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Abstract Various techniques and strategies have been
developed for the identification of intracellular metabolic
conditions, and among them, isotope balance-based flux
analysis with gas chromatography/mass spectrometry (GC/
MS) has recently become popular. Even though isotope
balance-based flux analysis allows a more accurate estimation
of intracellular fluxes, its application has been restricted to
relatively small metabolic systems because of the limited
number of measurable metabolites. In this paper, a strategy
for incorporating isotope balance-based flux data obtained for
a small network into metabolic flux analysis was examined as
a feasible alternative allowing more accurate quantification of
intracellular flux distribution in a large metabolic system. To
impose GC/MS based data into a large metabolic network and
obtain optimum flux distribution profile, data reconciliation
procedure was applied. As a result, metabolic flux values of
308 intracellular reactions could be estimated from 29 GC/
MS based fluxes with higher accuracy.
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Metabolic engineering has become an essential discipline
in successful development of biotechnological processes.
Metabolic engineering can be defined as directed modification
of cellular metabolism and properties through the introduction,
deletion and modification of metabolic pathways by
recombinant DNA technology and other molecular biological
tools [1, 8]. Considering the many possible combinatorial
manipulations that can be made on a given system, it is
almost impossible to perform all these experiments. Thus,
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it is more desirable to perform in silico metabolic analysis
first, which is followed by much reduced number of actual
experiments. For this reason, the quantification of intracellular
metabolism is a key element of metabolic engineering, and
has been realized using various mathematical and experimental
techniques such as metabolic flux balance analysis (MFA),
pathway analysis and gas chromatography/mass spectrometry
(GC/MS)-based isotope analysis [10, 11, 13].

Generally, the MFA techniques are based on mass
balance equations, which can be represented by a linear
combination of stoichiometric reactions: in matrix form
Sv=0, where S is the stoichiometric matrix describing all
the reactions in the network and v is a vector describing the
fluxes through each of the reactions. To obtain an exact
flux distribution profile, the number of constraints (substrate
uptake rates, product formation rates and mass balances
around intracellular metabolites) should be equal to or
greater than the number of variables (unmeasured intracellular
fluxes). In other words, there should be no degrees of freedom
[12]. In general, however, the number of measurable
extracellular metabolite formation rates is significantly
smaller than the number of intracellular fluxes. Therefore,
linear optimization algorithms satisfying the objective function
have been widely employed to obtain the optimum flux
distribution under various metabolic conditions [13].

Also, tracer experiments using "“C labeled compounds
and the isotope balance-based flux analysis on GC/MS
measurements has recently been intensively studied due to
its high accuracy resulting from the actual measurement of
intracellular carbon flux distribution. In GC/MS measurements,
C labeled carbon fragments are ionized by fragmentation
of the molecular ions. The ionized carbon fragments are
then seperated by GC, and the labeling patterns of the
carbon fragments are analyzed by MS as they elute [4, 11].
Several isotope balance-based flux analyses have been
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successfully demonstrated. The intracellular flux distribution
of penicillin producing Penicillium chrisogenum was estimated
by GC/MS based analysis {3]. In another study, GC/MS
was used in combination with "C NMR for the identification
of key metabolic network in lysine producing Corynebacterium
glutamicum [9]. The response of intracellular metabolism
of Synechocystis on the disturbance of extracellular
environments was also evaluated through isotope balance-
based analysis [14].

In spite of these successful applications of the isotope
balance-based flux analysis towards understanding of
intracellular metabolism, much improvement is needed
since it has so far been applied to relatively small metabolic
systems. Obviously, one can expand the metabolic network
if more metabolites can be analyzed. However, this is
currently difficult because of the limited number of
measurable metabolites and the increasing number of
nonlinear equations. Also, when the isotope balance-based
fluxes were just provided as the constraints during the
analysis of a large scale metabolic network, infeasible
solutions were generated. Therefore, a new mathematical
approach needs to be developed to use the isotope balance-
based data in an expanded metabolic network, and consequently,
to achieve more accurate and comprehensive understanding
of intracellular metabolism.

