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Abstract

A key problem in the design of cloud radio access networks (CRANS) is to devise effective baseband compression
strategies for transmission on the fronthaul links connecting a remote radio head (RRH) to the managing central unit
(CU). Most theoretical works on the subject implicitly assume that the RRHs, and hence the CU, are able to perfectly
recover time synchronization from the baseband signals received in the uplink, and focus on the compression of the
data fields. This paper instead does not assume a priori synchronization of RRHs and CU, and considers the problem of

conventional solutions.

fronthaul compression design at the RRHs with the aim of enhancing the performance of time and phase
synchronization at the CU. The problem is tackled by analyzing the impact of the synchronization error on the
performance of the link and by adopting information and estimation-theoretic performance metrics such as the
rate-distortion function and the Cramer-Rao bound (CRB). The proposed algorithm is based on the Charnes-Cooper
transformation and on the Difference of Convex (DC) approach, and is shown via numerical results to outperform
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1 Introduction

As mobile operators are faced with increasingly demand-
ing requirements in terms of data rates and operational
costs, the novel architecture of cloud radio access net-
works (C-RANs) has emerged as a promising solution
[1, 2]. In a C-RAN, the baseband processing and higher-
layers operations of the base stations are migrated to a
central unit (CU) in the “cloud’, to which the base sta-
tion, typically referred to a remote radio head (RRH),
are connected via fronthaul links, which in turn may be
realized via fiber optics, microwave or mmwave technolo-
gies. By simplifying the network edge and by centralizing
baseband processing, the C-RAN architecture is expected
to provide significant benefits in energy efficiency, load
balancing, and interference management capabilities (see
review in [2]).
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A key issue in C-RANS is to devise effective methods
of transporting digitized baseband signals on the fron-
thaul links with the limited capacity. The Common Public
Radio Interface (CPRI) standard [3] defines the communi-
cation interface between CU and RRHs on the fronthaul
network, including the use of sampling and scalar quan-
tization for the digitization of the baseband signals. How-
ever, the basic approach prescribed by CPRI is bound to
produce bit rates that are difficult to accommodate within
the available fronthaul capacities. This has motivated the
design of strategies that reduce the bit rate of the fronthaul
data stream while limiting the distortion incurred on the
quantized signal. In order to reduce the fronthaul rate by
means of compression, there are CPRI techniques based
on a number of principles such as filtering and downsam-
pling [4], optimized non-uniform quantization [5], and
lossless compression [6]. In addition to the mentioned
point-to-point compression algorithms, there are works
that tackle the design of fronthaul transmission strategies
from a network-aware perspective (see, e.g., [7—10][13]).

Most theoretical works on fronthaul compression for C-
RAN implicitly assume perfect time synchronization and
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channel state information (CSI) at the RRHs and the CU.
However, on the one hand, this assumption violates the C-
RAN paradigm that minimal baseband processing should
be carried out at the RRHs, and, on the other hand, the
resulting design neglects the additional requirements on
fronthaul processing at the RRHs that are imposed by
synchronization and channel estimation. This limitation
is alleviated by [10], which considers robust compression
in the presence of imperfect CSI and by papers [11, 12],
which study the impact of fronthaul compression on chan-
nel estimation. To the best of our knowledge, analyses
that account for imperfect time synchronization are not
available.

In this paper, we consider training-based synchroniza-
tion for the uplink of a C-RAN cellular system. Specifi-
cally, we consider the system illustrated in Fig. 1 in which
an RRH is connected to a CU in the cloud via finite-
capacity fronthaul link, as it is by now standard in related
investigations of C-RAN (see, e.g., [2]). We study the prob-
lem of optimal fronthaul compression of the training field
with the aim of enhancing the performance of time and
phase synchronization at the CU.

To this end, the effect of the synchronization error on
the signal to noise ratio (SNR) is analyzed by adopting the
Cramer-Rao bound (CRB) as the performance criterion
of interest and by accounting for compression via infor-
mation theoretic tools. The resulting proposed algorithm
is based on the Charnes-Cooper transformation [14] and
the Difference of Convex (DC) approach [15]. Numer-
ical results show that optimized fronthaul compression
that targets enhanced synchronization performance out-
performs conventional solution that do not account for
the impact of synchronization errors. The rest of the
paper is organized as follows. Section 2 introduce sys-
tem model of uplink C-RAN cellular system. The analytic
study of the performance and optimization are presented
in Section 3: the CRBs of time and phase offset estimation
carried at CU is derived in Section 3.1, and the analy-
sis of impact of the synchronization error on the effective
SNR in Section 3.2, and the optimization of fronthaul
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Fig. 1 Uplink communication between a number of MSs and an RRH.
The RRH is connected via a finite-capacity fronthaul link to a CU that
performs baseband processing, including synchronization
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compression in Section 3.3. Finally, the performance is
evaluated through simulations to present benefits of the
proposed compression scheme in Section 4.

