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Methods for Identifying Footfall Positions for a Legged
Robot

C. Caillas, M. Hebert, E. Krotkov, 1. S. Kweon, T. Kanade !
' The Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Abstract

We are designing a complete antonomous legged robot to
perform planetary exploration without human supervision. This
robot must traverse unknown and geographically diverse areas in
order to collect samples of materials. This paper describes how a
geometric terrain representation from range imagery can be used
to identify footfall positions. First, we present previous research
aimed to determine footfall positions. Second, we describe several
methods for determining the positions for which the shape of the
terrain is nearest to the shape of the foot. Third, we evaluate and
compare the efficiency of these methods as functions of some pa-
rameters such as particularities of the shape of the terrain. Fourth,
we introduce other methods that use thermal imaging in order to
diffcrentiate materials.

1 Introduction

‘We are prototyping a six-legged robot called the Ambler (Figure 1)
for an exploratory mission on another planet, possibly Mars [1]. In
order to explore new regions and collect samples of materials, the
Ambler must traverse unknown and geographically diverse areas.

To accomplish its mission, a critical task for the Ambler is to
determine where to place its feet. This task is essential for locomo-
tion over the rugged and irregular terrain that-can be encountered
on the surfaces of other planets such as Mars, on ocean floors, in
hazardous waste sites, and in mines.

The aim of this paper is to present several methods for the
Ambler perception system to determine footfall positions. The
Ambler perception system consists of a laser range finder and al-
gorithms that build an elevation map of the terrain from range
images. The different methods operate on the geometric structure
of the terrain, seeking positions for which the shape of the terrain
is the nearest to the shape of the foot.

This paper presents in section 2 previous research for the
determination of footfalls for legged robots. Section 3 presents
several methods for identifying footfall positions based on geomet-
ric analysis of the computed elevation map. Section 4 introduces
other methods that use information coming from thermal sensors.
This paper concludes by discussing the limitations of the previous
methods and presenting future work.

I'This research was sponsored by NASA under Contract NAGW 1175.
C. Caillas is on leave of absence from GIAT (FRANCE): Industrial Group
for Terrestrial Armements and is supported by DGA (FRANCE): General
Delegation for Armement. The views and conclusions contained in this
document are those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of NASA or the
US Government.

Figure 1: The Ambler

2 Previous research

A legged robot has the possibility to choose where to place its feet.
The flexibility in choosing foot placements is one of the mobility
advantages of legs over wheels {6]. If a footfall proves inadequate
there is the chance of shifting the foot to a new one. To capitalize
on this flexibility, two general ways in which walking machines
can be controlled to adapt to uneven terrain have been investigated
during the last ten years.

The first is for the vehicle to walk forward blindly (without
vision) and modify its leg lengths to control orientation. In this
case, measurement of body orientation and sensing of force are
essential [9], [12]. Attitude sensing permits the vehicle to control
its orientation. Force sensing allows the feet to conform to the
terrain since it determines axial and transverse forces on the feet
which indicate the attitude of the foot relative to the ground [10].
As complementary to force sensing, fouch sensing can be used
to detect foot ground or object contact {11]. With force or touch
sensing, walking speed must be reduced to permit tactile probes of
the terrain. .

The second approach, that so far has received less attention,
is to use proximity and vision sensors. These sensors permit the
determination of footfall positions in advance (i.e., before setting
the foot on the ground). Proximity sensing indicates the presence of
an object within a certain volume, and can be useful for controlling
foot placement. With vision sensors, the vehicle can compute an
internal model of the geometric structure of the terrain and plan
leg trajectories to conform to this model. Furthermore, imaging
sensors can give useful information for identifying objects such as
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tocks, ditches, or steps. As a first example, Ozguner [4] used a
‘ranging system composed of two cameras and a structured light
projector. An operator aboard the robot selects a footfall. This
permits utilization of human intelligence in selecting footfalls for
arbitrary terrains, but also requires the operator’s attention. As a
second example, the Adaptive Suspension Vehicle uses the terrain
elevation map constructed by a laser scanner for selecting footfalls
'{5]. Good footfalls correspond to terrain regions where the local
computed slope does not exceed a given threshold.

In summary, it appears that little work has been done for
determining footfall positions for a legged robot by using imag-
ing sensors. In this paper, we analyze some methods using only
imaging sensors, without human supervision.

