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Abstract— Face detection is becoming popular in surveillance
applications; however, the need of enormous size face/non-face
dataset, large number of features, and long training time are
persistent problems. This paper claims that only a subset of the
total number of features conserves the major power to detect
faces; hence, this subset is capable to detect faces with high
detection rate. The proposed detector fuses the results of two
classifiers where one is trained with only 40 Haar-like features
and the other is trained with only 50 LBP Histogram features. A
pre-processing stage of skin-tone detection is applied to reduce
the false positive rate. The detector is examined on real-life low-
resolution surveillance sequence. Conducted experiments show
that the proposed detector can achieve a high detection rate and
a low false positive rate. Also, it outperforms Lienhart detector
and tolerates wide range of illumination and blurring changes.

I. INTRODUCTION

Extensive research for face detection has been conducted
since the 1970’s as face detection can be used for surveillance
purposes, human tracking, human-computer interaction, and
many other applications. Many face detection techniques are
presented in Yang et al. [1]. Image-based face detectors
(i.e. detectors that consider the face detection problem as
two-class pattern recognition problem) require a tremendous
amount of time in the designing stage [2][3] in order to
achieve the desired outcomes. The long training time is a
result of the increased system complexity due to using large
number of training face/non-face dataset, extracting large
number of features, using different classification schemes, or
other factors. Also, large amount of time is required in the
pre-training stage where much time is to be spent collecting
billions of non-face images in addition to collecting the face
dataset then modify them by cropping and aligning them.
Most of the conducted research tries to solve the designing
stage issue by improving the classification schemes that can
reduce some of the discussed factors; however, comparably
less research is conducted to find features with high discrim-
inative power, and even lesser research is conducted trying
to implement a detector that requires small face/non-face
dataset which will reduce both the pre-training and training
stages.

One of the most famous image-based face detection tech-
niques is the Viola and Jones [2] which uses the Haar-like
features [4]. This technique is considered as a breakthrough
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in the face detection due to its high detection rate and
high speed of processing using the AdaBoost algorithm with
cascade of classifiers. However, the Haar-like features have
a limited discriminative power; therefore, in order to achieve
the desired outcomes, Viola and Jones used 6, 060 Haar-like
features distributed on 38 layers of cascade of classifiers.
These 6, 060 features are chosen from over ≈ 83, 000
features in the case of Viola and Jones where 24× 24 pixel
windows were used, also billions of non-face images were
needed. Hence, weeks of training time was required. Further-
more, higher discriminative power feature called Improved
Local Binary Patterns is used in Rodriguez [5] where 450
LBP features was distributed on 3 cascade of classifiers.
Even though this method succeeded in reducing the number
of cascade of classifiers but it required large face and non-
face images. Again much time was required to establish this
detector. Another approach was introduced by Fröba et al.
[6], where Modified Census Transform (MCT) features were
used. These features proved the capability to extract face
discriminative features; however, the number of features is
limited to the number of pixels, so two classification schemes
were required. Another approach is also introduced by Chen
et al. [7], instead of targeting the type of features, it tries
to reduce the number of training dataset by obtaining an
optimal subset of the full dataset. A large faces dataset was
required in order to choose the optimum subset from. Shen
et al. [8] targets the training and pre-training stages where
a high power covariance features as well as small training
dataset was used; however, extracting the covariance features
is computationally expensive.

