One-Pass Delaunay Filtering for

Homeomorphic 3D Surface Reconstruction
TR99-08

Nina Amenta* Sunghee Choil

March 3, 1999

Abstract

We give a simple algorithm for surface reconstruction from a set
of point samples in R3, using only one three-dimensional Voronoi dia-
gram computation. We also give a fairly simple proof that the recon-
struction is topologically correct when the input is a sufficiently dense
sample from a smooth surface.

1 Introduction

We give an algorithm for fitting a surface triangulation to a set S of point
samples in three dimensional space. We assume no additional information
besides the three-dimensional coordinates of the points. Practical variants of
this problem, in which more information might be given, arise in computer
graphics, reverse engineering, medical imaging and computer vision.

Like many previous algorithms, our approach is to select some subset of the
Delaunay triangles of S as the surface triangulation. This is a natural idea,
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since Delaunay triangles connect points which are ‘close’ in a scale-invariant,
combinatorial sense. There have been a number of proposals for ‘filtering’
three-dimensional Delaunay triangles to produce a surface [6],[12],[1].

We define two necessary criteria which a Delaunay triangle must meet in
order to belong to a correct surface triangulation, if we assume that the input
point set S is a dense enough sample from a smooth surface F'. Adopting
the definition used in a number of recent papers ([1],[2],[9],[11]), we consider
a sample to be “dense enough” when the distance from any point on F' to
the nearest sample is proportional to the distance to the medial axis, with a
small enough constant of proportionality. The medial azis of a surface F' is
defined as the closure of the set of points in R* with more than one nearest
point on F'. Unlike uniform sampling, this definition requires the sampling
to be dense near small surface features (where the medial axis is close to
the surface) but possibly sparse far away from any feature (where the medial
axis is also far away). We consider F' to be “smooth” when it is a twice
differentiable closed manifold without boundary. Note that this implies that
S is finite.

We call triangles meeting our two criteria surface triangles. The first criterion
is that the normal of a surface triangle must be close to the surface normals
(of the original smooth surface F') at its vertices. The second is that a surface
triangle must be small, with respect to the distance to the medial axis at its
vertices. Of course, given S alone and no other information about F', we
cannot test these properties directly. We prove that, under the assumption
that S is a dense enough sample from a smooth surface F', we can test the
two criteria using the 3D Voronoi diagram of S.

We then explore the conditions under which a set 7' of surface triangles
forms a manifold homeomorphic to F'; one such condition is certainly that T
must be a piecewise-linear manifold. We show that the function p: T — F
mapping each point on T to the nearest point of F' induces a homeomorphism
under the additional reasonable condition that the angle between the normals
of any two adjacent triangles of T is acute (so that 7" is ‘smooth’). We show
that the set of surface triangles always contains such a smooth piecewise-
linear manifold 7.

Finally, we sketch a simple algorithm for selecting 7' from the Delaunay
triangulation of a sufficiently dense sample S. First, we filter the Delaunay



triangles using our two criteria, and then we select 7' from the remaining
triangles. We call the resulting triangulated manifold the short crust of S,
since all of its triangles are small.

2 Previous work

The first author, with Marshall Bern and in part with David Eppstein and
Manolis Kamvysellis, have considered this problem in a series of papers
[1],[3],[2]. These papers describe a filtering algorithm for which the result-
ing set of triangles, the crust of S, is guaranteed to form a manifold close
to, and topologically equivalent to, the original surface F'. The short crust
algorithm of this paper uses several basic lemmas from [1]. This paper im-
proves on the crust algorithm in two ways. First, the proof of correctness is
considerably simpler than that offered for the crust algorithm [1]. Second,
the algorithm itself is simpler and faster, since it eliminates a second-pass
Delaunay triangulation step.

The idea of selecting a surface reconstruction from the 3D Delaunay trian-
gulation is a venerable one. Boissonnat proposed two such algorithms in an
early paper [6], which introduced the key idea of finding triangles with large
empty circumsphere.

Edelsbrunner and Miicke [12] proposed the use of a-shapes for selecting
Delaunay triangles to form a surface reconstruction. This idea is clearly
provably correct when the sampling is uniformly dense, but not in any non-
uniform model such as ours. While in many practical reconstruction prob-
lems the sampling is nearly uniform, none the less in practice finding an
appropriate value of a is notoriously difficult.

