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Synaptic adhesion molecules have been extensively studied for

their contribution to the regulation of synapse development

through trans-synaptic adhesions. However, accumulating

evidence increasingly indicates that synaptic adhesion

molecules are also involved in the regulation of excitatory

synaptic transmission and plasticity, often through direct or

close associations with excitatory neurotransmitter receptors.

This review summarizes recent results supporting this

emerging concept and underlying mechanisms, and addresses

its implications.
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Introduction
Synaptic adhesion molecules are known to be involved in

the regulation of diverse steps in synapse development

and maintenance, including the initial contact between

pre- and postsynaptic sides of synapses, formation of early

synapses and their differentiation into mature synapses,

and maintenance and plasticity of established synapses

[1–3]. However, recent studies have begun to reveal a

novel role for adhesion molecules in regulating excitatory

synaptic transmission and plasticity. Potential mecha-

nisms underlying these functions are often suggested

to include direct interaction or close association of adhe-

sion molecules with neurotransmitter receptors, such as

NMDA (N-methyl-D-aspartate) and AMPA (a-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid) glutamate

receptors (NMDARs and AMPARs, respectively).

Synaptic adhesion molecules are thought to cluster

neurotransmitter receptors by interacting with the
www.sciencedirect.com 
cytoplasmic scaffolding proteins that are in complex with

neurotransmitter receptors, such as PSD-95 (Figure 1a).

This tripartite interaction may be sufficient for adhesion

molecules to recruit neurotransmitter receptors to sites of

early trans-synaptic adhesion. In addition, it would bring

scaffolding protein-associated signaling molecules close

to receptors. However, synaptic adhesion molecules may

also require direct or close cis interactions with neuro-

transmitter receptors (Figure 1b). For instance, cis inter-

actions between adhesion molecules and neurotransmit-

ter receptors situated on the same scaffolding protein may

enhance the stability of tripartite complexes or the func-

tional interplay between them.

It should be noted that experimental evidence supporting

the direct or close interactions of synaptic adhesion

molecules with neurotransmitter receptors is often less

compelling than that for trans-synaptic adhesions, likely

because of the weak or transient nature of the interac-

tions. In this review, we focus on summarizing results that

are relatively more convincing.

Synaptic adhesion molecules that regulate
excitatory synaptic transmission and
plasticity
Neuroligin-1

Neuroligin-1, a prototypical postsynaptic adhesion mole-

cule that interacts with presynaptic neurexins [1], has

been strongly implicated in the regulation of NMDAR-

mediated synaptic transmission and NMDAR-dependent

synaptic plasticity. Supporting data have been obtained

from diverse brain regions, including the hippocampus

[4–10], cortex [11], striatum [12], amygdala [13], and

cerebellum [14].

Neuroligin-1-dependent regulation of NMDAR function

may require a complex of PSD-95, an abundant excitatory

postsynaptic scaffold, with NMDARs and TARP-con-

taining AMPARs. Recent data, however, indicate that

neuroligin-1 can also associate with the GluN1 subunit of

NMDARs through extracellular coupling [4]. In addition,

the extracellular region of neuroligin-1 can normalize the

reduction in NMDAR-mediated synaptic transmission

caused by combined neuroligin-1 knockout (KO) and

neuroligin-3 knockdown (KD) [15].

Notably, neuroligin-1-dependent regulation of NMDAR-

and AMPAR-EPSCs (excitatory postsynaptic currents)

requires a critical residue (E747) in the middle of the

cytoplasmic region of neuroligin-1, but does not involve
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Figure 1
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Conventional and emerging views on how synaptic adhesion molecules interact with neurotransmitter receptors.

(a) Conventional view: cytoplasmic scaffolding proteins such as PSD-95, which interact with both synaptic adhesion molecules and

neurotransmitter receptors, may play a role in synaptic coclustering of adhesion molecules and neurotransmitter receptors.

