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Delaunay triangulation programs on surface data* 

Sunghee Choi t Nina Amenta* 

Abstract 

The Delaunay triangulation of a set of points in 3D can 
have size O(n 2) in the worst case, but this is rarely if ever 

observed in practice. We compare three production-quality 

Delannay triangulation programs on some 'real-world' sets 

of points lying on or near 2D surfaces. 

1 I n t r o d u c t i o n  

Developing good programs for 3D Delaunay triangula- 
tion is a difficult and important part of computational 
geometry. Two new codes, the Delaunay function of 
Shewchuk's pyramid and Delaunay h£erarchy 51nc- 
tion of the CQAL library [1], represent a new standard 
of quality. We examine their performance, and that  of 
an older program, Clarkson's hu l l ,  on sets of points 
which lie on or near two-dimensional surfaces in R 3. 
This special case is important in applications such as 
reconstructing surfaces from point clouds and and mesh- 
ing three-dimensional solids. 

Our first goal is to provide some formal evidence 
for the 'folklore' observation that such Delaunay tri- 
angulations have linear size. This observation justifies 
their use in practice and has prompted recent theoreti- 
cal results: the Delaunay triangulation of random points 
on a convex polytope has linear size [7], for a 'well- 
sampled' fixed smooth surface there is an upper bound 
of O(n ~/4) [2], and for any n, there is a 'bad surface' 
which is 'well-sampled' but gives a quadratic Delaunay 
triangulation [6]. 

Our second goal is to identify the bottlenecks in 
current implementations. Contrary to our expectations, 
we find that the point location subroutine does not 
dominate the running time on these practical examples, 
and instead the most immediate challenge seems to be 
thrashing. Pion [9] offers some evidence that "good" 
insertion orderings can alleviate thrashing. 

The  progr~m~: The three programs all use the op- 
timal and easily implemented randomized incremental 
algorithm I3], which adds points one by one in random 
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order while maintaining the Delannay triangulation. If 
we assume that the Delaunay triangulation is always 
of linear size, then point location (finding where to add 
a new point p) is the only operation that is not O(1) 
expected time per insertion. Hull uses a theoretically 
optimal O(lgn) data structure [3], which is memory 
intensive. Pyramid uses a simple O(n 1/4) jump-and- 
walk strategy [8]. CGAL Delaunay h i e r a r chy  uses a 
few levels of intermediate Delaunay triangulations [4] 
as a search structure, something like a skip list. This 
is known to be optimal in 2D, but in 3D, there is no 
theoretical result. 

Da tase t s  and  p l a t fo rm:  The dragon data 
(1.7 million points) is from the Stanford 3D Scan- 
ning Repository. It comes from a Cyberware range 
scanner; it contains noise and is very non-uniform. 
WrD (185,000 points) is from a protein electron den- 
sity iso-surface, selected via marching cubes. B-1 
(525,000 points) and B-2 (2 million points) were ob- 
tained by applying butterfly subdivision to such an 
iso-surface, once and twice, respectively, to get a 
smooth and dense point set. Experiments on other 
data sets showed similar results and can be seen at 
~ .  c s .  u t e x a s ,  e d u / u s e r s / s u n g h e e / d e l a u n a y .  Tim- 
ing does not include file I /O and all experiments are 
done in Linux on an Intel Pentium IH (864 MHz) with 
511M RAM. 

2 Resu l t s  

All of oar datasets produced linear-sized Delaunay tri- 
angulations and the size of all intermediate Delau- 
nay triangulations was linear. The number of Delau- 
nay tetrahedra created/destroyed per insertion averaged 
about 2?/20 and the average ratio of the number of De- 
launay tetrahedra to the number of input points is about 
6-7. See Figure 1. 

The shape of the overall performance profile of all 
the programs was similar: near-linear running time 
until memory is exceeded, at which point thrashing 
occurs. See Figure 2. It took about 400 seconds for 
CGAL Delaunay h i e r a r chy  and about 350 seconds for 
pyraml d to compute the Delaunay triangulation for a 
million points. 

Point location time forms a significant, but not 
overwhelming fraction of the overall running time. See 
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Figure 1: The number of Delaunay tetrahedra per 
number of input points added. 
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Figure 2: Hull ,  CGAL Delaunay h i erarchy ,  and 
pyramid begin thrashing around 120,000, 1,000,000, and 
1,800,000 points, respectively. Hul l  timing for MTD data, 
CGAL Delaunay h i e r a r c h y / p y r a m i d  for B-2 data~ 

Figure 3. 
Time per vertex insertion was consistent for 

pyr- , ,~d but varied for CGAL Delaunay h i erarchy .  
CGAL Delaunay h i e r a r c h y  has many options for arith- 
metic optimization; different choices were best for dif- 
ferent datasets. See Figure 4. 
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Figure 3: Total point location time vs. the total time 
for h u l l  and pyramid on MTD data 
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Figure 4: Time required per 1000 insertions, on 
dragon and B-2 data, for pyramid and CGAL Delaunay 
h i e r a r c h y  before they thrash. 
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