3 Identifying footfall positions with a
laser range finder

In this section, we concentrate on methods using the ERIM laser
range finder (described in [2]). The Ambler perception system
takes a sequence of range images and constructs an elevation map
(the method is described in [2]). Figure 2 schematically illustrates
the structure of the elevation map, and Figure 3 depicts an elevation
map constructed from four images. The elevation map is then used
to find the best foot-shaped subregion S in a given region R.

Az

zZ(x1,¥1)

Figure 2: Elevation map representation

We model the foot as a flat disk 30 cm in diameter (Figure 4),
and the subregion S as a square 30 c¢m in side. The foot plate is
orthogonal to the leg. The only possible articulation between the
leg and the foot is a rotation around the leg axis that ensures
rotation of the leg during walking.

Five methods have been developed, and are presented in in-
creasing order of complexity. All of them are based on the deter-
mination of the geometric structure of the terrain.

3.1 Methods

The five methods® presented below determine the flattest S in R.
S is given by the coordinates (x, y) of the center of the foot on the
elevation map. More generally, the applied methods determine, for
every possible subregion S in R, a value that characterizes S in
terms of position goodness. The smallest value comresponds to the
"best" position, and the largest to the "worst.” The other positions
receive intermediate values. In the following, we note Ni(x, y) the

2The principle of these methods is summarized in [3).
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Figure 3: Elevation map of rugged terrain

Figure 4: Foot of the Ambler

value attributed by the algorithm numbered k (k = 1 to 5 for the
five methods) to the position (x, y). For every position (x, y) of the
center of the foot in R, Ni(x, y) depends not only on the position
(x,y) but also on the elevations of all the points of the terrain just
under the foot (i.e. within 8). This may be written

Ni(x, y) = f(z0, 1), -, 2060, ¥a)) (¢))

such that Vi € {1,n} |xi —x| < § & |yi—y| < §, and f represents
the function of flatness. In the following z(x;, y;) will be noted z;
to simplify the notation.

3.1.1 Max-Min
The idea of the method is to find S in R that minimizes the
difference between the maximum and the minimum elevation (see
Figure 5).
The function N can be written

NI(XJ) = Zmax — Zmin » (2)



Fool

Max

BRI

Figure 5: Max-Min applied to the foot shape

where k = 1 designates the Max-Min algorithm.

If Ni(x,y) = 0, then S is perfectly flat. Generally, this type
of surface is not observed in natural environments. However, ac-
cording to the criteria presented above, the lower is Ni(x, y), the
"nearer” the shape of the terrain is to a plane. Thus, all the shapes
of the terrain for which Ni(x, y) takes the minimum value are suit-
able.

Since this method measures the difference between the max-
imum and the minimum of the elevation, it does not differentiate
a single spike and an undulating surface for which this difference
is the same (see Figure 6).

Max I

| .
I win V4N

Figure 6: Single spike (left) and undulating surface (right)

To that extent, this method does not take into account the
shape of the surface. This is undesirable since the undulating shape
is nearer to a plane than the single spike.

3.1.2 Plane Fit
The Plane Fit method determines the position (x,y) that min-
imizes
1<
Mo, y) = =3 2 = Zpiane)’ 3)
i=1

where z; is the elevation of the point i (see Figure 7). Zyune is the
elevation of the plane that averages the set of points i:

l n
plane = ) - @)

i=l
dlxi,y)

mean value of

o LD |
A L

Figure 7: Plane Fit algorithm

Note that Na(x, y) = 0-is equivalent to V i € {1, n} zi = Zptane-
Hence, N2 = 0 implies that S is planar.

The normal distance d; = d(xi, ¥i) = 2 — Zpiane between the
point i and the mean plane is called the roughness® of the surface
at the point i [7]. It is however difficult to give a definite definition
of the roughness. This notion has been revisited in [8] where the
roughness is presented as a vector that depends on the amplitude
but also on the frequency and-some autocorrelation components.
The subregion S for which N(x, y) is minimum, best fits the plane
thus found.