(b) Emerging view: synaptic adhesion molecules and neurotransmitter receptors may directly interact or closely associate with each other, thereby

enhancing the stability of the complex or facilitating the functional interplay between them. Examples of such functional interplay could include

regulation of trans-synaptic adhesions by ligand-bound receptors or, conversely, regulation of the pharmacological or kinetic properties of

receptors by trans-synaptic adhesions
the C-terminal PDZ-binding motif [8]. In addition, an

extracellular region of neuroligin-1 containing the splice

insert B, known to regulate neurexin binding, is important

for neuroligin-1-dependent regulation of NMDAR-

EPSCs and long-term potentiation (LTP) at perforant

path-dentate gyrus (DG) synapses [7], although this

regulation seems to involve a reduction in excitatory

synapse number rather than NMDAR content at individ-

ual synapses.

More recently, Hevin, a synaptogenic protein secreted by

astrocytes, has been shown to interact with neurexin-1a
and neuroligin-1B (containing splice insert B), a trans-

synaptic pair that does not interact with each other, to

promote presynaptic differentiation and postsynaptic clus-

tering of proteins, including NMDARs, at thalamocortical

synapses [16]. Because Hevin preferentially recruits

GluN2B-containing NMDARs to synapses, the reported

extracellular coupling between neuroligin-1 and the

GluN1 subunit of NMDARs is unlikely to be critical [4].

Neuroligin-3 and neuroligin-4X

Neuroligin-3, present at both excitatory and inhibitory

synapses [1], enhances AMPAR- but not NMDAR-medi-

ated synaptic transmission in a manner requiring E740

(corresponding to E747 in neuroligin-1), whereas
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neuroligin-3 enhances inhibitory transmission through

mechanisms that require the presence of neuroligin-2

[8,17].

Neuroligin-3 containing the ASD-related mutation,

R451C, increases AMPAR-mediated synaptic transmis-

sion, slows NMDAR-EPSC decay, increases GluN2B-

containing NMDARs, and enhances NMDAR-depen-

dent LTP in the hippocampus [18]. Although molecular

details remain unclear, these apparent gain-of-function

phenotypes suggest the possibility that neuroligin-1 con-

taining extracellular mutations can alter AMPAR- and

NMDAR-mediated synaptic transmission.

More recently, neuroligin-3 harboring R704C, another

ASD-related mutation, was shown to enhance neuroli-

gin-3 binding to AMPARs and promote AMPAR endo-

cytosis, whereas the same mutation introduced into neu-

roligin-4X was shown to abolish wild-type neuroligin-4X–

dependent suppression of AMPAR-mediated transmis-

sion [19��]. Notably, expression of wild-type neuroligin-

4X in the context of reduced neuroligin expression (miR-

mediated KD of neuroligins-1, -2, and -3) was found to

enhance AMPAR currents, an increase that was abolished

by the R704C mutation, which eliminates T707 phos-

phorylation by protein kinase C (PKC) [20].
www.sciencedirect.com
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Notably, the influence of neuroligin-3 or -4 mutations on

AMPAR trafficking and synaptic function appear to be

affected by compensatory changes during development,

as supported by the observation that constitutive neuroli-

gin-3KOordevelopmentally early conditionalneuroligin-3

KO has minimal effects on AMPAR function at calyx of

Held synapses, whereas developmentally late conditional

neuroligin-3 KO or neuroligin-3 mutations (R451C and

R704C) have profound effects on AMPAR function [21].

Neurexins

Neurexins are presynaptic adhesion molecules that inter-

act with postsynaptic proteins, including neuroligins,

LRRTMs, and GluD2 [1,2]. Microspheres coated with

neurexin-1b has been shown to rapidly recruit NMDARs

and GluA2-containing AMPARs likely through neurexin-

neuroligin interaction in an activity-independent manner

[22]. In addition, mice lacking neurexin-2a, or both

neurexin-2a and -2b, show reduced excitatory presynap-

tic release and, intriguingly, reduced postsynaptic

NMDAR function [23], likely through trans-synaptic

neurexin-neuroligin adhesion.