In computer graphics, a different approach to the problem has predominated.
Both Hoppe et al [15] and Curless and Levoy [8] used algorithms which
reconstruct the surface as the zero-set of a distance function defined by the
input point set. These methods are approximating rather than interpolating,
and so far do not have well-defined sampling requirements or performance
guarantees. They are, however, very fast and robust and are well-accepted
in practice.

There has a been a lot of closely related work on reconstructing curves in the



plane using Delaunay triangulation, much of it recent. See [18], [13], [17],
[4], [5], [9], [14], and [11]. Many of these algorithms come with theoretical
guarantees.

3 Good triangles and dense enough sampling

In two dimensions, it is clear that the “right answer” to the reconstruction
problem is a piecewise-linear curve connecting points that are adjacent along
the original curve from which the samples were taken. It is not immediately
obvious how to generalize this idea to three dimensions. We use a definition
of the “correct” set of triangles, due to Chew [7] which we shall call the set of
surface Delaunay triangles. Consider the three-dimensional Voronoi diagram
of S, and its intersection with F'. The Voronoi diagram forms a partition of
F into regions; this decomposition is the surface Voronoi diagram of S in F.
Equivalently,

Definition: A surface Delaunay triangle is a Delaunay triangle of S dual
to an edge of the three-dimension Voronoi diagram of S intersecting F'.

This definition makes sense even when an edge of the Voronoi diagram inter-
sects F'in multiple points. Of course, we cannot identify the surface Delaunay
triangles from S alone, since the definition depends on F' as well. A point
set S might be a dense enough sample from two different surfaces F' and F”,
and the set of surface Delaunay triangles with respect to F' might differ from
the set of surface Delaunay triangles with respect to F'.

We now define a “dense enough” sample. We make this definition with
respect to a Local Feature Size function LFS : R> — R, the definition of
which again depends on the surface F'.

Definition: For a point x € R*, LFS(z) is the Euclidean distance from z
to the nearest point on the medial axis of F'.

The following lemma shows that the LF'S function is Lipschitz.

Lemma 1 (Amenta and Bern [1]) For any two points p and q on F,
|LFS(p) — LFS(q)| < d(p,q)-

Intuitively, LF'S will be small where two parts of the surface pass close



together, since they will be separated by the medial axis. The medial axis
is also close to the surface where the curvature is high, so LF'S depends
on curvature as well. The following lemma is a Lipschitz condition on the
surface normal with respect to LF'S.

Lemma 2 (Amenta and Bern [1]) For any two points p and q on F with
d(p,q) < pmin{LFS(p), LFS(q)}, for any p < 1/3, the angle between the
normals to F' at p and q is at most p/(1 — 3p).

We now define the sampling requirement.

Definition: A sample S C F is an r-sample if the distance from any point
z € F to the nearest sample point s € S is at most » LFS(x).

We will see later that S is dense enough for our purposes when r < .1. We
know from the following theorem that a correct output exists for the same
value of r.

Theorem 3 (Amenta and Bern [1]) IfS is an r-sample of F forr < .1,
then the surface Delaunay triangles form a polyhedron homeomorphic to F'.

We will be careful to choose filtering criteria which are met by all surface
Delaunay triangles, so that the set of triangles which pass the filter is guar-
anteed to include such a polyhedron.

4 Triangles flat on the surface

In our search for filtering criteria, we consider only properties of the surface
Delaunay triangles which can be inferred from S and its Voronoi diagram,
without any additional knowledge of F'. One such property is that the surface
Delaunay triangles are nearly flat on the surface.

Lemma 4 (Amenta and Bern [1]) Let t be a surface Delaunay triangle
and s a vertex of t with angle at least w/3, and choose r < 1/7. (a) The angle
between the normal to t and the normal to F' at s is at most arcsin % (b)
The angle between the normal to t and the normal to F' at any other vertex
of t is at most 2r /(1 — Tr) + arcsin Y3,

1—r"
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Although we do not know any of the surface normals, we can approximate
the normals at points in S from the Voronoi diagram of S. Informally, the
idea is that when S is sufficiently dense, every Voronoi region is long and
skinny and roughly perpendicular to the surface. The way we quantify this
is to say that, given a sample s and a point v in its Voronoi region, the angle
between the vector from s to v and the surface normal at s has to be small
(linear in ) when v is far away from s (as a function of LF'S).

