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Abstract

Coherence decoupling uses speculation to reduce the effects of
coherence miss latencies. This approach breaks conventional cache
coherence protocols into two separate types of protocols: one for
the speculative use of data (performance) and one for the eventual
verification of coherent shared data (correctness). By using values in a
local cache’s invalid lines, the system can hide false sharing latencies,
while by speculatively writing updates to remote invalid lines, the
overheads of true sharing can be reduced.

1 Introduction

Multiprocessing and multithreading are becoming ubiquitous even on single
chips. With increasing cache sizes, coherence misses in such systems will
account for a larger fraction of all cache misses. As communication latencies
increase, the increased fraction of coherence misses will cause significant
and increased performance losses. Reductions in communication latencies
can be achieved by tuning coherence protocols for specific communication
patterns and/or applications. However, these optimizations increase the
design complexity of the protocol, which makes them difficult to verify. A
competing approach requires parallel programmers to tune applications to
work well with simpler protocols — for example, padding data structures to
reduce false sharing, at the cost of decreased programmer productivity.

Computer architects have successfully applied speculative execution
to improve performance in a variety of scenarios. In this paper, we
propose a new type of load speculation called coherence decoupling, which
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uses speculation to reduce the effect of long communication latencies,
without exacerbating the programmer’s task or complicating the coherence
protocol. Coherence decoupling breaks the communication of a value into
two constituent parts: (i) the acquisition and use of the value, and (ii) the
communication of coherence permissions that indicate the correctness of the
value and validate its usage. In traditional cache coherence systems, these
two aspects are coupled within a single protocol. This coupling requires
strict acquisition of the coherence permissions before the use of data, thus
serializing the two. Coherence decoupling implements separate protocols
for the speculative use and eventual verification of values. A Speculative

Cache Lookup (SCL) protocol provides speculative values as quickly as
possible, while in parallel a simple, backing coherence protocol progresses and
eventually produces the correct values along with their requisite permissions.
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Figure 1: Coherence Decoupling

Separating the SCL protocol and the coherence protocol allows each to
be tuned independently, accelerating communication with less complexity
than conventional protocol optimizations. The separation also allows the
overlap of the two protocols. In Figure 1, compared to a conventional
coherence protocol, coherence decoupling uses the SCL protocol to return
the speculative data early. This early return can occur if a request matches
the tag in the local cache, as the processor simultaneously launches the
invalid-to-shared request via the coherence protocol. When the coherence
protocol returns the correct value and its permissions, the returned value is
compared to the speculatively used value, which is buffered in the MSHR.
If they are identical, the speculation was correct, and the coherence latency
will have been partially or fully overlapped with useful computation (“best
case” in the figure). If the values differ, a rollback must occur, resulting in
a performance loss compared to no speculation (“worst case” in the figure).
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The utility of coherence decoupling, as with all speculation policies, depends
on the ratio of correct to incorrect speculations, the benefits of successful
speculations, and the cost of recovery.

We evaluate several different SCL protocols with varying speculation
accuracies, while maintaining a simple, invalidation-based coherence
protocol for correctness. The basic SCL protocol merely accesses the data in
the local cache if the tag matches, which greatly reduces performance losses
due to false sharing. The next set of SCL protocols are variants of a write-

update protocol. These protocols trades off speculation accuracy with extra
traffic used to distribute speculative writes. Unlike canonical write-update
protocols, which suffer from design complexity, write-update SCL protocols
only change data in invalid lines, making them simple and easy to verify.

2 Accelerating Coherent Accesses

Although coherence decoupling is a new approach, much previous work
targeted similar goals. The most relevant prior work falls into three broad
categories: (1) customized coherence protocols that reduce communication
latency by adapting to specific sharing patterns and/or applications [4];
(2) speculative coherence operations that predict coherence operations
(not operation results) and initiate speculative invalidations or upgrades
accordingly [3]; and (3) speculation on the outcome of events in a
multiprocessor execution, including speculative synchronization [9] and
speculating on the execution’s conformance to a strong memory model [1].
Coherence decoupling differs from prior work in that it both speculates on
coherence results (data values) and allows for decoupling performance and
correctness protocols (similar to Token Coherence [8]). This technique is
essentially a form of load value prediction (LVP) [6], but one which uses
a different mechanism to obtain speculative values (using invalid cached
values rather than values from a speculation table or state machine), which
also permits the separation of the coherence protocol into two the classes of
protocols. Coherence decoupling speculates correctly either when data are
falsely shared, or when updated by either a silent store, a temporally silent
store [5], or a speculative write update.