The method we are proposing is to implement a frontal
face detector that is trained with few number of features
extracted from a small face/non-face dataset. Hence, this
detector can be trained within a short period of time,
and its small face/non-face dataset can be collected within
reasonable time (i.e. collecting thousands in comparison to
billions in [2][5]). The detector is to be used for surveillance
purposes using a 2D information from static camera mounted
in a position where mostly frontal faces are captured. Two
contributions are presented in this paper: first contribution
lies in proving that only small subset of the total features
contributes to the major part of the results; hence, we only
use these few features to implement what we call Enhanced
Parallel Detector (EPD). Second contribution lies in using
a pre-processing stage using skin-tone detector to eliminate
the pixels that belong with a high probability to non-skin
elements. The EPD detector extracts two types of highly
proven face discriminative features to train two classifiers

978-1-4244-8126-2/10/$26.00 ©2010 IEEE



cascaded in parallel. The decision is made by an equal
weighted fused decision from both classifiers. Therefore,
this method is designed for finding the faces instead of
discarding the non-faces. Finally, unlike other explained
techniques that consists of only one stage for face detection
and non-face rejection, EPS works in two stages: first stage
concentrates on non-face windows reduction and the second
stage concentrates on face windows detection.

The paper is organized such that section II describes the
technical details including the pre-processing stage, classifi-
cation scheme, feature extraction, and multi-detection merg-
ing. Followed by section III where the conducted experiments
as well as the training and evaluation phases are discussed.
Finally the conclusion is on section IV.

II. TECHNICAL DETAILS

Enhanced Parallel Detector (EPD) is designed such that it
uses two different types of features to train two classifiers
cascaded in parallel. Each of the classifiers is to be trained
with few features that span the highest discriminative power.
Each type of features targets different image structure. One is
the Haar-like features [4], and the other is the LBP Histogram
(Local Binary Pattern Histogram) features [3]. These features
are specifically chosen as they can complete each other from
an aspect that one type is proven to extract high face discrim-
inative features which is the LBP Histogram, but on the other
hand it’s extraction is computationally expensive. The second
type of features, Haar-like features, can be extracted very
quickly, but has less face discriminative power than the LBP
Histogram features. Each of the features will have different
criterion in detecting the face as each type targets different
image structure. LBP Histogram features gives an excellent
description for corners, edges, spots and flat ends whereas
Haar-like features produces excellent description for small
details structure, edges and bars.

In image-based approach detector, the classifier is usually
trained with many discriminative features in order to reduce
the number of false positives while preserving the true
positive. Hence, if the classifier is trained with few number
of feature, then it will be capable to detect faces but also
will have many false positive detections. Hence fusing the
decisions of each classifier, which are trained with few
number or features, will preserve the true positive detection
and drastically reduces the false positive. Even with the
reduction of false positives, applying this detector in real-
life scenario where thousands of subwindows are examined
will make it face a challenging situation.

Therefore, the EPD detector optimizes the idea of fusing
the weakly trained detector [9] by adding a pre-processing
step which drastically reduces the number of subwindows
to be examined. So the EPD detector works as two stage
detector: first stage is the pre-processing stage that concen-
trates on non-face windows rejection while the second stage,
fused detector, concentrates on face window detection. By
doing so the system will: (1) be trained with small number
of features from small dataset, (2) preserve a high detection
rate, (3) drastically reduce the false positive detections. The

complete diagram for the EPD detector is as shown in Figure
1.
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Fig. 1. Enhanced Parallel Detector diagram

A. Pre-processing stage using skin-tone detection

Fusing the results of the weakly trained detectors preserves
the performance of the detection rate as well as keeps the
false positive in a low level; however, applying the fused
detector on a difficult dataset such as surveillance video will
produce a high number of false positive detections. In order
to keep the high detection rate and reduce the false positive,
a skin detection technique is used as it is invariant to skin
orientation and size. In a survey by Kakumanu et al. [10]
it can be seen that many colorspaces were used for skin-
tone detection. The main point of this pre-processing step
is to discard as many non-skin pixels as possible so the
following classifier will have less number of subwindows
to examine. Therefore, this step is not a decision maker so
a simple to implement skin-tone detector with small false
negative rate (i.e. deciding a skin pixel as a non-skin pixel)
is used. Despite there are many models in the literature;
however, the YCbCr colorspace is assumed that is capable to
separate the skin from non-skin color range by reducing the
overlapping after transformation from the RGB colorspace.
Chai et al.[11] implemented a simple technique using YCbCr



for skin detection based on video sequence; this technique is
used as a pre-processing step.