3.1.3 Support Area

This method takes into account the constraint of minimizing
the amount of energy necessary to -achieve the minimum support
area. The energy depends on two parameters: the depth of pene-
tration into the soil; and the force exerted by the foot on the soil
during penetration. The foot cedses to penetrate ‘when the force
on the soil equals the force exerted by the soil. The depth and
the force of penetration (or more accurately the pressure) depends
on the type of soil. There are many types of soil such as sand
or damp ground for which the following formula, that relates the
depth of penetration § and the pressure P exerted by the foot, can
be applied:

P=k", - (5)
where % and n are constants that depend on the type of soil, and
can be determined by experiment. This formula is the simplest
formula which agrees with experimental results [12], and allows
to calculate the energy E spent during the penetration of the foot.
If the contact surface S(§) required to stop the penetration of the
foot is reached for § = 6, then

Sopt
E=/ P(6)S(8)ds , ©)
o

where 5(6) is a function of the distance § traveled along the vertical
direction (see Figure 8).

$(3) S(3)
4 4

S foot
A min

Stoot |- — — —
A min

1
|

|
ﬁﬂpl B ﬁ opt -

Distance traveled
along vertical direction

Distance traveied
along vertical direction

Figure 8: Support area as function of the distance traveled
along the vertical direction

If the type of soil is known, the parameters k and n are
known. The above formula shows that the energy is minimum
when the integral is minimum. Since P(§) and S(§) increase with
8, the product of these two functions increases with 8. Therefore,
E < P(85p:)S(8cpi)bops. Thus, the integral is minimum when 8,
is minimum. However, this result is not rigorously correct. The
function S(8) can reach 8, very smoothly or very quickly with §
(see the two cases in Figure 8). Of course, E is minimized in the

3The roughness is described by a function d(x, y) that gives the height
of the surface above or below the average surface at any position (x,y) of
the surface. : E
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smooth case. Our algorithm does not take this into account; we
assume that in first approximation it can be neglected.

The Support Area algorithm has the same meaning as the
Max-Min algorithm when the minimum support area is taken equal
to the surface of the foot. In both cases, the algorithm aims to
minimize the difference between the maximum and the minimum
of the elevation or the depth of penetration to reach the minimum
support area.

3.1.4 Free Volume

The Free Volume algorithm calculates the unoccupied volume
located between the foot plate and the surface of the terrain (see
Figure 9). The best subregion S minimizes the free volume.

Free volume

>

/

Figure 9: Free volume under the foot
Let V be the free volume:

xd[2  pyrd[2
V= / (Zmax — 2(u, v))dudv , ()
x—df2 Jy—df2

where (x,y) is the center of the foot. An approximation of this
expression can be calculated with the elevation map data. If n is
the number of elevation map samples just under the foot, then

&
Vi) == > (omax— 2, ®

i=1

where V = lima— oo V(). The number of samples n has to be big
enough to limit the error e(n), where e(n) = V — V(n).

This method correctly discriminates surfaces that the Max-
Min algorithm can not distinguish. For instance, the Free Volume
algorithm differentiates the single spike and the undulating surface
presented in Figure 5.

Minimizing N1(x,y) = Zmax — Zmia implies minimizing
Ni(x, y)d, which represents the volume located just under the foot,
between the two planes located at the elevations zZmis and Zma.
This volume is always inferior to the unoccupied volume located
between the foot and the ground. Furthermore, there are an infin-
ity of surface shapes for which (Zmax — Zmia)d is the same but the
unoccupied volume different. The Free Volume is therefore more
precise than the Max-Min algorithm for the determination -of flat
surfaces.

3.1.5 Equilibrium
This algorithm is complementary to the Free Volume algo-
rithm in the sense that it finds S that minimizes the free volume V
and the first moment M, The first moment of the mass distribution
about the foot is :

M = /m2+m)?
my = Zyi(zm‘—zi)
l:l
my = Xiomax — 2)

i=1

This algorithm is in two steps. First, the algorithm selects
the subregions S for which the free volume is under (1 + X)V,pn.
(x was chosen between 5 and 10 percent). Second, the algorithm
chooses, among the subregions S found at the first step, that one
for which M takes the lowest value,

S found by this algorithm is relatively flat since the free
volume is near to the minimum free volume. The minimization of
M allows the foot to be in equilibrium on the terrain. On the other
hand, when the foot contacts sandy soil, the sand fills the holes
with the minimum of penetration to reach the maximum contact
area between the foot and the soil.

3.2 Comparison and evaluation of the differ-
ent methods

3.2.1 Theoretical approach

In order to evaluate the different methods we analyze in this
section their behavior on several terrain shapes such as step, slope,
and undulating surface. For simplicity, the analysis assumes that
the terrain surface is given by a two-dimensional continuous func-
tion (i.e., not a discrete elevation map).