1.1 Notation

Boldface lowercase letters denotes column vectors and
boldface uppercase letters denotes matrices. The super-
scripts (-)" denotes conjugate transpose of its argument.
()71 denotes inverse operation of its argument. The
determinant of matrix A is denoted as |A|. The expec-
tation operation with respect to x is denoted as E,[-];
the correlation matrix of random vector x is defined as
Ky = E[xx'].

2 System model

In this paper, we consider training-based synchronization
for the uplink of a C-RAN cellular system. We specifically
focus on the operation of a single cell, as illustrated in
Fig. 1, and assume that, as in current cellular implemen-
tations, the MSs transmit over orthogonal time/frequency
resources, so that we can focus on a single active MS in a
given resource block. The MS transmits a frame consist-
ing of a training and a data field. We further assume that
the active MS and the RRH have a single antenna. The
RRH is connected to a CU in the cloud via a fronthaul link
that can deliver C bits per uplink sample to the CU. It is
also assumed that the RRH is synchronized at the frame
level so as to be able to distinguish between the training
and data fields that compose each transmitted frame.

2.1 Training phase
Assuming a flat-fading channel, the signal received at the
RRH during the training, or pilot, field, is given as

Np—1
yp(t) =Ae” Y wylll gt — IT —7) + 2,(t), t €[0,N, T)
I=—L+1

(1)

where A is a positive amplitude that accounts for the
attenuation due to fading; 0 is the phase offset, which
models the effect of the channel and of the phase mis-
match between the oscillators at the MS and at the RRH;
7 accounts for the residual timing offset between MS and
RRH; T is the symbol period; x,[ /] is the /th pilot symbol
transmitted by the MS; N, is the number of pilot sym-
bols; g(¢) is the pulse shape, which includes the effect of
the transmit and receive filter and is assumed to be sup-
ported in the interval [ 0, (L —1) T] for some integer L > 1;
and z,(¢) is the complex additive white Gaussian noise
with two-sided power spectral density Ny. We assume
that the RRH is able to estimate the channel amplitude
A, for instance, by means of automatic gain control in the
presence of constant amplitude symbols. Instead, the time
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offset v and phase offset  need to be estimated from the
received signal (1).

The training sequence is generated randomly such that
the symbols x,[l] for I = 0,..,N, — 1 are independent
and distributed as CN (0, Exp). The training sequence is
known to the CU and the random generation is assumed
here for the sake of simplifying the analysis in the spirit
of Shannon’s random coding (see, e.g., [16]). We further
assume that the pilot symbols are preceded by a cyclic
prefix of duration equal to (L — 1)7T. This implies that
xp[ —I] = xp[ =1 + Np] for 1 <[ < L — 1. Alternatively, as
it will be discussed, the analysis below holds as long as the
number of training symbols N,, is sufficiently larger than
the support of the waveform g(¢)L.

In order to potentially enhance the performance of
phase and time synchronization, we allow the receiver to
oversample the received signal at the BS with a sampling
period Ty = T/F, where F is the oversampling factor.
For simplicity of analysis, we consider a raised cosine
pulse g(t) with zero excess bandwidth (i.e., a sinc func-
tion) so that the two-sided bandwidth is B = 1/T. As a
result, setting F = 1, i.e., no oversampling, is an accept-
able choice that leads to no spectral aliasing. However,
as it will be seen in Section 4, the selection F > 1 may
yield an improved performance. Note that this is true even
under the given assumption of zero excessive bandwidth.
The reason is that collecting a larger number of samples
enables the mitigation of the effect of the additive noise.

The resulting discrete-time signal y, (mT + nT;) can be
expressed as the interleaving of the F polyphase sequences
yZ[m] = yp(mT + nTy), withn = 0,1,..,F — 1, see, e.g,,
[17]. Each sequence yg[ m] can be in turn written as

yZ[Wl] :Axp[m] @g:lye[m] +Z;;l[m] y M= 07-~:Np - 17
2)

where we have defined z;’[ m] & zp(mT + nTs),gf’e [m] &
e’ g(mT + nT; — 7), and ® denotes the circular convolu-
tion. Assuming that the noise z,(¢) is white over the band-
width [ —1/2T;,1/27Ts], the discrete-time noise sequence
ZZ[ m] is an i.i.d. process with zero mean and power Ny /T.