In this paper, we describe a new strategy that combines
the isotope balance-based data with MFA, which can
handle large metabolic networks. The combined analysis
allows more accurate quantification of intracellular flux
distributions in large metabolic networks through integrating
the benefits of both methods, e.g., accuracy of the isotope
balance-based method and capability of handling large
metabolic networks by MFA. Here, we describe how isotope
balance-based flux data were introduced as constraints during
the MFA. We also describe data reconciliation procedure
in order to obtain optimal intracellular flux distribution.

MATERIALS AND METHODS

System Classification

The general strategy for determining metabolic fluxes is
presented in Fig. 1. In a metabolic network, the relationships
among all metabolites and reactions are balanced
stoichiometrically as follows [12]:

Sv=S,v,.+S.v, )

where S is stoichiometric matrix and v is flux vector,
and the subscripts “m” and “c” indicate “measured” and
“calculated”, respectively. The system is, then, classified
by one of four possible cases according to Determinacy
and Redundancy [6]. In the case of the determined system,
a unique solution or a least-squares solution is obtained by
matrix operations if the system is observable. Otherwise,
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Fig. 1. Flow chart for the flux estimation by data reconciliation
of the isotope balance-based flux data during the metabolic flux
analysis of a large metabolic network. Reconciliation takes
advantages of the accuracy of isotope balance-based flux analysis
and applicability of metabolic flux analysis to a large metabolic

" network.

measured fluxes are reconciled to remove the inconsistency
in the case of the redundant system, followed by inspecting
calculable fluxes which can be uniquely determined by the
least-squares solution using the pseudo-inverse (Fig. 1)
[12]. If any row of S, is expressed as a linear combination
of other rows, the metabolic system is classified as a
redundant one, in which the stoichiometric balances are
often not satisfied due to unavoidable measurement
errors and/or modeling inaccuracy. This makes the system
inconsistent.

For the metabolic system to be consistent, the following
condition should be satisfied:

Rv, =0 (2)
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where the reduced redundancy matrix R is defined as
R=S -S.S’S_ (3)

S? is the Penrose pseudo inverse matrix of S, [2, 12].
If the matrix R is null, every measured rate is linearly
independent and hence the adjustment of v, is not required
because there is no redundancy in the measurements.
However, if any nonzero columns remain in the matrix R,
the measured flux vector v,, should be adjusted to satisty
the conservation law and any other constraints imposed on
it through data reconciliation.

Data Reconciliation

Experimental data generally contain noise, which generates
residuals in Eq. (2). This would result in flux deviations
between the actual rate vector v,, and v, the measured rate
vector:
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where v,,, V, and § are vectors of the actual rate, measured
rate and error, respectively.

Combining equation (2) and (4) gives the following
equation for the vector of residual ¢:

e=RV,=R(5+v,)=R5 (5)

The minimum value of the error vector & can be
estimated by minimizing the sum of squared errors scaled
according to their variance-covariance matrix F:

m(;;n=(6TF’16) (6)

It is assumed that the error vector is distributed normally
with a mean value of zero.