Lemma 5 (Amenta and Bern [1]) Let s be a sample point from an r-
sample S. Let v be any point in Vor(s) such that d(v,s) > pLFS(s) for
p > 1. Let /nv be the angle at s between the vector v to v and the surface

normal 1 at s. Then /nv < arcsin + arcsin ——

_r
p(l—r) 1-7°

Conversely, if the angle is large, then point v has to be close to s. Specifically,
if /nv > arcsin ;7= + arcsin ¢, then d(v,s) < pLFS(s). Rearranging
things, we get:

Corollary 6 For any v such that /nv = o > 1, we have d(v,s) <

1
pLFS(s) with
’

P= (1 —r)sin(a — arcsin 1)

Lemma 5 tells us that if we can find a point v in the Voronoi region which
is sufficiently far away from s, ¥’ will be a good approximation of 7. In fact
the farthest point in the Voronoi region is always sufficiently far away for
this purpose. Consider extending a line segment perpendicularly in both
directions from the surface at s, until it hits the medial axis in two points
m*,m~ (if it goes off to infinity, we consider that a medial axis point at
infinity). These medial axis points are the centers of balls tangent to the
surface at s with interiors empty of points of F. The points m™, m ™ are at
least as close to s as to any other point on F', including of course all other
points in S, and so must be contained in the Voronoi region of s. And since
m*,m~ are medial axis points, they are both at distance at least LFS(s)
from s. The farthest vertex p of the Voronoi region of s must then be at least
that far away as well. We call p the pole of s .

'In the crust papers [1],[3] the two poles of s are defined to be the two farthest Voronoi
vertices on either side of the surface. One pole suffices, however, for estimating the surface
normal.



Definition: If s does not lie on the convex hull of S, let the pole p be the
vertex of Vor(s) farthest from s, and let p be the vector from s to p. If s
lies on the boundary of the convex hull of S, let p'be the direction of any ray
extending from s to infinity within the Voronoi region of s.

One way to choose p'when s is on the convex hull is to average the outward-
facing normals of the adjacent convex hull facets

Observation 7 Let /np be the angle between @i and p. Since d(s,p) >
LFS(s), Corollary 6 implies that /np < 2 arcsin ™.

In summary, the normals of surface Delaunay triangles are close to the surface
normals at their vertices, and those surface normals are in turn close to the
vectors from the vertices to their poles. We therefore select triangles with
normals close to the vectors to the poles.

Criterion 1 Let s be the vertex of triangle t with largest angle, and let t

be the normal vector to t. The angle /tp between t and § may be at most
. .3

2 arcsin ; + arcsin .

Proceeding from Observation 7, we make the following observation about

Criterion 1.

Observation 8 The angle /tn for a triangle meeting Criterion 1 is O(r);
V3r

in particular, /tn < 4arcsin — + arcsin 1.

The angle between the normals given in Criterion 1 is reasonable; for in-

stance, when r < .1, angle /tn < .64 radians.

5 Small triangles

The other property of surface Delaunay triangles which we will use in the
filtering process is that they are small with respect to LF'S.

Lemma 9 The radius of the circumcircle of a surface Delaunay triangle t is
at most p LFS(s), where s is any vertex of t, and p =r/(1 —r).
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Proof: Let v be the surface Voronoi vertex dual to t. The distance from v
to s is at most rLF'S(v), which, by Lemma 1, is at most r/(1 — r)LFS(s).
O

Again, since we don’t know F', we want to infer that a triangle has this
property by examining the Voronoi region of a vertex s. One’s first thought
might be to use the fact that d(s,p) > LFS(s), where p is the pole of a
sample s. Unfortunately this is just an upper bound, and it is quite possible
that d(s,p) is much greater than LFS(s), for instance when s is a point on
the convex hull. Overestimating LFS(s) of course would lead to accepting
too many triangles as surface triangles.