Remark 1 The presampling filter has a cut-off frequency
of 1/2T since it is matched to the signal waveform. As
a result, the noise prior to sampling is bandlimited with
two-sided bandwidth B = 1/T. As such, it is correlated
with auto-correlation function proportional to sinc(t/T).
Therefore, with oversampling, the discrete-time noise sam-
ples, which are taken at times multiple of T /F, are more
properly modelled as correlated if F > 1. Here, following
many related references (see, e.g., [18, 19]), we instead make
the simplifying assumption that the noise is white. This
choice can be seen to lead to lower bounds on the actual
system performance. [
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2.2 Data phase
The signal received during the data field of a frame can be
written, in an analogous fashion as (1), as

Ny—1
ya(t) = Ae’ Y xglllg(t—IT 1)+ z4(t), t €[0O,N4T),
I=—L+1

3)

where x4[[] is the /th data symbol transmitted by the MS,
which is generated randomly in a constellation set 2, with
zero mean and power E,, and Ny is the number of data
symbols. The other parameters are defined as in (1).

After sampling at baud rate for the data field, the
discrete-time signal is given as

Ny—1
yalm) = Ae” Y~ x4l g((m — )T — ©) + z4lm],
I=—L+1
m=0,..,N;—1, (4)

where the discrete-time noise sequence z;[ m] is an i.i.d.
process with zero mean and power Ny/T. Note that over-
sampling could be adopted also for the data field by
following the same model used for the training field, but
we do not further pursue this here in order to focus on
training for synchronization.

2.3 Fronthaul compression
Following the C-RAN principle, compression is per-
formed at the RRH in order to convey the baseband signal
over the limited-capacity fronthaul link to the CU. For
the training field, we assume the use of block quantiz-
ers that compress each nth polyphase sequence y”[ m],
with n = 0,..,F — 1, separately for transmission over
the fronthaul link. Note that, while joint compression of
these sequences generally leads to an improved compres-
sion efficiency, here we adopt separate compression both
for its lower computation complexity and for its analyti-
cal tractability. In particular, each polyphase sequence is
stationary and can be hence compressed by using stan-
dard compression strategies, including universal methods
[15, Ch. 10]. Furthermore, the resulting compression rate
can be computed using rates distortion theory as dis-
cussed next.

Using the standard additive quantization noise model,
the resulting compressed signal for each nth polyphase
sequence can be written as

yplm] = yolm) +qylm), m=0,..,N, — 1, (5)

where qZ[ m] indicates the quantization noise and q;‘ [m]
is assumed to be complex Gaussian and generally corre-
lated across the discrete-time index m. Due to the separate
quantization of the polyphase sequences, the quantization
noise is independent across the index #. From the covering
lemma of rate-distortion theory [16], vector quantization
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schemes can be designed such that the joint (empirical)
distribution of the input and output of the quantizer sat-
isfies (5), as long as the rate is sufficiently large (see, e.g.,
[16]). Furthermore, the relationship (5) can be in prac-
tice approximated by a high-dimensional dithered vector
quantizers [20]. The practical relevance of the additive-
noise quantization model for system design is further
validated in Section 4 by means of numerical results.

The covariance matrix Kq of the vector q;,‘ =

[qz[ o],.., qZ[Np —1] ] is taken to be circulant in order to
facilitate its optimization in the frequency domain. This is
done with the aim of reducing the number of degrees of
freedom in the problem, hence enabling efficient and scal-
able optimization, as discussed in the next section. Taking
the discrete Fourier transform (DFT) of (5) leads to the
frequency-domain signals

V(K] = AX,[K] G2 g [K] +Z2 [ K] +QUIK], k = 0,... N — 1,
©6)

where Xp[k],GZ‘,Q[k],Z;’[k], and QZ[k] are obtained

by taking the DFT of the sequences {xp[m] }Z”::)l,

Np—1 -
tgrgLml Yoy zlm) |
tively. Due to the lack of spectral aliasing afforded by the
chosen waveform and sampling frequency, we can write

—ir Kk _r—
Gk =Gkl /BT

From the mentioned covering lemma [16] (see also
[20]), the fronthaul rate required to convey the com-

pressed signals y, = [?2, .u,if;_l]» where §, =
[7400,.. 33N, = 1]], from the RRH to the CU is

given by the mutual information I(y,;y,), with vector y,,
being similarly defined. However, the mutual information
1(y,;¥,) depends on the joint distribution of y, and y,, and
hence on the timing offset T and phase offset 6, which are
not known at the RRH. Therefore, the necessary rate of
a worst-case estimate is R, = sup, g I(yp;?p). It can be
easily calculated from the mutual information, which is
given by

, and {gy[m] }Iy\n[’;_ol, respec-

F-1
R Ky + Kgz
I(y,9,) = ) _ logy —-——- — 7)
o Kgs|

where YZ = [y;’[O] , ...,yZ[Np - 1]] and qz = [qZ[O] ) e
q,[Np — 1] ] Since the covariance matrix of the quanti-

zation noise Kqz is assumed to be circulant, by leveraging
Szego theorem [21], we can write (7) as

F-1Np—1 2| n 2
. E, A%|G"[k]|* + No/T.
I(yp;yp)= E E log, | 1+ i - u s
=0 k=0 Sqplk]