Chai et al. uses the Cb and Cr component to depict that a
pixel is considered as skin pixel when its Cb and Cr values
lie in the range

77 ≤ Cb ≤ 127, 133 ≤ Cr ≤ 173

.

B. Feature extraction

1) LBP Histogram: Simple LBP feature extraction algo-
rithm operates by considering the value of the center pixel
in a 3 × 3 pixels in a grayscale window as a threshold. It
then assigns 1 to the neighboring pixels with a value greater
than the threshold else it assigns it to 0. The resulted binary
value is converted to decimal. This decimal value preserves
the texture for this 3× 3 pixel window. LBP features can be
extracted with a circular neighbor (LBPP,R) [12] (Circular
LBP), with different radii (R) and points (P) as in Figure 2.
There are 2P binary words for each LBPP,R. Also, there
is subset of the 2P words that spans most of the texture
descriptor called uniform LBP LBPu2

P,R [12]. LBPu2
P,R are

the words that have only two flipping bits from 0 to 1 and
1 to 0 (e.g. 01110000).

Fig. 2. LBP feature extraction

The LBP Histogram feature proved the ability to capture
facial representation [3]. The image is divided into regions,
and each region’s LBPP,R is extracted, then the histogram
for the region is calculated. The histograms for all regions
are concatenated, and each bin is considered as a feature.
The histogram of the LBP values from the image works as
a descriptor for the image.

The LBP Histogram feature extraction in the proposed
detector is designed to extract features in two phases, first
phase is to extract the features based on the entire face
image to obtain the overall description. For this purpose
two LBPs feature extraction are used, one is the LBPu2

8,1

and the other is LBP u2
12,2. The second phase is to detect

the smaller face description; therefore, LBP4,1 is used with
overlapping windows to target many places of the face. The
LBP Histogram features extraction procedure is illustrated in
Figure 3.

In Hadid et al. [3] only two LBPs were used so almost
same preference is given for information obtained from
within the face region (i.e. using small overlapping win-
dows) and information obtained from the entire face (i.e.
no overlapping window). However, to get more distinctive
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Fig. 3. LBP Histogram feature extraction

features, three LBPs features extraction combination are
used, where two of them are for the overall face. The
explained combination gives the best results on the tested
data. Having higher number of combination more than three
increases the computation complexity and wouldn’t increase
the performance significantly.

2) Haar-like features: The Haar-like features extraction is
based on the work of Viola and Jones [2] which subtracts the
sum of pixels of grayscale image in two adjacent rectangles.
These two rectangles, one is considered as black region
and the other is white region. The final feature result is
the subtraction of the sum of the white region from the
sum of the black region. These adjacent rectangles can be
in different templates such as being two horizontally or
vertically adjacent, or three adjacent rectangles in horizontal
or vertical template where the black region is in the middle,
or four adjacent regions in a square shape, where the white
region in the main diagonal and the black region in the
secondary diagonal. The Haar-like features works well in
places where there are differences in brightness in the object
as in the human face such as the area between the eyes and
the forehead or the area between the eyes and the bridge
of the nose. These two places are considered as the most
discriminative Haar-like features in the human’s face [2]. The
feature extraction starts by a feature of smallest size (i.e. 2
pixels in the 2 rectangle template) and exhaust the image
many times by keep increasing the size of feature until it
reaches one of the dimensions of the image. This search is
performed quickly using the integral image.

C. Classification

The AdaBoost [13] method uses weak classifiers hi(X),
where each hi(X) is a single feature. The AdaBoost algo-
rithm weighs and select the best n weak classifiers, where
each weak classifier minimizes the classification error to
construct a strong classifier H(X) =

∑n
i=1 αihi(X). At

each iteration of the boosting, the best weak classifier hi(X)
is chosen, and the weight αi is increased to the wrongly
classified samples for the next iteration.