Step

An ideal step can be defined by two parameters, its height h
and its length /.

1) The Max-Min algorithm calculates the height & of the step:
Ni(x,y) = k. It does not take into account the width of the step,
and thus does not differentiate a wide step from a small one.

2) The Plane Fit algorithm calculates Na(x,y) = gl(d )
if d > I, and 0 if d < I (the mean value of the step function is
Zplane = h;’,). This is a general expression independent of n, that
vanishes with A, I and d — I. h = 0 and d < I both correspond
to a plane for the support area. ! = 0 corresponds to a plane only
if h = 0 and a single spike otherwise. Therefore, the Plane Fit
algorithm does not differentiate a flat region from a single spike.

3) The Support Area algorithm caiculates the depth of pene-
tration in the step. If / exceeds the minimum support area required
to support the foot, then the depth of penetration is zero. In this
case, the method does not distingnish a high step from a small
step. This is undesirable. If [ is lower than the minimum support
area, then the depth of penetration is A. In this case, the Support
Area algorithm has the same meaning as the Max-Min algorithm.

4) The Free Volume method calculates the free volume V
located under the foot. For the step, V = (d — )h. Therefore,
V decreases as A decreases, and as ! approaches d (i.e., as the
surface approaches a plane). Thus, the Free Volume algorithm
discriminates correctly the flat regions from the others, since the
step corresponds locally (i.e. under the foot) to a perfect plane.
However, this method does not distinguish the two cases presented
in Figure 10, since N3(x, y) = V is the same.

Figure 10: Equilibrium: influence of the position of the foot
on the step ’
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5) The Equilibrium method calculates the moment M about

“ the z-axis of the "holés" situated under the foot. Let p be the dis-

tance between the center of the step and the center of the foot. For

the step, M = ph. Therefore, M vanishes with p and A. This method

allows us to differentiate the two cases presented in-Figure 11 by
selecting the symmetric case that corresponds to M = 0.

¥y contact area ¥x

Figure 11: Mass distribution about the z axis of the foot

Slope

A slope can be defined by one parameter: the slope angle 6.

1) The Max-Min algorithm calculates the following expres-
sion: Ni(X, ¥) = Zinax — Zmin ='dtanf.

2) The Plane Fit method calculates the following expression:
Nafx,y) = % tan? 8.

3) The Support Area method calculates Ns(x, y) = g tan @ for
a minimum support area taken equal to 4.

4) The Free Volume method calculates the unoccupied vol-
ume located between the foot and the slope: Na(x,y) = é tan .

5) The Equilibrium algorithm calculates N4(x, y) and Ns(x, y).
The calculation of Ns(x,y) is not necessary since Ns(x,y) =
%N“(xy }’) ‘ i
For the slope, Ny, ...,Ns are minimized with §. The five
algorithms discriminate correctly flat regions.

Undulating Surfaces

As undulating surfaces, we use sinusoids that are characterized by
two parameters: their frequency f; and their amplitude a.

1) The Max-min algorithm calculates the amplitude a of the
sinusoid and does not take into account its frequency f. The re-
sult is Ni(x,y) = a. This algorithm does not distinguish a high
frequency sinusoid from a low one.

2) The Plane Fit algorithm calculates Na(x,y) = é(l —

%’dﬂ). Thus, the result depends both on a and f, vanishes

with o, and approaches "—22- when f approaches the high frequen-
cies. This method cannot distinguish sinusoids whose frequencies
are multiples of .

3) The Support Area algorithm calculates the depth of pen-
efration into the sinusoidal surface to reach the minimum support
area. We assume that the minimum support area is one half of the
surface of the foot. If the frequency of the sinusoidal surface is
large enough (df > 1), then the depth of penetration is equal to a,
and is independent of f.

4) The Free Volume algorithm calculates Na(x, y) = ad(1 —

57—17d(1 — ¢os 2xfd)). Like the Plane Fit, this mecthod cannot dis-

tinguish sinusoids whose frequencies are mutiples of ;I;, since

Ni(x,y) = ad, which is independent of f.
5) The Equilibrium algorithm calculates Na(x,y) = O if the
sinusoid is symmetric about the z-axis.