(@)
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where SQ; [k], for k = 0,..,N, — 1, indicate the eigen-
values of the matrix Kgz. We will refer to SQZ[k] as the
power spectral density (PSD) of the quantization noise
qz[m]. We observe that (8) does not depend on 6 and
7. Therefore, the required fronthaul rate R, is given by
the right-hand side of (8). We will therefore impose the
fronthaul capacity constraint as

1y, 9,) < N,C, 9)

where I (Yps §'p) is given in (8).
The compressed data signal during the data field, similar
to (5), can be written as

&d[m] =J’d[Wl] +61d[m], Wl=0,...,Nd—1, (10)

where g,4[m] indicates the quantization noise, which is
assumed to be white Gaussian random variable with zero
mean and variance oqzd. We observe that an optimized cor-
relation for the quantization noise on the data phase could
also be designed, similar to [10], but we leave this aspect
to future work in order to concentrate on training for
synchronization. Furthermore, following the discussion
above, the fronthaul rate required to convey the com-
pressed data signal y,; =[9,4[0], .., 94 N; — 1] ], from the
RRH to the CU is given by Ry = sup,, I(y,;;¥,), with
vector y, being similarly defined, with

R Ky, + Kg, |
I(y¥4) = log, 7"‘(1( |qd, (11a)
qd,
Ng—1 2 12
E, A°|G N
- Zlog2<1+ x| [;H i 0),
=0 %4
(11b)

where (11b) follows from Szego theorem as in (8) and the
fronthaul capacity constraint of the data phase is given as

I(y;; ¥4 < NaC. (12)

3 Analysis and optimization

In this section, we analyze the performance of the C-RAN
system introduced above by accounting for the impact of
imperfect synchronization, with the aim of enabling the
optimization of fronthaul quantization. We will first dis-
cuss the performance of time and phase synchronization
at the CU in Section 3.1. Then, we study the impact of syn-
chronization errors on the SNR in Section 3.2. Finally, we
investigate the optimization of fronthaul compression in
Section 3.3.

3.1 CRBs for the time and phase offset estimation

The CU estimates the time and phase offsets based on
the compressed pilot signals y,, producing the estimates
f(ﬁp,xp) and (9p,xp). The mean squared errors (MSEs)
of these estimates can be bounded by the corresponding
CRBs, i.e., by the inequalities IE;,p,xp[ T ¥y xp) — 7)%] >
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CRB. and Ey + [(6(,X,) — 6)’]= CRBy. Note that
the mentioned estimates depend on both the training
sequence X, and the compressed received signal ¥, and
that the squared error is averaged over the joint distri-
bution of x, and §'p. To evaluate the CRBs, we assume
that the relationship (5)-(6) is satisfied for the given vec-
tor quantizer. This is done for the sake of tractability and
is motivated by the covering lemma and by the results in
[20] as discussed in the previous section. The CRBs are
given, respectively, as

-1

2 F-1Np—1 212 n 2
E,. A“k*|G"[ k
ere = ((55) LY e
n=0 k=0 Ts‘f‘SQZ[k]
(13)
and
F-1N—1 npp 2\
IAI |G" [ k] |
CRBy = — (14)
\E L g

The derivation of (13)—(14) is given in the Appendix.
Note that the bounds (13) and (14) do not depend on the
phase 8 and delay 7.

3.2 Impact of the synchronization error on the SNR
Having estimated the time and phase offsets 7 and @, the
CU compensates for these offsets in the received signal,
obtaining the discrete-time signal

Ny—1

yalm) =A™ 3" xq[llg(m — DT + A1) + 240 m],
I=—L+1

m=0,.,N;—1, (15)

where At = 7(y,x) — v and A = é(?,x) — 0 are the
synchronization errors for timing and phase, respectively.
We note that compensation of the time offset requires
interpolation, which is possible given the lack of spec-
tral aliasing. Moreover, under the mentioned assumption
on the zero excess bandwidth waveform g(t), the statis-
tics of the (white Gaussian) noise terms are unchanged by
interpolation.

To account for the impact of the synchronization errors
At and A0, we follow the approach in [22], whereby the
sinc waveform g(t) is approximated by retaining only two
sidelobes on either side. Under this approximation, we can
express (15) as

m] +z4[ m],
(16)

yal m) = Axq[ m] g(AT) + z[ m] +2zi[

where the terms in (16) are detailed below. First, the
term zg[m] = Axg[m]g(At)(¢*? — 1) indicates addi-
tional noise caused by the estimation error of phase offset
AG. The term z;[ m] instead accounts for inter-symbol
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interference caused by the time synchronization error and
is given as

I=m+3

= Ae/™0 Z

I=m—3,l#m

zisi[m] xq4[l1g(({ —m)T + A7).

