2(1 + x)

·
N∏

l=i,l �=n

Pr(γl < x)fγn(x)dx.

(6)

Let

Gi(γth1 , . . . , γthi) :=
i−1∏
k=1

Pr(γ < γthk
)
∫ γthi−1

γthi

log2(1 + x)

· [Pr(γ < x)]N−ifγ(x)dx

where γ denotes the generic random variable for γn. Then,
we have

Gi(γth1 , . . . , γthi) =
i−1∏
k=1

[1 − e−γthk
/γ ]

N−i∑
j=0

(
N − i

j

)

· (−1)j

j + 1
[
H (γ/(j + 1), γthi) − H

(
γ/(j + 1), γthi−1

)]
.

By using the function Gi(·), the ergodic rate of MSn in (6)
can be written in a closed-form as follows:

Cn(γth1 , . . . , γthN ) =
n∑

i=1

Gi(γth1 , . . . , γthi). (7)

Note from (7) that the ergodic rate of MSn is deter-
mined only from the values of thresholds {γthi}n

i=1 for the
fixed γ. Hence, instead of using Cn(γth1 , . . . , γthN ), we use
Cn(γth1 , . . . , γthn) to denote the ergodic rate of MSn. By
using (7), we can obtain the feasible region R

N
fsb as in the

following theorem.
Theorem 4: The feasible region R

N
fsb is given by

R
N
fsb = {(x1, . . . , xN ) ∈ R

N | 0 ≤ x1 ≤ C1(0),

xn ≤ xn+1 ≤ Cn+1(γ∗
th1,x1

, . . . , γ∗
thn,xn

, 0),
n = 1, . . . , N − 1}

where {γ∗
thn,xn

}N−1
n=1 are uniquely determined by initially

obtaining γ∗
th1,x1

from C1(γ∗
th1,x1

) = x1 and then iteratively
solving the equation Cn(γ∗

th1,x1
, . . . , γ∗

thn,xn
) = xn for n =

2, . . . , N − 1.
Using a similar approach as in the proof of Theorem 1,

we can prove Theorem 4 (for the detailed derivation, see [9]).
In Fig. 3, as an example, we show the feasible region R

3
fsb

for γ = 15 dB by using Theorem 4. The result in Fig. 3 is
discussed in more detail in Section VI. B.

According to Definition 1, the ergodic rate requirements of
MSs are in the feasible region R

N
fsb if and only if there exist

the corresponding feasible thresholds {γ̃thn}N
n=1. From the

proof of Theorem 4, we have Theorem 5 which summarizes
the existence and uniqueness of the corresponding feasible
thresholds {γ̃thn}N

n=1 for given feasible ergodic rate require-
ments {T̃n}N

n=1.
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Theorem 5: For given feasible ergodic rate requirements
{T̃n}N

n=1, the corresponding feasible thresholds {γ̃thn}N
n=1 are

uniquely determined from

Cn(γ̃th1 , . . . , γ̃thn) = T̃n, 1 ≤ n ≤ N. (8)

Based on Theorem 5, we can simultaneously investigate the
existence of the feasible thresholds and calculate the feasible
thresholds successively from γ̃th1 to γ̃thN by initially obtain-
ing γ̃th1 from C1(γ̃th1) = T1 and then iteratively solving the
equation in (8) for n = 2, . . . , N .

We now focus on the optimality problem given in (2).
To solve the optimality problem, we restrict the domain of
the function Csum(·) to the set D := {(γth1 , . . . , γthN ) ∈
R

N |Cn(γth1 , . . . , γthn) ≥ T̃n, n = 1, . . . , N}. It is easily
checked that the domain D is closed and bounded. Since the
function Csum(·) is differentiable, the maximal point exists
in the domain D by the Maximum-Minimum Theorem [10].
Therefore, we can apply the Lagrange multiplier method [10]
to find the maximal point, i.e., optimal thresholds, with the
help of the following theorem.
Theorem 6: For given feasible ergodic rates {T̃n}N

n=1 in
R

N
fsb, suppose T̃N > CN (0, . . . , 0). Then, the corresponding

optimal thresholds {γ̂thn}N
n=1 exist in the boundary of domain

D satisfying

CN (γ̂th1 , . . . , γ̂thN ) = T̃N and γ̂thN = 0. (9)

If T̃N ≤ CN (0, . . . , 0), then the optimal thresholds are given
by {γ̂th1 , . . . , γ̂thN} = {0, . . . , 0}.