More recently, constitutive inclusion of splice site #4

(SS4) in neurexin-3 in mice has been shown to decrease

postsynaptic levels of AMPARs, but not NMDARs, and

suppress synaptic AMPAR recruitment during LTP [24].

Constitutive removal of SS4 from neurexin-3 by cre-

recombination, however, leads to normalization

AMPAR-mediated synaptic transmission [24]. It is

possible that SS4 in neurexin-3 decreases postsynaptic

AMPAR levels by suppressing the interaction of

neurexin-3 with postsynaptic ligands such as

LRRTMs/neuroligins [2]. These results suggest that

alternative splicing in neurexins can regulate postsynaptic

receptor levels through trans-synaptic adhesion.

LRRTMs

LRRTMs, leucine-rich repeat (LRR)-containing synap-

tic adhesion molecules that interact with neurexins and

PSD-95 [2,25,26], have been implicated in the regulation

of synapse development as well as synaptic transmission

and plasticity. In support of these functions, double-KD

of LRRTM1 and LRRTM2 suppresses AMPAR-

EPSCs, but not NMDAR-EPSCs, at Schaffer collat-

eral-CA1 synapses [15], whereas LRRTM2 KD sup-

presses NMDAR-EPSCs as well as AMPAR-EPSCs at

perforant path-DG synapses [2]. In addition, double-KO

of LRRTM1 and LRRTM2 suppresses hippocampal

LTP [27], and LRRTM3 KO in mice decreases the

amplitude of miniature EPSCs (mEPSCs) in DG granule

cells without affecting LTP [28]. Lastly, LRRTM4

interacts with glypicans (presynaptic proteoglycans)

and regulates excitatory synapse density, as evidenced

by the fact that LRRTM4 KO [29] or KD [30] reduces

mEPSC frequency in DG granule cells; in the somato-

sensory cortex, LRRTM4 KD suppresses mEPSC
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amplitude rather than frequency [30]. Although it

remains largely unclear how LRRTMs regulate

AMPAR/NMDAR-mediated synaptic transmission and

plasticity, it is notable that the reduction in AMPAR-

EPSCs induced by double-KD of LRRTM1 and

LRRTM2 is rescued by overexpression of the extracel-

lular domain of LRRTM2 [15], suggesting that extracel-

lular LRRTM2–AMPAR coupling is important.

EphBs and ephrin-Bs

EphB receptor tyrosine kinases (EphBs), known to regu-

late dendritic spines, also regulate the trafficking and

function of NMDARs and AMPARs [31–33]. Ephrin-B-

bound EphBs directly interact with NMDARs through

extracellular domains and phosphorylates the GluN2B

subunit of NMDARs at cytoplasmic tyrosine residues

through Src tyrosine kinases, promoting synaptic locali-

zation of NMDARs and NMDAR-dependent calcium

influx through suppression of calcium-dependent desen-

sitization [31,32,34]. EphBs associate with SAP102, a

PSD-95 relative known to regulate NMDAR trafficking

[35], to regulate synapse development through PAK

signaling [36]. EphBs also regulate NMDAR-dependent

synaptic plasticity through mechanisms involving the

extracellular domain but not the tyrosine kinase domain

[31,32]. Clinically, the surface interaction between EphBs

and NMDARs has been associated various brain disorders

[31,33], including encephalitis involving NMDAR auto-

antibodies that weaken the surface interaction [37].

Ephrin-B3, which can be postsynaptically localized for

reverse signaling [32], cis-interacts with EphBs and inhi-

bits EphB-dependent phosphorylation of GluN2B [38].

Ephrin-B3 also directly interacts with PSD-95 in a phos-

phorylation-dependent manner to promote synaptic

localization of PSD-95 [39], an important regulator of

excitatory synaptic strength and plasticity [35], and with

Erk kinases to inhibit postsynaptic mitogen-activated

protein kinase signaling and regulate excitatory synapse

density [40].