(17)

In order to evaluate the power of the noise terms z[m]
and z;s;[m], we make the simplifying assumption that the
estimation errors At and Af are uniform distributed
on —%, % and on —%, % , respectively.
We observe that this approximation is expected to be
increasingly accurate in the regime of small synchroniza-
tion errors. Moreover, we approximate Atmax and Abpax
by means of the CRB; (13) and CRBy (14), respectively,
by imposing the equalities E[A72] = CRB; and E[A§?] =
CRBy, which yields Atmax = +/12CRB; and Abpax =
/12CRBy. Finally, we adopt the piecewise linear approx-
imation of the raised cosine pulse g(¢) proposed in [22],
whereby pulse g(¢) can be written as

AT
gl —m)T + A1) =a; X 7 (18a)
where a; = a?’ if At >0 (18b)
and a; =a; if At <0, (18¢)
for [ # m and
|AT|
gATr) = |1- UT , (19)

where we have defined n =

and the values of a1+ and a; are listed in Table 1, in

which we have ¢; = 52 aXg( Ar‘“"‘x), c = AT —lg(1 +
A X A X A X

33|, ¢3 = =33, ca = Tmaxg( + Somas),
and ¢5 = —Ag‘;f”‘) [22].

To evaluate the effect of the synchronization error on
the performance, we now calculate an effective signal
to noise ratio (SNR) that accounts for the presence of
the estimation error for time and phase offsets. By using
the discussion above, the following approximations are
derived in the Appendix. The power of the desired signal
sqlm] = Axy[ m] g(At) in (16) is approximated as

0
_ ﬁ‘/mcmsr) . (20)

Encl lsalm] ) ~ A%Ex, (1

Table 1 Coefficients in the piecewise linear approximation of the
raised cosine pulse

/ m-—3 m—2 m—1 m+1 m+2 m+3
af 0 s - ¢ -G G
a; —Cs c3 —C @) —C4 0
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The power of z;[ m] in (16) is similarly approximated as

Earaox,| |20 m] 2] ~ A2E, CRBy (1 - —\/12CRB )

(21)
and the power of z;s;[ m] in (17) as
A%E,,a
Encg,l 2l m] '] ~ — = CRBr, (22)
wherea = Ell y’:+§’l¢m|al|2 and x; =[xy m—3] xy[ m—2]

xglm — 1] xglm + 1] xglm + 2] xg[m+3]]7.
Using (20), (21), and (22), we obtain the approximate
effective SNR expression

A’E
SNRegr ~ - E"df i

A2E, ,CRBy f; + xd CRB; + 02 + 02

(23a)
N A’E,,
~ A2 Ex ’
E,,CRBy + = >¢“CRB, + 02 + 07,

(23b)
wheref, = 1— 12CRBy, and for analytical tractability,

we made the further approximation f; &~ 1. We observe
that the expression (23b) captures the effect of time and
phase errors by means of additional noise terms in the
denominator of the effective SNR. We remark that the
approximations made in deriving (23b) will be validated
in the numerical results by evaluating the performance
of proposed optimization schemes for fronthaul compres-
sion that are based on (23b) and discussed next.

3.3 Optimization of fronthaul compression

In the proposed design, we wish to maximize the effec-
tive SNR (23b) under the constraints (9) and (12) on the
fronthaul capacity, over the statistics of the quantization
noises, namely over the PSDs Squ [ k] of the training field

and over the variance of the quantization noise oq2 -, for the

data field. Accordingly, we have following optimization
problem:

maximizeSNRff (24a)
{Sqp K] boZ,
F—1Np—1 E A2|Gn[k]|2+ No
X T
s.t. Z Z log, (1 + —= > ) < N,C,
n=0 k=0 SQZ [ k]
(24b)
(N=N)-1 et 1112
E, A°|G N
Z log, <1 +"d|[é]|+0> <(N - N,)C,
‘ o
i=0 dd
(24c¢)
Squlkl=0, n=0,.,F—1, k=0,.,N, —1, (24d)
g, =2 0N, =0, (24e)
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where constraints (24b) and (24c¢) correspond to (9) and
(12), respectively.

Towards solving problem (24), we first observe that the
variance aqz -, can be obtained, without loss of optimality, by
imposing the equality in constraint (24c). This is because
SNR.; is monotonically decreasing with respect to crqzd
while the left-hand side of (24c) is monotonically decreas-

ing in o . We then have the following equivalent problem

A%Ey,a
minimize A2 Ex,CRBy + 5 CRB; (25a)
Sop K] T
F—1Np—1 E A2|Gn[k] |2+&
X T,
s.t. Z Z log, |1+ L S < N, C,
n=0 k=0 Sqplkl
(25b)
SQn[k] >0, n=0,..,.F—1, k=0, ...,Np -1,
(25¢)

where the objective function (25a) can be rewritten, using
(13) and (14), as

A’E,,
ZFil Np—1 EprzlG”[k]l2
n=0 £vk=0 NT?+SQ; [k]
A%E, a/T?
+ 2/ ) (26)

