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A theory-guided materials design of nano-scaled superlattices containing metastable phases is critically
important for future development of advanced lamellar composites with application-dictated stiffness
and hardness. Our study combining theoretical and experimental methods exemplifies the strength of
this approach for the case of the elastic properties of AIN/CrN superlattices that were deposited by
reactive radio-frequency magnetron sputtering with a bilayer period of 4 nm. Importantly, CrN
stabilizes AIN in a metastable B1 (rock salt) cubic phase only in the form of a layer that is very thin, up to
afew nanometers. Due to the fact that B1-AIN crystals do not exist as bulk materials, experimental data
for this phase are not available. Therefore, quantum-mechanical calculations have been applied to
simulate an AIN/CrN superlattice with a similar bilayer period. The ab initio predicted Young’s
modulus (428 GPa) along the [001] direction is in excellent agreement with measured nano-indentation
values (408 + 32 GPa). Aiming at a future rapid high-throughput materials design of superlattices, we
have also tested predictions obtained within linear-elasticity continuum modeling using elastic
properties of B1-CrN and B1-AIN phases as input. Using single-crystal elastic constants from ab initio
calculations for both phases, we demonstrate the reliability of this approach to design nano-patterned
coherent superlattices with unprecedented and potentially superior properties.

Introduction

Over the past decades, transition metal nitrides have found wide-spread technological application as protective
coatings for improving the hardness, wear, oxidation and corrosion resistance of cutting tools and machine parts
[1-16]. Initial research focused on monophase binary nitrides (TiN, CrN, NbN, VN, etc) [1-3]. Significantly
improved performance was subsequently obtained by development of ternary, quaternary, and multinary single
phase coatings, a typical prototype of which ise.g. Ti; AL N or Cr; AL N [17-19]. However, there is a constant
need for novel advanced systems with yet more superior properties.

Compositionally modulated multilayers, and in particular superlattices with commensurate crystal
structures and bi-layer periods in the range of a few nanometers, have proven to be a prospective concept for
improving mechanical properties of nitride hard coatings [4—14, 20, 21]. Maximum hardness values from 35 to
50 GPa could be achieved by several types of superlattices (e.g. TiN/AIN [5], TiN/NDN [6], TiN/VN [7], TiN/
CrN{[8,9,20], AIN/CrN [10-12, 21]). Such a high hardness is comparable with cubic-BN and exceeded by only
a few materials, such as diamond. In comparison to these materials, however, metal nitrides have the advantage
of providing also high corrosion and oxidation resistance in addition to their excellent mechanical properties
[4, 13—16]. In particular, AIN/CrN has been shown to possess an outstanding combination of all these
properties [10-16, 21].

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 2. (a) Scanning transmission electron microscopy high angle annular dark field (STEM HAADF) image of the as-deposited
AIN/CrN superlattice showing chemically sharp layers (bright and dark contrast corresponds to CrN and AIN, respectively); (b) high-
resolution transmission electron microscopy (HR-TEM) image of the region marked by the rectangle in (a) showing coherent
multilayers. The multilayers are stacked along the [001] direction.

We focus our study on AIN/CrN superlattices (see figures 1 and 2) that exhibit a hardness of up to 40 GPa
[10-12,21]. When only a few nm thin, the AIN (that crystallizes under ambient conditions in a hexagonal crystal
phase) is stabilized in the cubic B1 (NaCl) structure [22]. Also, the Young’s modulus of AIN/CrN superlattices is
very high: nano-indentation reveals a range of 408 + 32 GPain case of the as-deposited samples in the direction
perpendicular to the AIN/CrN interfaces. The value of the Young’s modulus is very difficult (if not impossible)
to comprehend using solely experimental data because models developed for multilayers (see e.g. recent [23])
require the knowledge of the properties of both individual phases AIN and CrN. Some of these input parameters
(e.g. the elastic properties) are not available in case of B1-AIN because it does not exist in a bulk form and,
consequently, measurements cannot be performed. Although the missing parameters can be conveniently
obtained by first principles calculations (e.g., [24]), another issue is that in these very fine superlattices, the
volume ratio of bulk and interface regions is very high, and the available continuum mechanics models
neglecting the impact of interfaces need to be critically tested. Therefore, in this study, we employ quantum-
mechanical calculations (i) to simulate the elastic response of AIN/CrN superlattices and (ii) to evaluate the
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Figure 3. Spatial distribution of Cr and Alin an AIN/CrN superlattice measured by atom probe tomography (left, see also [25]) and
the computational model derived from these data (right).

influence of the CrN/AIN interfaces which are typically neglected in classical elastic models but naturally
represent part of our first-principles calculations.