Many versions of AdaBoost are explained in the literature
where all of them have the same concept but might differ
in one or more of either error calculation, weight update
or feature selections criterion. Based on Lienhart et al.
[14], experiments conducted on the Discrete AdaBoost, Real



AdaBoost, and GentleBoost showed that GentleBoost gives
the best results in the face detection problem. Therefore,
GentleBoost [15] algorithm is used to construct the strong
classifier.

D. Multi-detection merging

Multi-detections issue is considered as a drawback in
many appearance based face detector due to the fact that the
features are insensitive to small error changes [2][5]. While
the scanning window scans the image, many detections might
be located for the same detection. However, the number of
detections in false positive regions are significantly less than
those multi-detections in the faces regions.

The algorithm we use is based on only one parameter.
It finds the centroid position of each detection, then clus-
ter these positions with mode finding using the Euclidean
distance from the points to cluster’s centroid regions as a
similarity measure.

The threshold β is considered as the minimum number
of particles in each cluster to be considered as a detection.
All the clusters that don’t pass this test get deleted. The
remaining detections’ mean values are taken as the centroid
of that detection. The size of the detected face is calculated
as the average size of all remaining centroids in each cluster.

There is no rule of thumb to choose a generic β that works
for all images. However it can be an application dependant
since the bigger β the less the true positives and less false
positives and vice versa when small β is used.

III. EXPERIMENTS

A. Training dataset

The EPD detector is trained using Viola and Jones faces
dataset, it consists of 4, 916 grayscale face images of size
24× 24 pixels. No extra cropping, resizing and aligning are
performed on the dataset. Also only 7, 872 grayscale non-
face images of size 24× 24 pixels are used in the training.

B. Evaluation datasets

Two datasets are used for evaluation purposes, first dataset
is the Ole Jensen dataset [16]. Ole Jensen dataset contains
5, 000 grayscale face images and 10, 000 of grayscale non-
face images of 24× 24 pixels.

The other dataset is a real-life footage from a realistic
environment where data became available to the University
of Toronto team for research purposes. The footage is an
RGB colorspace sequence taped by a camera mounted on
the ceiling in vantage to capture frontal faces. The footage is
of Codec Video 1 format with video rate of 5 frames/second.
The sequence is of low resolution of 360×243 pixels. Faces
appear in different sizes up to 60 × 80 pixels. 107 frames
were examined that contained 89 faces. 59 frames are for
single frontal face in different positions in order to examine
the performance with different face sizes. 15 frames for two
people appearing in the screen, to illustrate the ability of
detecting more than one face, and finally 33 scenarios are
for images where either a vacant place or non-frontal faces

in the scene to inspect the false positive detections. Some of
the real-life frames are shown in Figure 4

Fig. 4. Some of the examined frames

C. Method of evaluation

The evaluation is conducted based on the detection rate
(DR) and number of False Positive detections (FP) when
evaluated on the real-life frames. FP is the number of
wrongly classifying a non-face region as a face region

DR =
TP
SF

where TP (True Positive) is the number of correctly
classified faces as faces and SF is the number of faces in
the sequence.

Another evaluation was using the performance rate (PR)
when the evaluation is conducted on the Ole Jensen face/non-
face dataset.

PR =
TP + TN

T

where TN (True Negative) is the number of correctly clas-
sified non-face as a non-face, and T is the total number of
images in the dataset.

The decision whether the detection is considered as a face
or not is conducted automatically using Lienhart et al. [17]
approach. The face is considered as correct detection when
the Euclidean distance between the face and the detector’s
face is less than 30% of the width of the detection’s size,
also the detection’s height and width are within ±50% of
the actual face width. The actual face location and size is
extracted manually from the real-life sequence. The face
region is considered as the region from above the eyebrow to
the end of the chin. This region is considered since the dataset
that trained the system (Viola-Jones dataset) was originally
cropped such that the bounding box from above the eyebrow
to below the mouth and is increased by 50%. Hence the
regions from the top of the forehead to the bottom of the
chin is considered.