A solution strategy based on the data reconciliation
concepts yields the following solution:
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Fig. 2. Comparison of the normalized metabolic fluxes obtained by (A) isotope balance-based flux analysis, (B) flux balance analysis
based on linear optimization, and (C) combination of the two through data reconciliation in central metabolic network. Isotope balance-
based flux data were taken from Zhao and Shimizu [15]. Fluxes were normalized with respect to the glucose uptake rate, and are
presented in the order of (A)/(B)/(C). Abbreviations are: 6PG, 6-phospho-gluconate; ACCoA, acetyl-CoA; CIT, citrate; E4P, erythrose-
4-phosphate; FoP, fructose-6-phosphate; F16P, fructose-1,6-phosphate; FUM, fumarate; Glucose-6P, glucose-6-phosphate; ICIT,
isocitrate; MAL, malate; OA, oxaloacetate; AKG, -ketoglutarate; PYR, pyruvate; PEP, phosphoenolpyruvate; PGA, 3-phosphoglycerate;
RSP, ribose-5-phosphate; RL3P, ribulose-5-phosphate; S7P, sedoheptulose-7-phosphate; SUC, succinate; Suc-CoA, succinyl-CoA;
T3P1, glyceraldehyde-3-phosphate; T3P2, dihydroxyacetone phosphate; X5P, xylulose-5-phosphate; NA, not available.
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Finally, MFA with constraints-based linear programming
approach can be employed to quantify optimal flux distribution
by optimizing a desired physiological property (objective
function) such as growth rate, substrate uptake rate and
product formation rate {13].

In this study, the biochemical reaction network of £. coli
was constructed with 308 reactions and 275 metabolites,
which contains all metabolic reaction pathways required
for growth on glucose based on the previous work [5].
MFA was carried out using the MetaFluxNet package [7]
using the maximum growth as the objective function.

RESULTS AND DISCUSSION

System Classification
The proposed new strategy of combining the isotope
balance-based data and MFA was applied for the elucidation
of the intracellular metabolism of E. coli under aerobic
glucose-limited condition as a model system. Because the
GC/MS-based flux distribution results are balanced in a
relatively small metabolic network, the characteristics
of the metabolic network should be examined to avoid
possible self-discrepancies between the metabolic systems,
which could arise during direct application of isotope
balance-based flux distribution to a large metabolic network.
First, a large-scale metabolic network was constructed
with 308 reactions and 275 metabolites that included all the
reactions for glycolysis, the TCA cycle, the pentose phosphate
pathway and respiration as well as biomass synthesis pathways
[5]. The isotope balance-based fluxes obtained by Zhao er
al. |15} for E. coli cultured under an aerobic glucose-limited
condition were then applied as constraints. The metabolic
network used for isotope balance-based analysis is composed
of 29 reactions and 25 metabolites, and only covers the central
metabolic network of E. coli. This intracellular flux distribution
is presented in Fig. 2. A redundancy analysis indicated that
there existed three redundant measurements when the GC/
MS results were applied directly to the large metabolic
network, indicating that the redundancy matrix R contains
three nonzero columns corresponding to measured fluxes.
Therefore, these fluxes should be adjusted to satisfy constraints
imposed on them through the data recorciliation procedure.
We then carried out MFA on 308 reaction network by
linear optimization using MetaFluxNet, and compared the
results with the flux profiles obtained by isotope balance-
based flux analysis. Due to the limited number of fluxes
available for isotope balance-based flux analysis, direct
comparison of flux values was limited to the central metabolic
pathways as shown in Fig. 2. The calculated fluxes were
normalized with respect to the glucose uptake rate. For
MFA, achieving maximum growth was used as an objective

function, and glucose uptake and acetate excretion rates
were applied as constraints. The general tendency of flux
distribution obtained by MFA was in good agreement with
that obtained by GC/MS-based flux analysis. Glycolysis
functioned as a major catabolic metabolism, and up to 20%
of carbon flux entered the pentose phosphate pathway.
However, it can be seen from Fig. 2 that some of the fluxes
calculated by MFA deviate considerably from those determined
by GC/MS-based flux analysis. In particular, the fluxes of
pentose phosphate pathway and TCA cycle show such
deviations. This is due to the less accuracy of fluxes optimized
for the underdetermined system. Therefore, to enhance the
accuracy of MFA and to extract more biological information
from intracellular metabolic network, we combined MFA
with GC/MS-based flux analysis as described below.

