
135

Delaunay triangulation programs on surface data*

Sunghee Choi t Nina Amenta*

Abstract

The Delaunay triangulation of a set of points in 3D can
have size O(n 2) in the worst case, but this is rarely if ever

observed in practice. We compare three production-quality

Delannay triangulation programs on some 'real-world' sets

of points lying on or near 2D surfaces.

1 I n t r o d u c t i o n

Developing good programs for 3D Delaunay triangula-
tion is a difficult and important part of computational
geometry. Two new codes, the Delaunay function of
Shewchuk's pyramid and Delaunay h£erarchy 51nc-
tion of the CQAL library [1], represent a new standard
of quality. We examine their performance, and that of
an older program, Clarkson's hu l l , on sets of points
which lie on or near two-dimensional surfaces in R 3.
This special case is important in applications such as
reconstructing surfaces from point clouds and and mesh-
ing three-dimensional solids.

Our first goal is to provide some formal evidence
for the 'folklore' observation that such Delaunay tri-
angulations have linear size. This observation justifies
their use in practice and has prompted recent theoreti-
cal results: the Delaunay triangulation of random points
on a convex polytope has linear size [7], for a 'well-
sampled' fixed smooth surface there is an upper bound
of O(n ~/4) [2], and for any n, there is a 'bad surface'
which is 'well-sampled' but gives a quadratic Delaunay
triangulation [6].

Our second goal is to identify the bottlenecks in
current implementations. Contrary to our expectations,
we find that the point location subroutine does not
dominate the running time on these practical examples,
and instead the most immediate challenge seems to be
thrashing. Pion [9] offers some evidence that "good"
insertion orderings can alleviate thrashing.

The progr~m~: The three programs all use the op-
timal and easily implemented randomized incremental
algorithm I3], which adds points one by one in random

~ p o r t e d by NSF:CCR-9731977 and an Alfred P. Sloan
Foundation Fellowship.

tDepartment of Computer Sciences, The University of Texas
at Austin

IDepartment of Computer Sciences, The University of Texas
at Austin

order while maintaining the Delannay triangulation. If
we assume that the Delaunay triangulation is always
of linear size, then point location (finding where to add
a new point p) is the only operation that is not O(1)
expected time per insertion. Hull uses a theoretically
optimal O(lgn) data structure [3], which is memory
intensive. Pyramid uses a simple O(n 1/4) jump-and-
walk strategy [8]. CGAL Delaunay h i e r a r chy uses a
few levels of intermediate Delaunay triangulations [4]
as a search structure, something like a skip list. This
is known to be optimal in 2D, but in 3D, there is no
theoretical result.

Da tase t s and p l a t fo rm: The dragon data
(1.7 million points) is from the Stanford 3D Scan-
ning Repository. It comes from a Cyberware range
scanner; it contains noise and is very non-uniform.
WrD (185,000 points) is from a protein electron den-
sity iso-surface, selected via marching cubes. B-1
(525,000 points) and B-2 (2 million points) were ob-
tained by applying butterfly subdivision to such an
iso-surface, once and twice, respectively, to get a
smooth and dense point set. Experiments on other
data sets showed similar results and can be seen at
~ . c s . u t e x a s , e d u / u s e r s / s u n g h e e / d e l a u n a y . Tim-
ing does not include file I /O and all experiments are
done in Linux on an Intel Pentium IH (864 MHz) with
511M RAM.

2 Resu l t s

All of oar datasets produced linear-sized Delaunay tri-
angulations and the size of all intermediate Delau-
nay triangulations was linear. The number of Delau-
nay tetrahedra created/destroyed per insertion averaged
about 2?/20 and the average ratio of the number of De-
launay tetrahedra to the number of input points is about
6-7. See Figure 1.

The shape of the overall performance profile of all
the programs was similar: near-linear running time
until memory is exceeded, at which point thrashing
occurs. See Figure 2. It took about 400 seconds for
CGAL Delaunay h i e r a r chy and about 350 seconds for
pyraml d to compute the Delaunay triangulation for a
million points.

Point location time forms a significant, but not
overwhelming fraction of the overall running time. See

136

1.4o+07 I L2e+07
E 1Q+07

i -
0

0

• ' ' b 2 :-'

/ ~ .*.~. -''''" dragon /.~..::~.

/ ~ 1 "'" I I i
500000 le-~6 1_5et06 2e~*06

Number of Points

Figure 1: The number of Delaunay tetrahedra per
number of input points added.

1000

8OO

I°
2OO

0

' yramid - -

500000 1~1<18 1 5e~D6 2 ~
Nurnbw of Points

Figure 2: Hull , CGAL Delaunay h i erarchy , and
pyramid begin thrashing around 120,000, 1,000,000, and
1,800,000 points, respectively. Hul l timing for MTD data,
CGAL Delaunay h i e r a r c h y / p y r a m i d for B-2 data~

Figure 3.
Time per vertex insertion was consistent for

pyr- , ,~d but varied for CGAL Delaunay h i erarchy .
CGAL Delaunay h i e r a r c h y has many options for arith-
metic optimization; different choices were best for dif-
ferent datasets. See Figure 4.

A c k n o w l e d g m e n t s : We are very grateful to
Clarkson for hull, to Shewchuk for a pre-release copy
of pyramid, and to Teillaud and Pion for a pre-release
version of CGM. Delaunay h i erarchy .

R e f e r e n c e s

[1] The CGAL website, www. cgal. ozg
[2] D. Attali and J-D. Boissonnat. Complexity of the

Delaunay triangulation of points on a smooth surface.
Manuscript, (2001).

[3] K. Clarkson, K. Mehlhorn and 1%. Seidel. Four results
on randomized incremental constructions. Proc. of the

8 o

7o

1o

o

huI]/J hud~ - - -
/

./

/°..//"/" ~

b i

Figure 3: Total point location time vs. the total time
for h u l l and pyramid on MTD data

7O0
6OO

4 0 0

0 I

0

. . . . IF
j hierarchy (1>2)

| I I

Number of Points

Figure 4: Time required per 1000 insertions, on
dragon and B-2 data, for pyramid and CGAL Delaunay
h i e r a r c h y before they thrash.

9th Symposium on Theoretical Aspects of Computer
Science, (1992).

[4] O. Devillers. Improved incremental ra~zdomi~d De-
launay triangulation. Proc. of the 16th S~lmposium on
Computational Geometry, 106-115, (1998).

[5] 1%. A. Dwyer Higher-dlmensional Voronoi diagrams
in linear expected time. Discrete and Computational
Geometry 6:343-367, (1991).

[6] J. Erickson. Nice point sets can have nasty Delaunay
triangulations. Proc. of the 15th ACM Spmpoaium on
Computational Geometry, (2001).

[7] M. Golin and H. Na. On the average complexity of 3D-
Voronoi diagrams of random points on convex poly-
topes. P~c. 12th Canadian Conference on Computa-
tional Geometry, (2000), pp 127-135.

[8] E. P. M~cke, I. Saias, and B. Zhu. Fast randomized
point location without preprocessing in two- and three-
dimensional Delaunay triangulations. Proc. l ~ h A CM
Symposium on Computational Geometry, (1996)

[9] S. Pion. Personal communication.