( o )2 F—1 —Np—1 Ex, A2K2|G"[K]|?
N
NpTs n=0 £k=0 70 +Sqp K]

To tackle the optimization problem (25), we first
define the auxiliary variables u,; = (SQn[k])_l,
ank 2 (27/(N,T))’ REy |APIG K] 2, and by =
E,, |A |2|G"[ k] |?, and then use the Charnes-Cooper trans-
formation [14], i.e., we set v, = (1 + (No/Ts)u,,,k)_l,
yielding the equivalent objective function

A’E,,
F-1 —Np—-1 a,
Zn:O kio NO/kTS(l _Vn,k)
A2E, a/T> )
No—1 Doy . (27)
Z k=0 No/T; (I =i

The objective function (27) is convex with respect to the
variables v, x since denominator of each term is an affine
function of v, x, and the function 1/g(x) is convex if g(x)
is concave and positive. However, the constraint (25b) is
still not convex in the variables v, s forn =0, .., F— 1,k =
0,...,Np — 1. Nevertheless, it can be expressed as the sum
of a concave and of a convex function, i.e.,

F—1Np—1

2.2 (logy (-

n=0 k=0
((No/T5)vnk)) < NpC.

bu Vi + buk + No/Ts) — log,

(29)
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Algorithm 1 DC algorithm for problem (25) 12 ‘ ‘ ‘
—}—SNR_=0dB
1: Initialization: i = 0 and V510/)< =1forn =0,..,F — P
1L,k=0,.,N, -1 ' 161 eIl I
T "(';HI;’ ——SNR_ = 8dB
2: Obtain {v, ; "'}, x as a solution of the following convex %—SNR =12d8| o
” P
problem:
minimize (27) =
Yk %)
F—1Np—1
sit. Z D (€ vnk + £ — oga((No/ To)vie)
n=0 k=0
<N,C,
0<vi <1 VYnmk (28)
. -8 -6 -4 2 0 2 4 6
3: Seti=i+1 k

4. If a convergence criterion is satisfied, stop; otherwise,

go to step 2. Return the obtained solution qui)k forn =
0., F—=1,k=0,1,..,N, — L.

Therefore, the Difference of Convex (DC) approach [15]
can be leveraged to obtain an iterative optimization algo-
rithm. This is done by linearizing the concave part of (29)
at the current iterate v’ )k' where i is the index of the cur-
rent iteration, obtammg the locally tight convex upper

bound
logz( bn KVnk + bnk + No/Ts) < en kVnk +f(L) (30)

where e} = —b,/(n@)(52 + bux — burvi ). =
logz(_bn,kvn,k + bn,k + %) - ,(,,l,)kv,(,,l’)k'

The DC algorithm performs successive optimization of
the convex problem obtained by substituting the right-
hand side of (30) for the concave part in (29) until conver-
gence. Given the known properties of the DC algorithm
[15], the proposed approach, summarized in Algorithm 1,
provides a feasible solution at every iteration and con-
verges to a local minimum of problem (25). Moreover,
since it only requires the solution of convex problems, the
algorithm has a polynomial complexity per iteration.

4 Numerical results

In this section, we present numerical results to give insight
into optimal fronthaul compression for synchronization
and to validate the analysis presented in the previous
sections. Throughout, we set A = 0.7 and the SNR dur-
ing training phase and SNR during data phase are defined
as SNR, = E,/(No/Ts) and SNR; = E,,/(No/T),
respectively.

Figure 2 shows the inverse of the PSD of the quantiza-
tion noise 1/Sq: [ k] obtained from Algorithm 1 for various
values of SNR, with C = 3 bits/sample, N = 100,N, =
16, and F = 2. Note that the frequency axis ranges from
—Np,/2 to Np/2 — 1 rather than in the interval [0, N, — 1]

Fig. 2 Inverse of the PSD of the quantization noise obtained from
Algorithm 1 versus the frequency index k: C = 3 bits/sample,
F=2A=07N=100andN, = 16

for convenience of illustration. Moreover, we emphasize
that 1/Sqz[k] is a measure of the accuracy of quantiza-
tion at frequency k with k = —N,/2,..,N,/2 — 1, so
that alarger 1/Squ[ k] implies a more refined quantization.
We first observe that the optimized solution prescribes a
more accurate quantization at higher frequencies, since
these convey more information on the time delay, as per
the CRB (13), while all frequencies contribute in equal
manner to the estimate of the phase offset as per (14).
Moreover, as SNR,, increases, it is seen that lower frequen-
cies tend to be neglected by the quantizer in the sense that,
for such frequencies, we have 1/ SQ; [ k] = 0, and hence the
signals on these frequencies are not compressed and not
transmitted to the CU.