D. Highest discriminative feature selection

Following the main objective of this paper which is to
train each classifier, LBP Histogram classifier as well as the
Haar-like classifier, with small number of features claiming
only few of the features contribute the major results and the
rest of the features contribute little information.

The feature extraction is conducted as explained in section
II-B that two types of features are to be extracted the LBP
Histogram features and the Haar-like features. From section
II-B.1, the LBP Histogram features of LBPu2

8,1 and LBP u2
12,2

are used for full face description; hence, window of size



24×24 pixels is used whereas for the smaller LBP4,1 feature,
a scanning window of size 12× 12 pixels and shifting of 2
pixels are used. For each image there are 59 features from
the LBPu2

8,1 , 135 features from LBPu2
12,2. 784 features from

LBP4,1. The total number of features extracted from each
24 × 24 pixel image is 978 features. The 784 features of
LBP4,1 is calculated as there are LBP4,1 = 24 = 16 features
in each 12 × 12 pixel window; therefore, the 24 × 24 pixel
image is subdivided into 49 windows each of 12× 12 pixels
overlapped by 10 pixels. As a results, the number of features
is 49×7 = 784 features. Since LBPu2

8,1 and LBPu2
12,2 features

don’t have overlapping windows, so they are based only on
extracting the uniform features. The smaller the scanning
window and smaller the shifting the more the features to be
extracted hence more computation is required. The Haar-like
features extraction is the same used in Viola and Jones[2]

The LBP Histogram and Haar-like classifiers were each
trained with 10,20,30,..,100 features, the GentleBoost al-
gorithm was used to train the detector and to choose the
high discriminative features. The performance rate (PR) is
measured on the Ole Jensen face/non-face dataset. The time
for each training session is recorded and tabulated in Table I.
Figure 5 shows the PR versus number of features the detector
is trained with.
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Fig. 5. Number of features trained the classifier versus performance rate
for the LBP and Haar-like classifiers

It can be seen from Table I that the training time for the
LBP Histogram classifier is significantly lower than the Haar-
like classifier. This is expected since there are only 978 LBP
Histogram features extracted from each 24 × 24 window
in comparison to ≈ 83, 000 Haar-like features. Hence, the
GentleBoost classifier in the case of the Haar-like classifier
runs many folds over the LBP Histogram classifier to find
the best features.

From Figure 5, it can be seen that for the LBP Histogram
features, the system performance rate settles down after 50
features. Hence, the first 50 features contributed to 98.27%
performance rate before reaching a plateau. Therefore, only
the first 50 features were used to train our LBP Histogram
classifier. On the other hand, same concept was adopted to
decide the best number to train the Haar-like classifier. It

can be observed that after the ≈ 40 features, the classifier
starts reaching a plateau. On the other hand, taking under
consideration the amount of time between two consecutive
trained feature versus amount of improvement achieved, 40
features were chosen. Also, these 40 features are enough
to provide 97.73% performance rate; whereas 50 features
results a performance rate of 97.97%, and it requires extra
4 hours of training. Therefore, in the training session of
the EPD detector, 50 features were used to train the LBP
Histogram classifier while 40 features were used to train the
Haar-like classifier.

Therefore we can conclude that only 50 out of 978 features
of LBP Histogram features and 40 out of ≈ 83, 000 of
Haar-like features conserve high discriminative power. This
claim doesn’t negate the fact that more features will result
better detection (of course before over-fitting the classifier) or
mention that the rest of the features are redundant; however,
it proves that the rest of the feature contributes significantly
lower than the first 40 or 50 features in our case.