Using a similar approach as in the proof of Theorem 3,
we can prove Theorem 6 (for the detailed derivation, see [9]).
The result in Theorem 6 implies that the event of a scheduling
outage can not happen under our scheduling scheme when the
optimal thresholds are used. From Theorem 6, when T̃N >
CN (0, . . . , 0), by the Lagrange multiplier method there exists
a number λ ∈ R such that

∇Csum(γ̂th1 , . . . , γ̂thN−1, 0) = λ∇CN (γ̂th1 , . . . , γ̂thN−1 , 0).
(10)

By solving the system of equations given in (9) and (10), we
can obtain the optimal thresholds {γ̂thn}N−1

n=1 .
Our scheduling scheme is applicable even in cases where

the number of MSs changes over time. Suppose that the
network consists of (initially) N MSs with feasible ergodic
rate requirements. We first consider the case where an MS
leaves the network after the completion of data transmission.
Then, the feasible (resp. optimal) thresholds are adjusted for
remaining N − 1 MSs by using Theorem 5 (resp. 6). We next
consider the case where an MS requests to enter the network.
The incoming MS is accepted only if the ergodic rate require-
ments of all MSs are still feasible after the acceptance of the
incoming MS. This is easily checked by using Theorem 4. If
the incoming MS is accepted, then the feasible (resp. optimal)
thresholds are adjusted for all N +1 MSs by using Theorem 5
(resp. 6).

V. SIMULATION RESULTS

A. Scenario 1: Heterogeneous Two-user Case

In this scenario, we consider a two-user case as in Sec-
tion III, assuming γ1 = 15 dB and γ2 = 20 dB. The
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Fig. 2. Feasible and optimal ergodic rates for γ1 = 15 dB and γ2 = 20 dB.

corresponding feasible region R
2
fsb is plotted in Fig. 1 by

using Theorem 1. As shown in the figure, the shape of the
feasible region depends on the average received SNR values
and skews to the MS with higher average received SNR value.
Suppose that the ergodic rate requirements of MS1 and MS2

are given by 3.0 and 1.0 b/s/Hz, respectively. Then, both
MSs can achieve their target ergodic rates since they are in
the feasible region. The corresponding feasible and optimal
thresholds can be obtained from Theorems 2 and 3, respec-
tively, and are given by {γ̃th1 , γ̃th2} = {11.37, 23.24} dB
and {γ̂th1 , γ̂th2} = {−∞, 20.68} dB. In Fig. 2, we show
the resulting feasible and optimal ergodic rates obtained from
analysis and simulation, where simulation results are based
on the Zheng and Xiao’s Rayleigh fading model [11]. As
shown in the figure, both MSs can realize their target ergodic
rates by using the feasible thresholds. Moreover, by using the
optimal thresholds, MSs can achieve ergodic rates more than
their target ergodic rates.
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B. Scenario 2: General N -user Case

In this scenario, we consider a general N -user case as in
Section IV, assuming γ = 15 dB. For N = 3, the feasible
region R

3
fsb is plotted in Fig. 3 by using Theorem 4. Suppose

next that the network consists of 5 MSs with the ergodic
rate requirements given by 0.5, 1.2, 2.5, 2.6 and 2.8 b/s/Hz,
respectively. We can not plot the feasible region R

5
fsb, but

by using Theorem 5 we can logically check the feasibility of
given ergodic rate requirements. In this case, we can obtain the
feasible thresholds only for the MS1 and MS2, and accordingly
the given ergodic rate requirements can not be feasible under
our scheme.