Methods

AIN/CrN superlattices were synthesized by radio-frequency (RF) magnetron sputtering, whereas the structural
characterization of the microstructure was performed by transmission electron microscopy (TEM) usinga JEOL
(2200-FS) microscope operated at 200 kV. The chemistry of the superlattice was investigated by atom probe
tomography (APT) usinga LEAP™ 3000X-HR system. Details on the experiments are given in [25]. The
hardness and reduced elastic modulus of the superlattice were determined by nanoindentation at constant load
of 6 uN using a Hysitron Triboindenter with a Berkovich tip. The indentation depths were <100 nm, i.e. within
10% of the coating thickness, thus avoiding the influence of the substrate. The Young’s modulus of the
superlattice was calculated using the elastic modulus (1140 GPa) and Poisson’s ratio (0.07) of the indenter in
conjunction with the Poisson’s ratio of the superlattice, which was estimated as 0.2 [26].

The quantum mechanical calculations within the framework of density functional theory [27, 28] were
performed using the Vienna Ab initio Simulation Package [29, 30]. The exchange and correlation effects were
treated using the generalized gradient approximation as parametrized by Perdew et al [31] and implemented in
projector augmented wave pseudopotentials [32, 33]. We used a plane-wave cutoff 0of 450 eV witha4 x 4 x 1
Monkhorst-Pack k-point mesh for the 128-atomic supercells, yielding a total-energy accuracy in the order of
meV. The 128-atomic supercell (see figure 3) serves as our model for an AIN/CrN superlattice. It consists of two
parts representing the B1-AIN and B1-CrN phases. The first one is formed by eight (/2 x v/2 x 4) cubic B1
conventional cells of AIN (see lower part of the computational cell with Al atoms visualized as larger blue spheres
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in figure 3). The second region consists of eight (v/2 x v/2 x 4) cubic conventional cells of B1-CrN (see the
upper part of the computational cell with Cr atoms visualized as green spheres in figure 3).

The special quasi-random structure (SQS) concept [34] was applied to treat the anti-collinear local magnetic
moments of the Cr atoms (see both spin orientations visualized by dark and light green colors, respectively, in
figure 3) in order to model an experimentally-found paramagnetic state of CrN [35]. The reliability of our
approach is based on previous extensive work focused on CrN by Alling, Abrikosov and their co-workers (see,
e.g., [36—40]), specifically their positive comparison of the SQS concept and both the disordered local moments
method within the coherent potential approximation and the magnetic sampling method in case of fixed Bl
lattices of CrN [37]. Additionally, local atomic relaxations combined with the SQS approach have been shown by
Zhou et al [24] to have only very limited impact when describing the bulk B1-CrN and the actual distribution of
the local anti-parallel magnetic moments within different SQS supercells has been demonstrated to have only
very minor impact on the computed properties (see, for example, table 1 in [35]).

The applied periodic boundary conditions produce the superlattice geometry with a bi-layer period about
3.2 nm. Elastic constants were computed by the stress—strain method [24]. Additional tests revealed that, e.g. in
case of AIN, the relative changes in elastic constants are about 2% when increasing the plane-wave cutoff energy
from 450 to 700 eV (used in [24]). All atomic positions as well as the shape of the supercell were allowed to
change so as to minimize the total energy (a full structural optimization). The computed single-crystal elastic
constants, as predicted here by ab initio calculations for the AIN/CrN superlattice, do not assume tetragonal
symmetry as expected for the lamellar geometry when two cubic-symmetry phases are stacked one on top of
another along [001]. The reason is that the SQS of the local magnetic moments of the Cr atoms (as our model for
the paramagnetic state) in the CrN part of the supercell violates such symmetry. Moakher and Norris [41]
provided a rigorous mathematical theory on how to project a tensor of elastic constants with an arbitrary
symmetry onto a tensor with a desired crystallographic symmetry (here tetragonal). We use this method in our
study as described below. Similar concepts are often used in case of systems with any form of disorder (see e.g.
[42-45]).

