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Abstract 

Some applications such as the autonomous navigation in 
natural terrain and the automation of map making process 
require high-level scene descriptions as well as geometrical 
representation of the natural terrain environments. 

In this paper, we present methods for building high level 
terrain descriptions, referred as topographic maps, by ex- 
tracting terrain features like "peaks", "pits", "ridges", and 
"ravines" from the contour map. The resulting topographic 
map contains the location and type of terrain features as 
well as the ground topography. 

We develop new definitions for those topographic fea- 
tures based on the contour map. We build a contour map 
from an elevation map and generate the connectivity tree 
of all regions separated by the contours. We use this con- 
nectivity tree, called Topographic Change Tree, to extract 
the topographic features. Experimental results on a Dig- 
ital Elevation Model (DEM) supports our definitions for  
topographic features and the approach. 

1 Introduction 

Extracting topographic features from elevation maps has 
traditionally been studied in two research areas: in robotics, 
autonomous underwater vehicle (AUV) route planning and 
self localization [lo] and in cartography, the automation of 
the map making process [5,9,  121. 

Recently, Seemuller [ 121 presented a method for produc- 
ing drainage networks from terrain elevation data. In his 
method, he determined drainage points by finding grids lo- 
cated at a local minimum in elevation for the horizontal or 
vertical direction in a 3 x 3 neighborhood. He then traced 
and linked drainage points into a list of drainage nets. As 
he described in his paper, it suffers with the locality of the 
method. Moreover, he did not justify why a local minimum 
in elevation only for the horizontal or vertical direction can 
be a drainage point. 

There also has been a variety of techniques to detect 
pits, peaks, ridges, and ravines as a means of characterizing 
topographic structures in a digital image. Many of the 

methods, however, use various heuristics without rigorous 
mathematical justification [6]. 

Haralick et. a1 [41, PoncePonce85, and Besl [ll defined 
and extracted topographic features using concepts from dif- 
ferential geometry. There exists a problem: If we take a 
peak and then rotate it about a horizontal axis, it soon stops 
being a peak, even if curvature, being intrinsic to the shape, 
does not change. 

In this paper, we will present a method to overcome those 
problems found in previous research works. 

We lirst examine the definitions of topographic features. 
We then present our basic representation, we call it as the 
contour tree, from which topographic features will be ex- 
tracted. In Section 5, we describe an algorithm for extract- 
ing peaks and pits from the contour tree. This is followed 
by the extraction of ridges and ravines from the contour tree 
in Section 6. 

2 Definitions of topographic features 

Many topographic feature definitions are ambiguous. Tra- 
ditional natural language definitions of topographic features 
have a substantial drawback that such definitions either use 
terms which are not exactly defined, or end up in circular 
definitions. 

However, a 3-D vision system cannot rely on these def- 
initions for extracting the topographic features. To avoid 
the problem of ambiguous definitions, there has been a wide 
variety of techniques to define features based on a procedure 
for the identification of a feature [41. 

Seemuller [ 121 defined ravines and pits as all the locations 
at which water would flow or collect if water were poured 
on the terrain. According to this definition, ravines or pits 
correspond to points lying at a local minimum in elevation. 
Ridges and peaks are duals to ravines and pits, respectively. 
In other words, ridges or peaks correspond to points lying 
at a local maximum in elevation. 

Morerecently, many researchers have used concepts from 
differential geometry to classify the points on a surface into 
basic classes of several features [l, 21. From the theory 
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I Cross section dong t-t t 
Figure 1: Contours of ridges and a cross-section along the 
direction of gravity 

of differential geometry, combinations of values of the two 
principal curvatures uniquely define features. 

2.1 Our definitions based on contour lines 
Those definitions described in the previous section may 
have a sound mathematical justification. However, human 
beings are capable of recognizing topographic features from 
a contour map without knowing the detailed elevation of the 
terrain. Based on this observation, topographic features can 
be qualitatively defined using the shape and relationship of 
contour lines on contour maps [SI. 

Peaks or pits can be defined as a series of closed con- 
tours. From the elevations of the contour lines shown, a 
peak or pit is defined as having either ascending or descend- 
ing elevations. In terms of elevations, peaks and pits are 
corresponding to local maxima and minima, respectively. 
Therefore, we define peaks and pits as: 

Peak: max z ( x , y )  
Pit: min z (x , y )  

Ravines can be defined as the contour lines forming V’s 
pointing upstream. Similarly, ridges can be defined as 
the contour lines forming V’s pointing downstream. The 
contour-based definitions for ridges and ravines are still 
very heuristic and qualitative. We present a new definition 
for ridges and ravines, and show that the new definition is 
equivalent to the contour-based definition. 

Let’s assume that we are at a point on a ridge (a pointA 
in the left figure of Figure 1). The right figure of Figure 1 
shows the cross-section of the terrain by a vertical plane 
along the tangential direction t. Why do we believe that 
we are at a ridge? If a ball is displaced slightly from this 
point, it rolls away along the direction t. Similarly, if water 
were poured at the point, water would naturally flow along 
the same direction (along the steepest direction). We can 
formally define ridges and ravines as 

where z; is the second derivative of z along the direction 
tangent to the contour at (x, y )  on C and z i  is the first deriva- 
tive of z along the direction normal to the contour. 