E. Enhanced Parallel Detector results

Following the block diagram in Figure 1, the trained
individual detector results are fused then merged as in section
II-D, and the experiments are conducted on the real-life
scenario. The effect of using the fused detector is examined
by implementing the EPD detector diagram in Figure 1
without the pre-processing step in three different schemes:
once using only the LBP Histogram classifier trained with 50
features, using only the Haar-like classifier using 40 features,
and finally using the EPD detector where both Haar-like
and LBP classifiers are trained with 50 and 40 features
respectively and their fused result is obtained. The ROC is
plotted for all operating points where β explained in section
II-D is the parameter tweaked, the ROC is as seen in Figure
6. When evaluating the image, detector’s window is scaled
by 1.25 each time and its content is downsampled to 24×24
pixels.

Even though as shown from Figure 5, that when the indi-
vidual face detector are applied on a face/non-face dataset,
they prove the ability of distinguishing between face from
non-face image with a high performance rate. However,
applying the individual detectors on the real-life frames may
result high false positive detections and low detection rate.

This issue lies behind two reasons:
(1) Multi-detection merging algorithm problem: the multi-
detection algorithm is based on clustering, so having many
false positive detections in the image will affect and move
the centroid and size of the correct detections in the region,
which leads to the second point.
(2) Method of evaluation problem: since an automatic deci-
sion is made based on Lienhart method of evaluation, then
even if the individual detectors are able to detect the face
(assuming only one face in the image), but the detection’s
centroid is moved due to the clustering method; then the tight
boundary used by this method of evaluation will not meet.
Hence, a misdetection will be encountered.



TABLE I

TIME IN HOURS REQUIRED TO TRAIN THE CLASSIFIERS USING INTEL(R) XEON(R) CPU X5355 2.66GHZ

Detector
10 20 30 40 50

Features Features Features Features Features
Haar-like (hr) 5.08 10.01 13.18 17.72 21.25

LBP Histogram (×10−3 hr) 2.60 4.86 7.12 18.52 21.71

Detector
60 70 80 90 100

Features Features Features Features Features
Haar-like (hr) 23.96 26.69 30.32 31.94 34.53

LBP Histogram (×10−3 hr) 26.93 17.62 21.34 26.82 38.43
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Fig. 6. Receiver Operating Characteristic for the EPD and the individual
detectors

Figure 6 illustrates the detection rate versus the number of
false positive detections, it proves the concept of the ability
to achieve a significant improvement in the detection rate by
fusing the detectors in comparison to individual detectors.

Furthermore, the complete EPD detector (with pre-
processing stage) results is compared to Lienhart detec-
tor [14]. The GentleBoost algorithm model haarcascade
frontalface alt is used since it uses same algorithm as the
EPD detector. Lienhart detector is considered since it is a
very close implementation to Viola and Jones detector, and
it is available on OpenCV. The results are shown in Table II.

TABLE II

DETECTION RATE (%) COMPARISON BETWEEN THE EPD DETECTOR

AND THE LIENHART DETECTOR

Detector
0 1 2 6 142 208

FP FP FP FP FP FP
EPD 69.66 89.88 94.38 - - -

Lienhart 73.03 75.28 76.220 77.52 88.76 91.01

Therefore, it can be seen that the EPD detector worst
case scenario is having 2 false positive detections and it is
able to achieve a high detection rate while it is only trained
with few number of features within ≈ 18 hrs using CPU
of 2.66GHz in comparison to weeks of training in Viola

and Jones with CPU of 400MHz. Additionally, the EPD
detector is trained with a total of 90 features in comparison
to 6, 060 in Viola and Jones. Finally, it could outperform
Lienhart detector which is trained with over 20 stages of
classifiers.

F. Sensitivity analysis

The EPD detector robustness is examined in various arti-
ficial added illuminating and blurring scenarios. The robust-
ness of the system as well as its comparison criterion to the
Lienhart detector are explained. The β value was fixed for the
highest detection rate for both EPD and Lienhart detectors
of 94.38% and 91.01% respectively. For fair comparison, the
degrading detection rate ΔDR percentage rate is measured.
Where

ΔDR = DR0 −DRn

Also the increase of the number of false positive ΔFP is
calculated. Where

ΔFP = FP0 −DRn

where DR0 and FP0 are the detection rate and the
number of false positive detections for the non-noisy images
respectively while DRn and FPn are the detection rate
and number false positive detections for the noisy images
respectively.