N-cadherin

N-cadherin, an Ig domain-containing homophilic

adhesion molecule in complex with b-catenin, is thought

to stabilize neuronal synapses and regulate excitatory

synaptic transmission and plasticity [2,3]. N-cadherin-

dependent regulation of excitatory synaptic function is

supported by the observations that dominant-negative

N-cadherin decreases mEPSC frequency and amplitude

[41], and conditional KO (Camkii-Cre) of N-cadherin

decreases CA1 LTP [42]. Intriguingly, N-cadherin

directly interacts with the extracellular N-terminal

domain of the GluA2 subunit of AMPARs and sup-

presses lateral diffusion of GluA2 on neuronal cell sur-

faces [43]. In addition, N-cadherin enhances surface

expression of GluA1 in heterologous cells [44].
Current Opinion in Neurobiology 2017, 45:45–50
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b3 integrin

b3 integrin, an extracellular matrix receptor, is localized

to postsynaptic sites and regulates AMPAR trafficking

and synaptic plasticity [45]. b3 integrin directly interacts

with the GluA2 subunit of AMPARs through the trans-

membrane or intracellular domains of both proteins [46].

These results, together with the abovementioned extra-

cellular coupling between N-cadherin and GluA2, sug-

gest the interesting possibility that GluA2 may form a

tripartite complex with N-cadherin and b3 integrin,

although the functional consequences of these potential

interactions remain unclear.

MDGA2

MDGAs (MAM domain-containing glycosylphosphatidy-

linositol [GPI] anchors) are Ig domain-containing,

GPI-anchored adhesion molecule known to interact in

cis with neuroligins and block neuroligin interactions with

neurexins at both excitatory and inhibitory synapses

[47�,48,49]. In support of a role for MDGA2 in the

inhibition of AMPAR-mediated synaptic transmission,

a haploinsufficiency of MDGA2 has been shown to

increase mEPSC frequency and amplitude and enhance

AMPAR-EPSCs, without affecting mIPSCs, in hippo-

campal slices [47�].

FLRT3

KD of FLRT3 (fibronectin leucine-rich transmembrane

protein 3), an LRR-containing postsynaptic adhesion

molecule that interacts with presynaptic latrophilins

[2], decreases mEPSC frequency and amplitude in

dissociated hippocampal neurons, and decreases

AMPAR-EPSCs and NMDAR-EPSCs at perforant

path-DG synapses [50]. This suggests that FLRT3 likely

regulates both synapse development and synaptic trans-

mission, although the underlying mechanism is unclear.

IgSF11

IgSF11 (immunoglobulin superfamily member 11) is a

novel Ig domain-containing synaptic adhesion molecule

that interacts with PSD-95 and has been implicated in

synaptic stabilization of AMPARs [51�]. In support of this,

a high-throughput single-molecule tracking approach has

shown that KD of IgSF11 in cultured neurons decreases

mEPSC frequency and amplitude and increases surface

mobility of the GluA2 subunit of AMPARs [51�]. Igsf11
KO in mice decreases mEPSC amplitude, but not

frequency, in DG granule cells, whereas it suppresses

LTP at Schaffer collateral-CA1 synapses. Re-expression

of IgSF11 in IgSF11-deficient DG granule cells rescues

mEPSC amplitude, whereas a mutant IgSF11 lacking the

C-terminal PDZ domain-binding motif partially rescues

mEPSC amplitude, suggesting that both PSD-95-depen-

dent and -independent mechanisms are involved.