3 Coherence Decoupling Architecture

Coherence decoupling separates a cache coherence protocol into two parts:
(i) a speculative cache lookup (SCL) protocol, which produces a speculative
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SCL Component Policy Description

Read CD Use the locally cached value
Read CD-F Add a PC-indexed confidence predictor to filter speculations

Update CD-IA Use invalidation piggyback to update all invalid blocks
Update CD-N Update sharers after N writes to a block (N=5 in evaluation)

Table 1: SCL Protocol Components

value to be used for further computation, and (ii) a coherence protocol,
which returns the correct value (as defined by the memory consistency
model) and the permissions to use the value. When the SCL protocol returns
a value sooner than the coherence protocol, the computation using the value
can be overlapped with the coherence operation. Accurate SCL protocols
hide coherence latencies, allowing simpler but lower performance coherence
protocols to be used without a commensurate performance penalty.

To support coherence decoupling, the system architecture must: (i)
split, breaking a memory operation into a speculative read and a
coherence operation, (ii) compute, providing mechanisms to execute with
the speculative value, and (iii) recover, supporting mis-speculation detection
and recovery.

Splitting a memory operation (i above) into two sub-operations is
straightforward. To support speculative computation (ii above), the same
mechanisms to support other forms of speculative execution can be used,
although the growing coherence latencies require mechanisms that can buffer
speculative state across hundreds to thousands of instructions. The recovery
mechanism (iii above) buffers the speculative value in an MSHR, compares
it against the value returned by coherence protocol, and recovers if a mis-
speculation occurs.

3.1 Correctness of Coherence Decoupling

Using a speculative value from an SCL protocol — and later verifying
the speculation via the coherence protocol — is analogous to carrying out
a memory operation speculatively assuming that the memory consistency
model will not be violated. As Martin et al. have observed [7],
implementing value speculation correctly requires the same hardware as that
used for aggressive implementation of sequential consistency (SC). With
this hardware support, coherence decoupling can be correctly implemented
without violating the memory consistency model.
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3.2 SCL Protocols for Coherence Decoupling

Backed by a simple and easily verifiable coherence protocol, many different
SCL protocols can be implemented to improve performance. Each SCL
protocol has a read component and a update component (which may be null).
The read component obtains speculative values and the update component
speculatively sends writes to invalid cache lines (possible sharers) to improve
the accuracy of future speculations. As long as the system can recover from
an invalid value that changed, it is always safe to speculatively write into
lines so long as they are also in an invalid state. Table 1 summarizes the
small number of SCL protocols that we evaluate in this paper. Many other
protocols are possible, some of which are evaluated elsewhere [2].

3.2.1 SCL Protocol Read Component

The first read component policy simply returns the value in the local cache
if the block is present (i.e., the tag matches), even if the coherence state
is invalid. We call this CD, for basic coherence decoupling. This protocol
speculates correctly if the accessed word is falsely shared, or updated by a
silent store or temporally silent stores, thus simplifying the programmer’s
task of code tuning to reduce false sharing.

The next read policy (called CD-F) adds a PC-indexed confidence
predictor to throttle low-confidence speculations. It reduces the number
of times speculation is employed (i.e., coverage), but improves the average
speculation accuracy over the CD protocol.

In general, the read component of an SCL protocol could return a value
from an invalid (or valid) line anywhere in the system. Its usefulness depends
on the read latency and accuracy. In a directory-based system, for example,
the SCL protocol could first access the local invalid line and then the home
memory, or even a geographically-proximate remote cache in a hierarchical
multiprocessor built from CMPs. In this work, we consider flat, snooping
SMPs only, since our simulation infrastructure is not able to evaluate large-
scale or hierarchical systems.

3.2.2 SCL Protocol Update Component

The update component is added to an SCL protocol to improve the
speculation accuracy for truly shared data, by writing updates to invalid
lines around the system. The extra bandwidth consumed is traded for
increased speculation accuracy.
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Figure 2: Accuracy of Coherence Decoupling (from left to right: CD, CD-F,
CD-IA, CD-N)

Our first update policy, CD-IA, piggybacks the write value along with
the writer’s invalidation message. In a bus-based system, CD-IA updates
the value in all caches that have the block in invalid state, not only those
transitioning from a shared to an invalid state. The other policy, CD-N,
broadcasts the dirty line after N writes have been made by the writer.
Additional messages are required for such updates.