Data Reconciliation

Because the large metabolic network was inconsistent with
the isotope balance-based flux distribution, data reconciliation
was performed to obtain optimized flux distribution.
Again, the maximum growth rate was used as an objective
function, and the results are presented in Fig. 2. The fluxes
calculated by data reconciliation were not normalized with
respect to the glucose up take rate. If the flux from glucose
to glucose-6-phosphate is normalized, it will have a value
of 100. However, we show the direct results from data
reconciliation that consequently resulted in a value different
from 100, based on the assumption that the measurement of
glucose uptake is also vulnerable to measurement errors
and so it also needs to be reconciled.

Comparison of the isotope balance-based flux distribution
with the fluxes obtained after data reconciliation procedure
suggested that the latter could yield more comprehensive
information on intracellular metabolic conditions. In particular,
the isotope balance-based flux analysis provided little
information about anaplerotic fluxes in spite of its importance
in aerobic metabolism (Fig. 2). As the intermediates of the
TCA cycle are removed to serve as biosynthetic precursors,
they are replenished by anaplerotic reactions from other
pathways including glycolysis and pyruvate conversion
pathways. Through data reconciliation, it could be predicted
that PEP carboxylase and malic enzyme fluxes in anaplerotic
reactions were 54.22 and 7.7 mmol/gDCW/h, respectively.

As shown above, data reconciliation led to the more
accurate quantification of intracellular fluxes in a large
metabolic network. However, the accuracy of data reconciliation
is in question because is the results are still based on the
optimization by linear programming. To evaluate the validity
of data reconciliation results, the predicted CO, excretion
flux was compared with the measured CO, excretion flux.
This was possible because the measured CO, excretion
rate was not applied as a constraint throughout the data
reconciliation, which means that the CO, excretion rate could
vary freely. The data reconciliation predicted that 220 mmol/
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Table 1. Normalized sensitivity of carbon dioxide excretion
rate with respect to changes in fluxes.

Path s Do,
athway deo, oV,
EMP pathway 0.47-1.06
Pentose phosphate pathway 0.22-0.39
TCA cycle -0.2-0.2

gDCW/h of CO, was excreted, which is in good agreement
with the measured CO, excretion rate (188 mmol/gDCW/h).
This result suggests that data reconciliation can provide
accurate and reliable flux values. Then, the data reconciliation
was applied for the calculation of nonmeasured extracellular
fluxes, e.g., the production/consumption rates of ammonia,
phosphate and oxygen. The data reconciliation results predicted
that the excretion and consumption rates of ammonia,
phosphate, and oxygen were 65.7, 27.5, and 139 mmol/
gDCW/h, respectively (Fig. 2).

For nonmeasured fluxes, it is important to estimate the
sensitivities of the calculated fluxes with respect to small
perturbations in the measured fluxes. The normalized
sensitivity of v, to the changes of v,, can be determined as
(Va/ V) (OV/OV,,), where v, is the measured flux and v, is
the calculated flux, respectively. Thus, the sensitivities of
the calculated fluxes with respect to the variations in the
measured fluxes can provide information on the general
sensitivity of the large metabolic system. The effects of
altering each independent flux on the CO, excretion flux
were thus investigated (Table 1). The obtained sensitivity
range indicated that the TCA cycle fluxes have low sensitivity
values or exert the least effect on the CO, excretion flux.

Metabolic flux analysis allows determination of fluxes
in a large metabolic network, but the results may not be
accurate due to the characteristics of linear optimization
with limited number of constraints. On the other hand,
isotope balance-based flux analysis allows a more accurate
flux information, but is restricted to a relatively small
metabolic network due to the limited number of measurable
metabolites. Therefore, a new strategy described in this
paper aims at providing the combined advantages of the two
methods: accuracy of isotope balance-based flux analysis
and applicability of metabolic flux analysis to a large metabolic
network. As described in this paper, data reconciliation of
isotope balance-based flux data during the MFA of a large
metabolic system allows a more accurate determination of
fluxes in a large metabolic network, which allows for a
better understanding of the metabolic characteristics.
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