Scanner resolution and aceuracy

The accuracy of the elevation map significantly affects the
results of the algorithms. Simply stated, the number of points
sampled in a region equal to the size of the foot can not be too
small, and the uncertainty of the computed elevations can not be
too large.

The elevation map accuracy depends on two- main parameters:
the distance D from the scanner to the object (terrain); and the
angle 6 between the incident laser beam and'the object. If the
dimensions of the foot (0.3m) are much smaller than the object
distance D (~ 10m), then in a first approximation, the accuracy is
the same for all the measured points located under the foot. Hence,
the elevations of all points in S are known with the same error,
which is on the order of 5 to 10cm for a distance of observation
of 5 to 20m {2]. Thus, the elevation error may be on the order of
25 percent of the foot diameter. This error is of great significance,
and limits the effectiveness of the methods developed.

In the near future, we will use a laser range finder with finer
resolution (~ lcm instead of ~ Scm) and higher accuracy.

3.2.2 Experimental approach
To evaluate the different methods, we performed some exper-
iments in a realistic environment: a single leg testbed composed of
one leg, a 30m® sand box, and a laser range finder mounted above
the leg (see Figure 12).

Figure 12: Single leg testbed

Because of the difficulty in defining an absolute ground truth,
the experiments do not seek to determine whether one algorithm
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is “better” than another one, with respect to ground truth. Instead,
they dia to answer the following question: To what extent do the
different algorithms agree with each other?

The experimental procedure is as follows.

1) Acquire range images of the terrain, and build an elevation
map at 10 cm resolution.

2) Divide the elevation map into R = 16 regions R, each of
area 1m®. These dimensions correspond to the size of the region
that planning modules consider in walk planning. The different
regions contain various shapes of terrain, ranging from flat to very
rough.

3) For each region r = 1,...,16, for each algorithm k =
1,...,K, compute the "best” footfall position (xxr, ys,-). We expect
the computed positions to differ, so in general, for each region
there are K = 5 different footfall positions.

4) For each region r = 1,...,,R, for each computed footfall
position (xg,,, yr,r) k=1, ..., K, for each algorithm I =1, ..., K with
1 # k, evaluate the algorithm on the footfall position computed by
each of the other algorithms Nj(xx,r, y&,-). This yields R tables, each
with K x K — 1 = 20 values.

5) Normalize the data by

Nk(XI,r,)’l,r) —Nk(x’i,’y )’k.r) (9)
max(Nk,») — Nu(xx,r, Yi,r)

ne(Xir, i) =

where Ni(xz,, yi-) is by definition the minimum value, and
max(Ny,,) is the maximum value determined by the k* algorithm
applied to the 7** region. Therefore, 0 < ne(xk,r, y&,r) < 100 per-
cent. The smaller is 7nx(xs,r, y&,r), the greater is the agreement be-
tween methods { and k.

6) Calculate the mean values < n;(x;, y;) > over all R regions
by

R
1
<, ) >= % Zl 1, 1) - (10
The resulting table, filled with the mean values, describes the mean
behavior of the different methods.

Max-Min | Plane Fit | Sup Area | Free Vol
Max-Min 0 4 9 6.5
Plane Fit 8 0 22 15.5
Sup Area 34.5 435 0 285
Free Vol 8.5 10.5 6 0
Equilibrium 2 3 12.5 5.5

7) Calculate the mean value < m > for each row of this
table by

K-1
1
<m>= == mln ). (11)

i=1

The values of the ¥* row of the table represent the goodness given
by the different algorithms for the best positions found by the K
algorithm, Therefore, < m > represents a global measure of the
agreement of all the methods relating to the methods k.

All of the algorithms seem to agree very well with the Max-
Min, Free Volume and Equilibrium algorithms since the error is
about 5 percent. The error between the Plane Fit and the other
algorithms is on the order of 12 percent, while this error is more
than 25 percent for the Support Area algorithm. Figure 13 sum-
marizcs these results, which indicate that the Support Area and the

Plane Fit methods produce results that differ significantly from the
three others.

Error 4§
in %

25N = e e - —

12%fe = = e — - ——

i
algorithms

Figure 13: Agreement between the different methods

4 Non-geometric criteria

Understanding the geometry of the terrain is necessary to determine
good positions for the feet of the Ambler. Although necessary, this
is not sufficient to identify safe footfall positions. For example,
there are many cases of flat terrain that is too soft, slippery, or
unstable to provide support. Information about soil properties is
therefore needed in order to predict when one of the feet might
sink into sand or soil, or when the soil is slippery or dangerous.