1) Illumination: The real-life examined frames were
brightened and dimmed in the range of −100% to +100%,
this range of illumination is as seen in Figure 7.

Fig. 7. Sample of the brightening and dimming range

The robustness of the added brightness percentage versus
the detection rate changes is plotted for both the EPD and
Lienhart detectors to show the tolerance of the EPD detector
to illumination changes, and to compare the EPD detector’s



robustness to that of Lienhart’s detector. The EPD detector
and Lienhart detector detection rate changes are shown in
Figure 8 (a), also the detectors’ false positive changes are
shown in Figure 8 (b).
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(a) Changes in the detection rate
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(b) Changes in the number of false positive detections

Fig. 8. Robustness to illumination changes (a) changes in the detection
rate (b) changes in the number of false positive detections

2) Blur: A gaussian filter of variance 1, 1.4 and 2 pixels
were used to examine the EPD detector and Lienhart detector
robustness to blurring. The blurred images look as in Figure
9.

ΔDR and ΔFP for the EPD detector and Lienhart
detector are tabulated in Tables III and IV respectively.

TABLE III

DETECTION RATE CHANGES, COMPARISON BETWEEN THE EPD

DETECTOR AND LIENHART DETECTOR IN BLURRED FRAMES

Noise
EPD Lienhart

ΔDR% ΔDR%
1 pixel gaussian 7.87 2.24

1.4 pixel gaussian 15.73 0
2 pixel gaussian 30.34 14.6

(a) Original image

(b) 1 pixel gaussian blur

(c) 1.4 pixel gaussian blur

(d) 2 pixel gaussian blur

Fig. 9. The different blurring effect

TABLE IV

FALSE POSITIVE DETECTION CHANGES, COMPARISON BETWEEN THE

EPD DETECTOR AND LIENHART DETECTOR IN BLURRED FRAMES

Noise
EPD Lienhart

ΔFP% ΔFP%
1 pixel gaussian −3 −39

1.4 pixel gaussian −1 −78
2 pixel gaussian 0 +9

IV. CONCLUSION

A frontal face detector that can be used for surveillance
purposes is proposed. The Enhanced Parallel Detector (EPD)
is trained with only few number of features extracted from
a small face/non-face dataset within short training time. The
EPD detector uses two weakly trained classifiers cascaded in
parallel where each is trained with a subset of few number
of high discriminative face features. The EPD detector is
trained using only 90 features with the 40 and 50 highest
discriminative power Haar-like and LBP Histogram features
respectively. Hence, it is trained using ≈ 1

68 of the number
of features used in Viola and Jones, and trained within ≈ 18
hrs.

Fusing the results of two weakly trained classifiers us-
ing only few number of two type of feature succeeded
in achieving high performance results since each type of



features targets different image structure; therefore, both
features will agree on the face image and rarely agree on the
non-face image. Logical AND is used to preserve the face
image and discard the non-face image. Furthermore, a pre-
processing step of skin-tone detector using YCbCr colospace
is implemented to drastically decrease the number of false
positive detections. The EPD detector has a different strategy
for detection which is depicted by two stage strategy, where
the first stage concentrates on rejecting the non-face images
while the second stage highly concentrates on detecting the
faces with less concentration on non-face rejection.

The EPD detector is applied on a real-life scenario and
compared to the state-of-the-are Lienhart detector. With only
the few features, the EPD detector could outperform Lienhart
detector. Finally the robustness of the system was examined
by artificially adding noise to the frames. One noise was
by changing the illumination from −100% to +100% on
the examined frames. Another noise is added by applying
gaussian filter to blur the frames. The EPD detector proved
its ability to handle a high range of illumination changes.
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