Although, IgSF11 forms a complex with AMPARs in

the brain, a direct or close cis interaction between IgSF11

and AMPARs has not been demonstrated.
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SALM1

SALM1 (also known as LRFN2) is a member of the

SALM (synaptic adhesion-like molecule) family of

LRR-containing proteins [52]. Among the five known

SALMs, SALM3 and SALM5 interact with presynaptic

LAR family receptor tyrosine phosphatases (LAR-

RPTPs) and have strong synaptogenic activities

[53,54], but minimal effects on synaptic strength, as

supported by the decrease in the frequency, but not

amplitude, of mEPSCs in Salm3-KO CA1 pyramidal

neurons [53]. Other SALMs (SALM1, -2, and -5),

however, have been implicated in the regulation of

AMPAR- or NMDAR-mediated synaptic transmission,

as demonstrated by SALM2-dependent synaptic locali-

zation of AMPARs in dissociated hippocampal neurons

[52] and SALM5-dependent promotion of AMPAR-

EPSCs through trans-synaptic interactions with

LAR-RPTPs in hippocampal slice culture [54]. In addi-

tion, SALM1 associates with and induces dendritic clus-

tering of NMDARs through mechanisms requiring the

C-terminal PDZ-binding motif of SALM1, which inter-

acts with PSD-95 [52]. However, SALM1 can also interact

with the extracellular and/or transmembrane domain of

the GluN1 subunit of NMDARs in heterologous cells,

indicative of extracellular coupling.

NGL-2

Netrin-G ligands (NGLs) are LRR-containing excitatory

postsynaptic adhesion molecules that interact with

PSD-95 and presynaptic netrin-Gs/LAR-RPTPs. The

netrin-G2 ligand, NGL-2, also known as LRRC4

(leucine-rich-repeat–containing 4) associates with and

induces dendritic clustering of NMDARs and PSD-95,

but not AMPARs, in dissociated neurons. NGL-2 KD or

KO induces input-specific decreases in excitatory trans-

mission, as evidenced by suppression of NMDAR-EPSCs

and AMPAR-EPSCs at Schaffer collateral-CA1, but not

TA-CA1, synapses by in utero KD of NGL-2, and by

Schaffer collateral pathway-specific reduction in excit-

atory synaptic transmission in Lrrc4-KO mice [55]. How-

ever, whether NGL-2 and NMDARs/AMPARs interact

extracellularly has not been determined.

Elfn1

Elfn1 (extracellular leucine-rich repeat fibronectin

containing 1), an LRR-containing postsynaptic adhesion

molecule expressed in somatostatin-positive interneurons

in the hippocampus, localizes to excitatory synapses that

receive input from hippocampal pyramidal neurons

[56,57�]. Elfn1 is thought to regulate presynaptic release

through trans-synaptic recruitment of metabotropic

glutamate receptor 7 (mGluR7) and GluK1/2-containing

kainite receptors [56,57�]. Although it is unclear whether

this trans-synaptic interaction is direct, it clearly repre-

sents an example of trans-synaptic modulation of neuro-

transmitter receptors by synaptic adhesion molecules.
www.sciencedirect.com
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Perspectives
Although evidence implicating synaptic cell adhesion

molecules in the regulation of synaptic transmission

and plasticity through direct or close interactions with

neurotransmitter receptors is accumulating, additional

and stronger evidence is required to make this emerging

concept more compelling. Such evidence could be

obtained through real-time imaging of close protein-pro-

tein interactions on the cell surface, or using biochemical

methods, such as enzymatic biotinylation of nearby pro-

teins. In addition, crystallographic or cryo-electron micro-

scopic analyses of protein-protein complexes could be

attempted. Lastly, functional consequences of cis inter-

actions could be explored. For instance, conformational

changes in neurotransmitter receptors induced by ligand

binding may modulate the strength or specificity of trans-

synaptic adhesions, as demonstrated by the observation

that, upon NT-3 binding, the receptor tyrosine kinase

TrkC associates more strongly with presynaptic PTPs
(a LAR-RPTP) [58�,59]. Conversely, and perhaps more

interestingly, synaptic adhesions may regulate the phar-

macological and/or kinetic properties of neurotransmitter

receptors.
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