We use, instead, an idea suggested by Tamal Dey [10] and used in two dimen-
sional curve reconstruction by Dey and Melhorn [11]. We require a triangle ¢
to have an empty circumsphere B whose radius does not exceed that of the
circumcircle of ¢ by more than a small multiplicative factor; hence, t lies in a
plane nearly bisecting B. We prove that any triangle which meets both this
criterion and Criterion 1 must be small with respect to the LF'S function
at each vertex s.

Criterion 2 Triangle t has a point v on its dual Voronoz' edge such that the
radius of the circumcircle of t is at least cos(arcsin 5y +arcsin \/_’") times
the radius of the circumsphere centered at v.

2(1

Lemma 10 Fvery surface Delaunay triangle meets Criterion 2.

Proof: We show that the property holds for the circumsphere centered at
the surface Voronoi vertex v dual to t. Let s be the vertex of ¢ of largest
angle. The distance from s to v is at most ;*~LF'S(s). Since v is a point
on the surface, it must lie outside the two balls of radius LF'S(s) tangent
to the surface at s (since the tangent balls centered at the m; are empty of
surface points have radius at least LFS(s)). Assuming that v is pessimally
positioned (see Figure 1) at the intersection of one of these large tangent
balls with the ball of radius ;*-LFS(s) around s, the angle /nv between

1
the surface normal 77 and the vector ¥ from s to v must be at least 7/2 —

arcsin(575). The angle /nt is at most arcsin \/g’” by Lemma 4. Thus,

Ltv > /2 — (arcsin 5 ‘fr

5y + arcsin *). The lemma follows since the radius



Figure 1: Proof of Lemma 10.

of the circumcircle of ¢ is sin(/tv) times the radius of the circumcircle at v.
]

It is possible for a triangle which is quite large with respect to the LF'S
function at all of its vertices to meet Criterion 2. But any triangle which
also meets Criterion 1 must be small.

Theorem 11 The circumcircle of any triangle that meets Criteria 1 and 2
is at most pLF'S(s), where s is the vertex of t of largest angle, and p = O(r).

Proof: We let v be the center of the smallest circumsphere of . We bound
the distance from v to s, and hence the circumradius of ¢, using the bounds
on the angles between the vectors 77, the surface normal at s, v, the vector
from s to v, £, the normal to ¢, and 5, the vector from s to its pole p. Note
that /nv > /tv — /nt, and /nt < /np + /pt.

We first show that /nv must be large - 7/2 — O(r). For any triangle meeting
Criterion 2,

3
/tv > 7 /2 — [arcsin — 4 arcsin Var

2(1—r) 1—r7r

9
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For any triangle meeting Criterion 1,

+ arcsin

1—r (1—r)

/pt < 2 arcsin

Observation 7 is that

/np < 2arcsin
-7

We put these together to find that

]

3
/nv > /2 — [arcsin ﬁ + 2 arcsin 1\/__7; + 4 arcsin ] i .
Now we show that the distance d(s, v) must be small, using Corollary 6 with
a = /nv, so that that d(s,v) < pLFS(s) with

r

p =
(1 — r) cos(arcsin sa ) + 2arcsin ‘/_T

+ 5 arcsin )

Finally, the radius of the circumcircle of ¢ might actually be somewhat
smaller, d(v, s) cos(m/2 — /tv).
([

The constants in this theorem are again quite reasonable; for instance when
r=".1, we get p < .206 %

We define a surface triangle to be one which meets Criterea 1 and 2. Note
that all surface Delaunay triangles are surface triangles. We can infer from
the preceeding theorem that all surface triangles are indeed close to the
surface, as follows.

Corollary 12 Ewvery point on any surface triangle is within O(r)LFS(s) of
some sample s.

2Crust triangles were not be shown to be this small; there, the upper bound on the
circumradius is only O(y/(r) LFS(s)).
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6 Mapping Surface Triangles to the Surface

In the next section, we will show a homeomorphism between F and any
piecewise-linear surface 7' made up of surface triangles. We define the home-
omorphism explicitly, using a function. We initially define a map p on all of
R3, and then use its restriction to T.

Definition: Let 1 : R* — F map each point ¢ € R? to the closest point of
F.