The above equation states that a ridge point has the max- 
imum change in the gradient of elevation in the tangential 
direction (z;) and has the minimum elevation change in the 
normal direction ( z i )  along the contour. 

Using the implicit function theorem and differential ge- 
ometry [3], we can show that the local extrema in z y / z i  
occur at the point on the contour where the shape of contour 
forms V (for the details of the derivations, see [7]). 

3 Constructing contour maps from elevation 
maps 

Building a contour map from an elevation map is straight- 
forward: imagine a series of parallel cuts which intersect 
the profile of the terrain. Next, define successive plateaus 
of constant elevation by planar cuts located at a particular 
distance below or above a reference plane. 

The algorithm for building a contour map works in five 
steps: 

1. 

2. 

3. 

4. 

5. 

Start a planar cut of the elevation map, specified as 
an elevation H;i at each grid point ij, at a particular 
elevation, H,; 

Create a binary image Bv by assigning 

1 ifH;i 2 H, 
0 otherwise B;i = 

Extract the connected components; 

Compute the contour lines by fitting polygons to the 
connected components; 

Repeat steps from (2) to (4) at a new elevation 

H ,  = H ,  + AH. (2) 

We applied this algorithm to a Digital Elevation Map 
(DEM). Figure 2 shows an elevation map and the corre- 
sponding contour map. 
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Figure 3: An example of Topographic ChangeTree for 1-D. 

4 Constructing the contour tree from a con- 
tour map 

We present a tree data structure, the contour tree, which 
can represent the nesting of contour lines on a continuous 
topographic surface. The contour tree represents the rela- 
tionships among contour lines on a contour map. We call 
this contour tree representation a Topographic Change Tree 

In TC tree, each node represents a cross-sectional area of 
terrain intersected by a planar cut, and links between nodes 
represent parent-child relationships (i.e. a path from one 
area to another). Every node has a list of descendants, its 
corresponding elevation value, a list of edge points approx- 
imated by a polygon, and its parent. 

In general, we can have threekinds of links connecting the 
two nodes. First, single parent-child relationship between 
two nodes indicates no topographic change, noted as no- 
change (e.g., the planar cut A in Figure 3). Second, multiple 
connections among nodes or a branch indicates topographic 
changes among them (e.g., the planar cut B in Figure 3). 
Third, no child at a particular node also means a topographic 
change has occurred between the two elevations. (e.g., the 
planar cut C in Figure 3). 

Starting from the root node with minimal elevation, we 
'0 20 40 60 80 100 120 140 160 180 200 recursively create the contour tree in a depth-first fashion. 

A depth-first tree generation expands the most recently gen- 
erated node first. When it reaches a node that has no de- 
scendants, it visits an unexplored node at the nearest depth. 

(a) A DEM (Tc tree). 
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(b) Extracted contour map 

Figure 2: Result of constructing a contour map from an 
elevation map. tree 

5 Extracting peaks and pits from the contour 

Peaks and pits are extracted by finding a series of closed 
contours from the TC tree. The TC tree is recursively 
traversed for extracting a series of closed contours. The 
algorithm is a graph traversal procedure to label each region 
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extract-connected-closed-contours (origin-node, cnode) 
M c the number of children of cnode 
i f M >  1 

then 

else if M = 0 

end if 
for j= 1 toMdo 

origin-node e cnode 

get-contours0 

mode e child of mode 
extract-connected-closed-contours 0 

endfor j 

Table 1: An algorithm for extracting a series of closed 
contours. 

encircled by a contour (Table 1 shows the algorithm in 
pseudocode). 

In 3-D, therelationshipbetween contour lines of the same 
elevation can be dividedinto the two cases: (1) two contours 
are completely separated with each other, (2) one contour 
is enclosed by the other contour (for example, we can ob- 
serve this case from a volcano in real terrain). The correct 
labels for the self-included contours can be obtainedby cre- 
ating two contour trees: one from downward the other from 
upward direction [7]. 

We apply the algorithm to extract peaks and pits from real 
terrain data, a DEM shown in Figure 2a. Figure 4 shows 
extracted peaks and pits and the corresponding contour tree. 

6 Extracting ridges and ravines from the con- 
tour tree 

According to the definitions of ridges and ravines based 
on contour lines, the contour lines consisting of ridges or 
ravines have V shape. We also showed that the point whose 
contour shape forms V has the local extrema in z:/z: along 
the tangential direction on the contour. Also note that the 
shape of V corresponds to the local maximum in curvature 
on the contour. Therefore, ridges and ravines can be ex- 
tracted if we extract those local maxima of the curvatures 
froin the contour, and group them together. 

We first represent the contour lines by chain codes. Each 
element in a chain code represents the curvatures of their 
respective curve segments. We extract local maxima of 
the curvatures by using the scale space approach. We then 
describe an algorithm to group those extracted features into 
ridge- and ravine-lines by using the topological relationship 

Meters (x 5 )  

(a) Peaks and pits. 
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(b) The contour tree. 