We can not extract this information from the laser range
finder. We could infer it from devices such as force sensors or
accelerometers [6]. Probes of the terrain can measure ground hard-
ness, temperature, moisture, and can provide information on the
likelihood of sinking and slipping. Alternatively, we could ac-
quire information about soil properties from passive imaging sen-
sors such as black and white and color cameras. The problem
of extracting information from visible light sensors is fairly well
studied, and much can be done with them.

However, we seek to study a relatively new source of infor-
mation: thermal imagery. This has not received great attention in
robotics, and few studies can be found about it in the literature.
In this section, we sketch how a thermal camera can be used to
constrain the footfall selection problem.

A thermal camera delivers an image of the scene in which the
pixel intensity is a function of the temperature. Generally, warmer
points appear brighter, and cooler points appear darker.

The temperature T of the surface of a body is determined
by considering its heat exchanges with the environment. The ex-
change of heat is characterized by four components: the incident
solar radiation that is the source of heat; the radiative energy lost
by radiation; the conductive and the convective energy that are the
heat lost by conduction with the environment and the heat trans-
mitted by convection into the interior of the body. An analytic
expression of the surface temperature of an object can be calcu-
lated by making several assumptions on the heat exchanges [13].
In particular, the assumption of a semi-infinite body, requiring that
the dimensions of the object be sufficiently large. The temperature
Tis

T=Tkxy2)=fUt,p,q, (12)
where T(x, y,z) is the temperature at the point (x,y,2z), [ is the
thermal inertia, ¢ is time, and (p, q) is the the orientation of the
patch of surface at (x,y, z) given by its gradient.

The thermal inertia [ is characteristic of the material, and is
related to its density, its specific heat, and its thermal conductivity
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by the relation 1 = \/kpe*. It is possible to derive [ as a function
of T, {, p and q by inverting the previous equation: /= g(T,1,p,q)
{13]. The knowledge of I at every points—or more precisely, for
every patch of surface of the region R—should allow in some
degree to determine the nature of the material. For example, sand
and rock are the two main constituents of the planet Mars, and
should be distinguishable by determining their thermal inertia.
We anticipate undertaking experimental work with such sen-
sors, in order to verify this analysis. Specifically, we intend to
identify the orientation of the different surface patches from the
elevation map constructed from range data (see Section 3).

5 Discussion

In this paper, we presented several methods to determine good
footfall positions for a legged robot.

Unlike other sensors, imaging sensors allow, in some degree,
to determine in advance the goodness of footfall positions. This
possibility is a great advantage relative to other sensors that re-
quire moving to the seclected footfall to determine if the footfall
is good or not. Since energy minimization is crucial for a com-
plete autonomous robot, preselection decreases the energy and time
required for walking.

The geometric methods presented in section 3.1 show that it
is possible to use elevation maps to select flat footfall positions.
Among the five methods that we developed, the Max-Min, Free
Volume, and Equilibrium methods exhibit similar theoretical be-
havior. The experiments show that these three methods agree very
well with the "common sense" of flat regions. The Plane Fit and
Support Area methods do not agree so well with the other meth-
ods and do not always give experimental resuits compatible with
common sense of footfall positions. The theoretical analysis of
section 3.2.1 in part explains the divergence of these two methods.

We will use the Free Volume method as part of the Ambler
perception system. Its theoretical performance on terrain consisting
of steps, slopes, and undulating surfaces is superior, and its em-
pirical performance is satisfactory. Further experimental work is
needed to better characterize this method, and to take into account
the geumetric uncertainty due to the laser scanner resolution.

Geometric methods are insufficient to ensure that a footfall
position is completely safe. The approach of Section 4 for using
other imaging sensors seems promising to discriminate different
kinds of material such as rock or sand. We intend to experiment
with thermal cameras to evaluate whether their practical perfor-
mance lives up to their theoretical promise. We expect that fusion
of information from different imaging sensors will allow identifi-
cation of safe footfall positions.

For the future, we must also integrate other sensors that mea-
sure directly and precisely other features of the soil, such as com-
pliance, load-bearing strength, and coefficient of friction.
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