Now suppose that the network consists of 10 MSs with
the ergodic rate requirements given in Table I. In this case,
the ergodic rates are feasible under our scheduling scheme,
and we can obtain the feasible and optimal thresholds from
Theorems 5 and 6, respectively, which are summarized in
Table I. In Fig. 4, we show the resulting feasible and optimal
ergodic rates obtained from analysis and simulation.

TABLE I
FEASIBLE AND OPTIMAL THRESHOLDS

MS ID Tn γ̃thn γ̂thn MS ID Tn γ̃thn γ̂thn

1 0.11 21.14 19.08 6 0.32 19.54 19.03

2 0.15 20.79 19.08 7 0.41 19.03 18.86

3 0.19 20.41 19.08 8 0.66 17.78 17.24

4 0.25 20.00 19.08 9 1.03 16.02 14.62

5 0.28 19.78 19.03 10 1.57 13.01 −∞
Tn [b/s/Hz]: the ergodic rate requirements

γ̃thn [dB]: the feasible thresholds
γ̂thn [dB]: the optimal thresholds

VI. CONCLUSION

In this paper, we propose an opportunistic downlink
scheduling scheme that can guarantee ergodic rate require-
ments of all MSs with threshold-based limited feedback.
Analytic results are provided to check the feasibility of given
ergodic rate requirements, and to obtain the corresponding
optimal thresholds. Our numerical and simulation results show
the usefulness of our proposed scheme and analysis.

APPENDIX A
PROOF OF THEOREM 1

In order to prove Theorem 1, we need the following lemmas.
Lemma 1: We have ∂

∂γthm
Cn(γth1 , γth2) < 0 for m = n and

∂
∂γthm

Cn(γth1 , γth2) > 0 for m �= n.
The proof of Lemma 1 is straightforward and omitted (for the
detailed derivation, see [9]).
Lemma 2: Let for argmaxi γthi = n,

Cn(γthn) := H(γn, γthn)− γ1 γ2

γn(γ1 + γ2)
H

(
γ1 γ2

γ1 + γ2

, γthn

)
.

Then, Cn(γthn) is a strictly decreasing continuous function.
Proof: By the definition of H and Lemma 1 with m = n,

Lemma 2 immediately follows.
We now prove Theorem 1. First consider γth1 ≥

γth2 ≥ 0. Then, C1(γth1 , γth2) = C1(γth1), and
by Lemma 2, we have 0 = limγth1→∞ C1(γth1) ≤
C1(γth1) ≤ limγth1→0 C1(γth1) = C1,MaxSNR. For each
x ∈ [0, C1,MaxSNR], there exists the unique γ∗

th1,x such that
C1(γ∗

th1,x) = x by Lemma 2. By Lemma 1, it follows that

max
C1(γth1 ,γth2 )=x

C2(γth1 , γth2)

= lim
γth2→0

C2(γ∗
th1,x, γth2) = C2(γ∗

th1,x, 0),

and

min
C1(γth1 ,γth2 )=x

C2(γth1 , γth2)

= lim
γth2→γ∗

th1,x

C2(γ∗
th1,x, γth2) = C2(γ∗

th1,x).

Therefore, for 0 ≤ x ≤ C1,MaxSNR, we obtain

C2(γ∗
th1,x) ≤ C2(γ∗

th1,x, γth2) ≤ C2(γ∗
th1,x, 0). (11)

In addition, C2(γ∗
th1,x, 0) ≥ limγth1→0 C2(γth1 , 0) =

C2,MaxSNR.
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Fig. 5. Feasible region in the proof of Theorem 1.