Lemma 13 The restriction of u to T is a well defined and continuous func-
tion u: 1T — F.

Proof: The discontinuities of 4 as a map on R? are exactly the points of the
medial axis. If some point ¢ had more than one closest point on the surface,
g would be a point of the medial axis; but every point ¢ € T is within
O(r)LFS(s) of a triangle vertex s € F', and hence can be nowhere near the
medial axis. Similarly, u is continuous except at the medial axis of F', and
hence, since 7' is continuous and avoids the medial axis, p is continuous on
T.

O

Observe that the segment connecting p to p(p) is normal to F' at u(p).

The fundtion u defines a homoemorphism between 7T and F' if it is continuous,
one-to-one and onto. Our approach will be first to show that yu is well-behaved
on the samples themselves, and then show that this good behavior continues
in the interior of each triangle of T'. We begin with the following geometric
lemma.

Lemma 14 Let s be a sample and let m be the center of a medial ball B
tangent to the surface at s. No surface triangle intersects the interior of the
segment (s,m).

Proof: In order to intersect segment (s, m), a surface triangle ¢ would have

to intersect B, and so would the smallest Delaunay ball D of ¢. Since the
vertices of ¢ lie on F' and hence not in the interior of B, the intersection of

11



Figure 2: Proof of Lemma 14.

t and B must lie in the closed cap of B bounded by the plane H containing
the intersection of the boundaries of B and D. We will show that H avoids
the interior of (s, m).

Since D is Delaunay, s cannot lie in the interior of . H can only inter-
sect the interior of (s,m), then, if D contains m (see Figure 2.) But this
is impossible because m is a point of the medial axis, so that the radius of
D would be at least 1/2 LFS(s') for any vertex s’ of ¢, contradicting, by
Theorem 11, the assertion that ¢ is a surface triangle.

O

Since any point ¢ such that u(gq) = s lies on such an open segment (s, m), we
have the following.

Corollary 15 The function u is one-to-one from T to every sample s.

In the following section, we will show that u is indeed one-to-one on all of
T. One more geometric preliminary. We already know that the normal of a
surface triangle ¢ is close to the surface normals at its vertices (Observation
8). To complete the proof of homeomorphism, we need to show something
a little stronger: that the triangle normal agrees with the surface normal at
u(q) for every q € t.

Lemma 16 Let q be a point on trianglet € T'. The angle between the surface
normal iy at u(q) and the triangle normal t measures at most O(r) radians.

12



Proof: The circumcircle of ¢ is small; the distance from ¢ to the vertex s of
t with largest angle is p LF'S(s), with p = O(r), by Theorem 11. Choosing
r < .1 gives p < .206 < 1/3. Substituting p into Lemma 2 gives the result.

([

7 Homeomorphism

In this section, we show that building a manifold out of surface triangles is
sufficient for reconstruction. Let 7" be a piecewise-linear manifold made up of
surface triangles. Since all surface triangles are small, 7" is everywhere close
to F'. Under an additional mild assumption on 7', we show that u induces a
homeomorphism between T and F'.

Definition: A pair of triangles t;,t5 € T are adjacent if they share at least
one common vertex.

Assumption: Two adjacent triangles meet at their common vertex at an
angle of greater than /2.

This assumption excludes manifolds which contain sharp folds and, for in-
stance, flat tunnels.

Our proof proceeds in three short steps. We show that g induces a home-
omorphism on each triangle, then on each pair of adjacent triangles, and
finally on 7" as a whole.

Lemma 17 Let U be a region contained within one triangle t € T'. The
function u defines a homeomorphism between U and u(U) C F.

Proof: We know that p is well-defined and continuous on U, so it only re-
mains to show that it is one-to-one. For a point ¢ € ¢, the vector n; from p(q)
to ¢ is perpendicular to the surface at u(q); since F' is smooth the direction
of ny is unique and well defined. If there was some y € t with u(y) = u(q),
then ¢, p(q) and y would all be colinear and t itself would have to contain
the line segment between ¢ and y, contradicting Lemma 16, which says that

13



the normal ¢ of ¢ is nearly parallel to Tg.
(Il

Lemma 18 Let U be a region contained in adjacent triangles of T. The
function p defines a homeomorphism between U and p(U) C F.