Both protocols are variants of a write-update protocol, offering different
accuracies and bandwidth requirements. They are different from a
canonical write-update coherence protocol because the speculative updates
are completely non-blocking for the writer and also because the updates
could be dropped at any point in the system without affecting correctness.

4 Performance Evaluation

We ran our experiments on MP-Sauce, an execution-driven, full-system
multiprocessor timing simulator, limiting the simulations to 16-node SMP
systems. We simulated three commercial applications and five scientific
shared-memory benchmarks from the SPLASH2 suite.

4.1 Coherence Decoupling Accuracy

Figure 2 shows the ratio of correct to incorrect CD speculations (for all
coherence misses) using a 4MB cache with 128-byte blocks, for the policies
described in Table 1. In the CD-N experiment, we updated the invalid sharers
after the first 5 writes to a line.

The CD-F policy is the only one to not speculate on all coherence misses,
due to its filter which blocks low-confidence speculations. The base CD

protocol makes more correct speculations than CD-F, but at the expense
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Benchmark CD CD-F CD-IA CD-N5 Optimal
SPECWeb99 13.8% 11.0% 13.2% 14.9% 34.6%
TPC-W 1.2% 2.6% 2.3% 1.4% 17.8%
SPECjbb2000 16.6% 15.8% 13.5% 17.1% 26.3%
Barnes 0.6% 0.4% 0.7% 0.8% 1.4%
Ocean 6.9% 4.7% 8.2% 6.0% 34.5%
Water-Nsq 2.1% 1.7% 2.8% 0.7% 17.4%
FFT 5.1% 4.2% 6.1% 4.6% 21.4%
Radix 6.8% 3.6% 7.6% 6.3% 42.4%

Mean 6.6% 5.5% 6.8% 6.5% 24.5%

Table 2: Speedups for Coherence Decoupling

of more mispredictions. However, this simple protocol provides accuracies
that approach those of many of the update protocols, due to silent stores and
false sharing. For three commercial benchmarks and Barnes, the base CD

protocol can predict correct values for more than 70% of coherence misses.
Some of the update protocols lose accuracy by sending the update too early,
changing an invalid line to a new value, after which the writer changes the
value back (a temporally silent store) but may not broadcast the change,
resulting in a mis-speculation. Overall, coherence decoupling appears to
have much better accuracies for the commercial workloads, with the simplest
CD protocol performing as well as the more complex protocols, except on a
few of the simpler scientific codes.

4.2 Coherence Decoupling Timing Results

Table 2 shows the speedups over the baseline system (which is the
simple invalidation protocol with no coherence decoupling or speculation).
We model a flushing mechanism to recover from mis-speculations. The
mechanism flushes all instructions younger in program order when the
violation is detected (a “rolling flush”) rather than waiting until the violation
reaches the head of the reorder buffer.

The right-most column of Table 2 places an upper bound on the
performance of coherence decoupling in the simulated system. In this model,
all cache accesses that would have been coherence load misses are treated as
hits. SPECWeb99 and Ocean show large ideal benefits (34.6% and 34.5%),
but Barnes shows a mere 1.4% due to its negligible L2 miss rates.

The accuracies of coherence decoupling are high, partially or fully
tolerating a third to a half of coherence misses. The speedups reflect those
results for several benchmarks; in particular, SPECJbb reaches over half of
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its ideal performance improvement for most of the policies. Overall, with
only simple mechanisms, the base CD policy achieves a mean speedup of
6.6%, which is over a quarter of the ideal speedup. In larger-scale systems
(and particularly CC-NUMA systems), the speedups will likely be much
higher. In those systems, remote coherence latencies–especially those that
take multiple hops across the network–will have a more deleterious effect on
performance.

5 Conclusions

Coherence decoupling is a microarchitectural mechanism that reduces the
cost of coherence communication, mitigating the burden on both the
coherence protocol designer and, more important, the parallel programmer.
An early return of a speculative value allows further useful computation
to proceed in parallel with the coherence correctness protocol, overlapping
long coherence latencies with useful computation. Furthermore, decoupling
the SCL protocol (which returns a speculative value quickly) from the
coherence protocol (which ensures the correctness of the value) allows each
protocol to be optimized separately. The SCL protocol can be optimized
for performance since it does not have to ensure correctness; the coherence
protocol can be simple since its performance is not paramount. Further work
in this area involves improving SCL protocols to further increase speculation
accuracies, and recovering from mis-speculations more efficiently. Another
open direction is the utility of coherence decoupling for both hierarchical
multiprocessors and multiprocessors with directory-based cache coherence.
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