Next consider 0 ≤ γth1 < γth2 . Then, C2(γth1 , γth2) =
C2(γth2), and similarly as above we have 0 ≤ C2(γth2) ≤
C2,MaxSNR. For each y ∈ [0, C2,MaxSNR], similarly as above
there exists the unique γ∗

th2,y such that C2(γ∗
th2,y) = y, and

we obtain

C1(γ∗
th2,y) ≤ C1(γth1 , γ

∗
th2,y) ≤ C1(0, γ∗

th2,y). (12)

In addition, C1,MaxSNR = limγth2→0 C1(0, γth2) ≤
C1(0, γ∗

th2,y) ≤ limγth2→∞ C1(0, γth2) = C1,bd.

For each point (u, v) ∈ [0, C1,MaxSNR] × [0, C2,MaxSNR]
such that C1(γth) = u and C2(γth) = v, we see from (11)
and (12) that two sets {(u, s) ∈ R

2 | v = C2(γth) ≤
s ≤ C2(γth, 0)} and {(t, v) ∈ R

2 |u = C1(γth) ≤ t ≤
C1(0, γth)} are included in the feasible region as shown in
Fig. 5.

In summary, (x, y) ∈ R
2
fsb can be expressed as follows.

If 0 ≤ x ≤ C1,MaxSNR, there exists the unique γ∗
th1,x such

that C1(γ∗
th1,x) = x, and we have 0 ≤ y ≤ C2(γ∗

th1,x, 0). If
C1,MaxSNR < x ≤ C1,bd, there exists the unique γ∗

th2,x such
that C1(0, γ∗

th2,x) = x, and we have 0 ≤ y ≤ C2(γ∗
th2,x).

APPENDIX B
PROOF OF THEOREM 3

In order to prove Theorem 3, we need the following lemma.
Lemma 3: For n = 1, 2, we have ∂

∂ γthn
Csum(γth1 , γth2) < 0.

Hence, we obtain

max
{γth1≥0,γth2≥0}

Csum(γth1 , γth2)

= Csum(0, 0) = C1,MaxSNR + C2,MaxSNR.

The proof of Lemma 3 is straightforward and omitted (for the
detailed derivation, see [9]).

Now we prove Theorem 3. For given feasible er-
godic rate requirements {T̃1, T̃2}, we restrict the do-
main of Csum(γth1 , γth2) as D := {(γth1 , γth2) ∈
R

2 |Cn(γth1 , γth2) ≥ T̃n, n = 1, 2}.

For 0 ≤ T̃1 ≤ C1,MaxSNR and 0 ≤ T̃2 ≤ C2,MaxSNR, it
is obvious that {0, 0} ∈ D. Hence, by Lemma 3, we have
{γ̂th1 , γ̂th2} = {0, 0}.

Now suppose that 0 ≤ T̃1 ≤ C1,MaxSNR and
T̃2 > C2,MaxSNR. Then, for any {γth1 , γth2} ∈ D, we
have C1(γth1 , γth2) < C1,MaxSNR. Otherwise, we have
Csum(γth1 , γth2) = C1(γth1 , γth2) + C2(γth1 , γth2) >
C1,MaxSNR + C2,MaxSNR (∵ C2,MaxSNR < T̃2 ≤
C2(γth1 , γth2)), which is a contradiction by Lemma 3. Note
that the maximum value of Csum(γth1 , γth2) occurs when
{C1(γth1 , γth2), C2(γth1 , γth2)} is a boundary point of the
feasible region by Lemma 3 or Theorem 1. Hence, in this
case where C1(γth1 , γth2) < C1,MaxSNR, we have γ̂th2 = 0
by Theorem 1. Now we consider Csum(γth1 , 0). By Lemma 3,
the maximum value of Csum(γth1 , 0) occurs when γth1 is the
minimum value of the set {x | (x, 0) ∈ D}. That is, the optimal
thresholds {γ̂th1 , γ̂th2} satisfy γ̂th2 = 0 and C2(γ̂th1 , 0) = T̃2

by Theorem 1.
For the case where T̃1 > C1,MaxSNR and 0 ≤ T̃2 ≤

C2,MaxSNR, we can prove similarly as above and omit detailed
derivations.
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