Proof: Let g and y be any two points in U, and let v be the common vertex
of the triangles containing U. Lemma 17 implies that if u(q) = p(y) we can
assume that ¢ and y lie in the two distinct triangles ¢, and ¢,. Let 7 be the
surface normal at p(q) = u(y). Since the ray supported by 7 passes through
both t, and t,, and the angles /t,n, /t,n = O(r) (Lemma 16), then ¢, and
t, must meet at v at an acute angle. This would contradict the Assumption,
which is that ¢, and ¢, meet at v at an obtuse angle. Hence there are no two
points in U such that u(q) = u(y).

([

Finally, in the following theorem, we bring out the topological guns.

Theorem 19 The mapping p defines a homeomorphism from the triangula-
tion T to the surface F'.

Proof: Let F' C F be u(T). We first show that (T, u) is a covering space of
F'. (We relay on the treatment of covering spaces in Massey [16], Chapter 5.)
Informally, (T, u) is a covering space for F" if function g maps 7' smoothly
onto F', with no folds or other singularities. Showing that (T, i) is a covering
space is weaker than showing that p defines a homeomorphism, since, for
instance, it does not preclude several connected components of 7" mapping
onto the same component of F', or more interesting behaviour, such as a
torus under the map wrapping twice around another torus to form a double
COVETING.

Formally, the (T, u) is a covering space of F' if, for every x € F', there is
a path-connected elemenary neighborhood V,, around x such that each path-
connected component of p~1(V,) is mapped homeomorphically onto V, by

L.
To construct such an elemenary neighborhood, note that the set of points
|~ ()| corresponding to a point z € F' is non-zero and finite, since y is one-
to-one on each triangle of 7" and there are only a finite number of triangles.

14



Figure 3: Proof of Theorem 19.

For each point ¢ € p!(x), we choose an open neighborhood U, of around
g, homeomorphic to a disk and small enough so that U, is contained only in
triangles that contain gq.

We claim that ;1 maps each U, homeomorphically onto p(U,). This is because
p is continuous, it is onto w(U,) by definition, and, since any two points z
and y in U, are in adjacent triangles, it is one-to-one by Lemma 18.

Now consider the intersection U'(x) = Ngey1(2)1t(Uy), the intersection of the
maps of each of the U,. U'(x) is the intersection of a finite number of open
neighborhoods, each containing z, so we can find an open disk V, around
z. V, is path connected, and each component of p~*(V,) is a subset of some
U, and hence is mapped homeomorphically onto V,, by p. Thus (7', p) is a
covering space for F".

We now show that p defines a homeomorphism between 7" and F'. Since T is
onto F' by definition, we need only show that u is one-to-one. Consider one
connected component G of F'. A theorem of algebraic topology (see Massey
[16], Chapter 5 Lemma 3.4) says that when (T, u) is a covering space of F,
the sets u~'(z) for all z € G have the same cardinality. We now use Corollary
15, that p is one-to-one at every sample. Since each connected component of
F' contains some samples, it must be the case that u is everywhere one-to-one,
and T and F' are homeomorphic.

Finally, we show that F' = F. F' is closed and compact since T is closed
and compact. So F’ cannot include part of a connected component of F', and
F'" must consists of a subset of the connected components of F'. Since ev-
ery connected component of F' contains a sample s (actually many samples),
and p(s) = s, all components of F' belong to F', F' = F, and T and F are
homeomorphic.

15



8 Algorithm

Finally, we sketch a simple algorithm for selecting a piecewise-linear surface
which meets Assumption 7. * We note, however, that this is not a practical
algorithm; it can fail catastrophically when the input point set is not a dense
enough sample from a smooth surface. We include it here only to complete
the theoretical proof that we can produce a correct reconstruction given a
sufficiently good sample. In practice, other heuristics should be used.

Let T'" be the set of surface triangles. 7' includes the surface Delaunay
triangles, but might well be a superset, since S might be an r-sample for two
different surfaces F' and F’, each inducing a different set of surface Delaunay
triangles, both of which are guaranteed to be in 7".