Figure 4: Results for the extraction of peaks and pits from 
a DEM. 
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Figure 5: Results for extracting the local extrema in curva- 
ture. 

among the features, represented by the contour tree. 

6.1 Extracting extrema points 
The algorithm for extracting the local extrema in curvature 
along contour lines works in two steps: (1) the contours 
are represented by eight-directional chain-codes. (2) we 
then divide the contours into line segments by detecting the 
extrema curvature points on the contours. 

The chain code representation is calculated by computing 
the angle change at a particular point along the contour. 
We use the arm method, introduced by Rosenfeld [ 111, to 
compute the angle change l .  

To detect the extreme points at different scales, we an- 
alyze the contours in the scale space. At each scale, we 
extract the candidate areas of the local extrema in curvature 
as a rough estimate of feature positions. A coarse-to-fine 
strategy is then applied to these candidate areas in the mul- 
tiple curvature curves. During this coarse-to-fine tracing, 
the arm length becomes short and the candidate area is nar- 
rowed down. Peaks in the resulting comer areas are picked 
up as high curvature points. 

Figure 5 shows the resulting high curvature points , de- 
noted as +, overlayed on the contour map. These results 
demonstrate that the multi-arm method provides accurate 
and reliable high curvature points on the contour lines. 

6.2 Tracing and linking ridge and ravine 
points 

We described how to extract ridge points in the above sec- 
tion. The next important step is to convert the extracted 

'The angle change can be considered to be the curvature because the 
definition of curvature is given as )E = 2. 

ridge points into a list of lines. We present a method 
for tracing and linking ridge (or ravine) points by using the 
contour tree. As we explained in Section 4, the contour 
tree provides the topological relationships among contour 
lines on a contour map. Assume that we have a known 
(a starting) ridge point in the current node of the contour 
tree. Then we first look for the ridge points in the children 
nodes of the current node because the topological relation- 
ship embedded in the contour tree representation indicatcs 
that those points in the children nodes are the only topo- 
logically possible connections to the current point. If no 
points are found in the children nodes, it recursively visits 
the children of its children. The traversal of the contour 
tree is done in a breadth-first fashion. A breadth-first search 
visits all the children of a node before visiting any of the 
children of its children. 

For each ridge point of each child node, we compute 
some attributes which are used to search for the best ridge 
point connecting to the current ridge point. The attributes 
to be computed include: 

e The current global direction of a ridge, determined by 
the slope of the line drawn from the previous ridge 
point to the current point (a); 

e The current local direction of a ridge, determined by 
the slope of the line drawn from the center of the 
curvature to the current point (p); 

e The Euclidean distance from the previous ridge point 
to the current point (p). 

Only points within i 90" of the global and local direc- 
tions are considered candidates for the next point. These 
restrictions eliminate radical direction changes in the ridge. 
The candidates are further reduced by finding those having 
the minimum distance from the current point. If there is 
still more than one, the points resulting in the least angle 
change in the ridge are found. 

In addition to angle and distance constraints, we use the 
similarity of the shape to find the ridge lines. The idea is 
to choose the feature point with the most similar curvature 
value with the known ridge point. To solve the ambiguity of 
the feature point positions in different contours, we use the 
neighbor points of the local extreme point to compute the 
correlation of curvature values between the two high cur- 
vature points. We determine the size of neighbor by using 
the most appropriate arm length which is determined by the 
contour analysis. We then define the curvature similarity 
between two feature points, Ci and Pj, by 

where 1 refers to the arm length. 

(3) 
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Figure 6: Extracted topographic features from a DEM. 

By following the same procedure for all feature points 
along contours, we can obtain the ridge and ravine lines. 

Figure 6 shows the extracted topographic features from 
the DEM. White lines indicate ridge lines, black lines in- 
dicate ravine lines. White and black areas indicate peaks 
and pits, respectively. The features are overlaid onto on the 
DEM in which lighter values indicate higher elevations. 

7 Conclusion 

In this paper, we have developed algorithms for extracting 
topographic terrain features from contour maps, represented 
as the contour tree. 

First, we have have shown that a point with a local ex- 
trcme in curvature on the contour has a local extreme in 
zl’/zL on the contour, which is our definition of ridges and 
ravines. 

We have also developed an algorithm for computing the 
contour tree from an elevation map. The contour tree pro- 
vided a description of the spatial topology of terrain from 
which peaks and pits were extracted reliably. 

In converting ridge (or ravine) points into a list of ridge 
(or ravine) lines, we have presented a new algorithm to 
trace and link ridge (or ravine) points. The algorithm uses 
the topological relationships among the contour lines, rep- 
resented by the contour tree, to search for the best linking 
points. 

The method for extracting topographic features can be 
extended to a more general and robust method by using: 1) 
a more stable method for extracting high curvature points, 
and 2) a multi-resolution approach for linking the ridge (or 
ravine) points to the ridge (or ravine) lines. 
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