In order to validate the advantage of the proposed
design, we now consider the synchronization performance
under a conventional least-square joint phase and timing
estimator operating on the compressed signal Y[ k], n =
0,....,F-1,k=0,...,N, — 1. The estimator is given as

(9 7) = arg min @6, 1),
0,7

(31)

with ®@,7) = Doaklre — r]’(’(9~,f)|2 where 1} =
arg(Y"[ k] X*[k])/27 and r}(0,%) = 6 — k/N,(n + 7).
By applying the estimator (31), we evaluate the perfor-
mance of optimized compression scheme in terms of
MSEs of time and phase offsets as compared to white-
PSD compression that is constant across all frequencies.
The white-PSD compression scheme is considered as ref-
erence since it does not attempt to optimize quantization
with the aim of enhancing synchronization.

Figure 3a, b illustrates the MSE of the timing and phase
offset estimates, respectively, as a function of SNR, for
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Fig. 3 MSE for joint phase and timing estimation (31) versus the SNR, :A = 0.7, N = 100 and N, = 16 a F = 1, MSE of phase offset. b F = 1, MSE of

phase offset. € F = 2, MSE of timing offset. d f = 2, MSE of phase offset

C = 1 bits/sample and C = 3 bits/sample with F =
LA = 07,N = 100, and N, = 16. In addition, we
plot the MSE of the timing and phase offset estimates in
case of F = 2 in Fig. 3¢, 3d, respectively, under the same
parameters. We observe that the proposed scheme signif-
icantly outperforms the conventional white-PSD strategy
and that the gain of the proposed scheme is more pro-
nounced for larger SNR values. This is because as the SNR
grows, the impact of the quantization noise becomes more
relevant compared to the channel noise. Furthermore, a
larger oversampling factor F seems to yield an improved
performance only for the proposed optimization scheme
and not with the conventional white-PSD scheme. This is
because in the latter case, the performance benefits of a
larger number of observation are offset by the increased
fronthaul overhead, which leads to a more pronounced
quantization noise.

Adopting the same estimator for time and phase offset,
the system performance in terms of uncoded SER dur-
ing the data phase is shown in Figs. 4 and 5 for BPSK
and QPSK modulation, respectively. We consider the SNR
for both training and data fields, i.e., SNR = SNR, =
SNRy,F = 2,A = 07,N = 100 and N, = 16.
Simulation results with perfect synchronization are also
presented for reference. We note that, consistently with

the results in Fig. 5, the proposed method is observed
to outperform the conventional white-PSD scheme more
significantly as the SNR increases and as the fronthaul
capacity C decreases. For instance, it is seen in Fig. 5
that the proposed approach has a gain of about 0.5 dB

10™
W 1072
10°
= = = Perfect synchronization
:2: Synchronization with optimal PSD
Synchronization with uniform PSD
1 0'4 1 1 1 1 1 1 1

A

4 6 8 10 12 14
SNR [dB]

Fig. 4 SER with uncoded BPSK transmission versus SNR with joint
phase and timing estimation (31): F = 2,A = 0.7,N = 100 and

Ny =16
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= = = Perfect synchronization
:2: Synchronization with optimal PSD
Synchronization with uniform PSD
i I i i i i i I

0 2 4 6 8 10 12 14 16 18 20
SNR [dB]

Fig. 5 SER with uncoded QPSK transmission versus SNR with joint phase
and timing estimation (31): F = 2,A = 0.7,N = 100 and N, = 16

for C = 5 bits/sample and of about 2 dB for C = 3
bits/sample.

Finally, we elaborate on the performance of actual quan-
tization by adopting a standard scalar uniform quantizer,
instead of the additive quantization model considered
so far. In particular, we choose the step size A[k] of
the quantizer used for frequency k based on the opti-
mal PSD S,[ k] obtained from Algorithm 1 by using the

relationship S,[ k] = %. This relationship is justified
by fact that, at high resolution, the quantization noise
is approximately uniformly distributed. As reference, we
also consider the performance of a uniform quantizer in
which step size is same for all frequencies k, i.e., A[k] =
A, with the same dynamic range as for the optimized
quantizer. Figure 6 presents the MSE of the timing and

—e— Scalar uniform quantizer with optimal step size
Scalar uniform quantizer with constant step size

MSE of 6

w

%)

=

107°F
MSE of © )

1074 i i i i i i i i i

0 2 4 6 10 12 14 16 18 20

SNR, [¢B)

Fig. 6 MSE of joint phase and timing estimation versus SNR,, in the
presence of scalar fronthaul quantization and joint phase and timing
estimation (31): F = 2,C = 3,A = 0.7,N = 100 and Np =16
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phase offset estimates versus SNR, with F = 2,C =
3,A = 07,N = 100 and N, = 16. We observe that
the proposed scheme outperforms the conventional uni-
form quantizer, with a gain of about 2 dB in the high SNR
regime.