To ensure that our output surface 7" will obey the Assumption that all di-
hedral angles are obtuse, we greedily remove all triangles adjacent to sharp
edges. Define a sharp edge to be one which has a dihedral angle greater than
37 /2 between a successive pair of incident triangles in the cyclic order around
the edge. In other words, a sharp edge has all of its adjacent triangles within
a small wedge. We consider an edge bounding only one triangle to have a di-
hedral of 27, so such an edge is necessarily sharp. (Notice that if we greedily
remove sharp edges from a set of triangles which does not contain a closed
manifold, we might end up removing every triangle; this is the catastrophic
failure mode.)

Let T" be the set of triangles remaining after every triangle adjacent to a
sharp edge has been removed. Since 7" has no sharp edge, every edge on the
outside of T" has two neighbors, so the outside of 7" is a piecewise-linear
manifold. We let T" be the outside surface of T"; we can find T', for example,

by depth-first search on the outer triangles of every connectected component
of T".

3This algorithm is essentially the same as the “manifold extraction” step of the crust
algorithm.
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Lemma 21 below guarantees that 7" still includes the surface Delaunay
triangles, and hence that every sample s is still contained in some triangle in
T". Since no surface triangle intersects the line segment from s to its outside
medial axis point, (Lemma 14) every sample appears on the outside of T".
So T includes every sample s.

It therefore remains only to prove Lemma 21. We begin with a simple
technical lemma, which says that any line which meets F' in two points close
together must be nearly parallel to the surface.

Lemma 20 A line intersecting F in two points x,z', such that d(z,z') <
O(r)LFS(x), must meet the surface normal at x at an angle of at least

7/2 — O(r).

Proof Sketch: The point ' must lie outside the two tangent balls of radius
LFS(z) at z, and must be near z.
O

Now we prove the lemma.
Lemma 21 No surface Delaunay triangle has a sharp edge.

Proof Sketch: Let ¢t and t' be adjacent surface Delaunay triangles, and let
e be their shared edge. If ¢ and ¢’ meet at e in an angle of at least 7/2, then
e cannot be a sharp edge, even with respect to other triangles adjacent to e.

Since t and t' are surface Delaunay triangles, they have circumspheres B
and B’', respectively, centered at points v, v’ of F. The boundaries of B and
B’ intersect in a circle C contained in a plane H, with H containing e. H
separates t and t', since the third vertex of each triangle must lie on the
boundary of its circumsphere, and B C B’ on one side of H, while on the
other B' C B.

Both circumspheres pass through C, so their centers lie on a line perpendicu-
lar to H. Since they are the circumcenters of surface Delaunay triangles, the
two centers are both within O(r)LF S(s) of s (using the sampling assumption
and Lemma 1). Hence d(v,v") < O(r)LFS(v), and the surface normal at v
is within O(r) radians of the surface normal at s. So the line [ between v and
v' must be nearly perpendicular to the surface normal 7 at s - the angle /in
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is /2 — O(r) (using Lemma 20 and Lemma 2). Hence the angle between
H and i is at most O(r). Since t and ¢’ are flat to the surface at s, and they

lie on opposite sides of H, the angle between them cannot be sharp.
(I

9 Conclusions and future work

We have given improved filtering criteria for selecting triangles from a Delau-
nay triangulation of a dense enough sample from a smooth surface to form a
piecewise-linear reconstruction of the surface. We have also given a reason-
ably simple proof that such a reconstruction is indeed homeomorphic to the
original surface.

In practice, the input point set S usually fails to be sufficiently dense near
sharp edges and corners, and often it samples a surface F' which is a manifold
with boundary rather than a closed manifold. Our experience with the crust
algorithm leads us to believe that the filtering criterea given here should
be fairly robust in these situations. The actual reconstruction algorithm,
unfortunately, while technically correct, relays strongly on the assumption
that F' is a closed manifold. We hope in the future to provide reconstruction
algorithms that are more robust and practical with the help of the simpler
theoretical framework given here.

Other important goals in this area are to correctly reconstruct surfaces with
sharp edges and corners, and to develop reconstruction algorithms that grace-
fully handle noise and incremental reconstruction algorithms that can avoid
examining all of the input data.
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