5 Conclusions

This paper tackles the problem of optimal fronthaul
compression with the aim of enhancing the effective
SNR in the presence of time and phase synchroniza-
tion errors at the CU. The proposed algorithm optimizes
the PSD of quantization noise at the RRHs by using the
Charnes-Cooper transformation and the DC approach,
and is shown to outperform the conventional solution that
assumes an equal quantizer at all frequencies. Numerical
results validate the analysis by evaluating the perfor-
mance of the proposed design under practical synchro-
nization algorithms and with scalar quantization. An
interesting direction for future research is the consider-
ation of frequency-selective channels and of frequency
synchronization.

Endnote

! The more general case with spectral aliasing could be
handled by using the analysis in [17] and is left as an open
problem.

6 Appendix

6.1 Proof of the CRBs for time and phase offset estimates
In this appendix, we provide a brief derivation for the
bounds (13) and (14), which follow from standard argu-
ments (see, e.g., [23]). For the bound (13), we first have the
chain of inequalities

Eg x, [ AT(F,)°] = Ex, [ By v, [ AT(F,)°]] (32)
1
>E
=% Blnp(ﬁp\xp,t) 2
]Ei’p‘xp < aT )
(33)
1
= CRRL
9 1np(y,Ix,7)
Ex, [E?pb‘p |:<a¢ P ) ]:|
(34)

where (33) follows from the CRB and (34) is a conse-
quence of Jensen’s inequality and of the convexity of the
function 91? for x > 0. The Fisher information for a vector
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of correlated Gaussian observations can be calculated
using [24, Ch. 3.9],, which can be directly evaluated as

3lnP(Yp|Xp,T) ds"" 198"
Eg, ix, (a ZR P

(35)

22N 422 X K] 216G K] P
)T '

36
B+ Sl k] (36

_ 2
N, T

The summation in (35) follows from the fact that the
vectors ¥, in ¥, :[)72, e ,?;_1] are independent for all
n given the pilot signal x,. Furthermore, in (35), Kj» is
the covariance matrix of the effective noise z" = z, + q,,
and we have defined s” =[s"[0],..,s"[N, — 1] 17 with
s"[m] = Axp[m] ®g; o[ m]. Finally, equality (36) follows
from Szego theorem. By inserting (36) into (34), and not-
ing that E[ | X[ k] |?] = Ey,, the proof of (13) is concluded.
The proof of (14) can be obtained using similar steps and
is omitted.

n=0 k=0

6.2 Derivation of (20), (21), and (22)

We compute the powers of the desired signal s;[ 7] in (20)
and of the interference terms z[ 7] in (21) and of z;[ m]
in (22). The power of the desired signal is approximated,
using (19), as

Eavsllsalm] 1] ~ A’Ear s, [mg[m] 2 (1-

)

(37a)
=A’E,, (1 [|Ar|]+ E[|Ar| ])
(37b)
NATmax 1% AT
— A2E 1— o max
*d ( T T 12
(37¢)
NATmax
~ AE,, (1 — 2;3 ) (37d)
~ A’E,, (1 - —,/12CRB ) (37¢)

where in (37c) we used the assumption At ~
U — Aoax, —AT“‘“X] which implies E[|A7|]= 2@ and

E[|AT]?] = 1‘5‘”‘ ; (37d) follows by removing higher-order
terms in ATy, under the assumption that Ay, is small
enough; and (37e) is a consequence of the approximation
E[A72] = Ajmax ~ CRB;.
The power of z,[m] is similarly approximated, using

(19), as
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E v, 004  l2s[m] ]
. 2
~ APE pr 0 [de[rn] Ple? — 12 (1 - 1A ]
(38a)

. 2
= A%E, Ear a0 [|e1A9 1P (1 — %|Ar|) ] (38b)

2n n’
A AZEdeRBo (1 - TEA‘[[ [AT]] +ﬁEAI[ IAT|2])

(38¢)
~ A’E, CRBy (1 — —\/12CRB ) (38d)
where the approximation in (38b) follows as
E —jAO 1127 _ o _
aolle 1I"] =2 — 2Eag[ cos(A)] (392)
in(ABmax/2
—2_9 (sm(@ma/)) (39b)
Agmax/z
Abmax/2)?
%2—2(1—““?”) (39¢)
A 2
_ A" (39d)
12
~ CRBy, (3%)

where (39¢) follows from the Taylor series of the sinc func-
tion up to the second order, and (39e) is a consequence of

the approximation E[ Af%] = 1'5“" ~ CRBy.

Finally, using (18a), the power of z;;[ 7] is approximated
as

2

A _
Earsallzilm] ) ~ Z5Eacs, [la7%aPa7%] - (@0a)

A’E, a
= 5 EaclATY] (40b)

A’Ey,a
5~ CRB; (40c)
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