Results and discussion

The microstructure of the deposited AIN/CrN superlattice was characterized by TEM. Figure 2(a) presents a
scanning TEM (STEM) image of the multilayers recorded in high angle annular dark field (HAADF) mode. The
image shows chemically very well defined layers as indicated by the chemical contrast provided by the atomic
number Z. Additionally, high-resolution (HR) TEM investigations revealed coherency between the multilayers
(see figure 2(b)), which is fundamental for comparison with the modeled AIN/CrN superlattice.
Nanoindentation experiments performed along the direction perpendicular to the (001) AIN/CrN interfaces
yield a Young’s modulus 0f408 + 32 GPa.

In this paper we quantitatively analyze the measured Young’s modulus of the as-deposited AIN/CrN
superlattice. We use quantum-mechanical calculations to (i) determine elastic constants C;; of the AIN/CrN
superlattice and (ii) evaluate the directional dependence of the Young’s modulus (using the earlier obtained
values Cj)) including specifically the [001] direction for which the nano-indentation measurements were
performed. The resulting set of elastic constants computed for the AIN/CrN superlattice (essentially a tetragonal
system with a lamellar geometry oriented along the [001] direction) is C;; = 456 GPa, C;, = 145 GPa,

Cy3 = 146 GPa, Cs3 = 500 GPa, Cy, = 155 GPaand Cg¢ = 214 GPa. A directional dependence of the
corresponding Young’s modulus based on this tensor of elastic constants is shown in figure 4 (computed and
visualized by the SC-EMA [46—48] library freely accessible at scema.mpie.de).

The predicted value of the Young’s modulus along [001] is 428 GPa and falls within the experimental
uncertainty of 408 £ 32 GPa measured by nano-indentation. Additionally, in order to probe any size-
dependence of our results with respect to the bi-layer thickness, we performed calculations for twice thinned
layers (/2 x V/2 x 2 cubicB1 conventional cells of both CrN and AIN) and these resulted in elastic constants
that only marginally changed, C,; = 480 GPa, C;, = 142 GPa, C;3 = 138 GPa, Cs5 = 481 GPa,

Cy4 = 150 GPaand Cy4s = 207 GPa. This example neatly shows that quantum-mechanical calculations can be
used not only to explain measured data related to nano-scaled superlattices, but also for a reliable prediction of
properties of these systems within a theory-guided materials design concept.

When aiming at a high-throughput version of state-of-the-art theory-guided designing concepts, all-atom
ab initio calculations of the whole two-component superlattice using supercells similar to that depicted in
figure 3 are, however, still computationally too intensive (weeks/months of CPU time using multi-processor
supercomputers). Therefore, in order to significantly reduce computational costs and enable high-throughput
simulations, we assess the performance of a suitable linear-elasticity continuum model of Grimsditch and
Nizzoli [49] that is based on the elasticity tensor, the molar ratio, and the crystallographic orientation of each
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Figure 4. The directional dependence of the Young’s modulus (in GPa) of the simulated AIN/CrN superlattice based on ab initio
calculated elastic constants (computed and visualized by the SC-EMA [46—48] library freely accessible at scema.mpie.de).

individual phase, but disregards any heterogeneity introduced by the layer interface as well as the exact bi-layer
spacings. Experimental values of the elasticity tensor have been difficult to obtain for CrN but do exist [50].

The situation is fundamentally different in the case of AIN that crystallizes under normal conditions in a
hexagonal B4 phase, and, thus, does not exist as bulk material in the B1 phase that is observed in the AIN/CrN
bi-layer structure. Consequently, there are no experimental single-crystal elastic constants of B1-AIN available
in literature. Therefore, we propose to use quantum-mechanical calculations to determine the missing elastic
parameters of B1-AIN. In order to be on equal footing (and not mix experimental and theoretical values) we use
here elastic constants calculated from first principles [24] for both B1-CrN (C;, = 516 GPa, C;, = 115 GPa,
Cy44 = 116 GPa)and B1-AIN (C;; = 426 GPa, C;, = 167 GPa, Cyy = 306 GPa) using similar parameters as in
the present study, hence providing relevant and comparable predictions. Figure 5 (left) shows that the elasticity
of these two phases is qualitatively opposite: B1-AIN (top) is elastically hard along the (111) and soft along the
(001) directions, while B1-CrN (bottom) is exactly opposite.

Using the above listed ab initio predicted single-crystal elastic constants of B1-AIN and B1-CrN as input for
the linear-elasticity continuum model of Grimsditch and Nizzoli [49], single-crystal elastic constants of the
AIN/CrN superlattice can be predicted. The corresponding directional dependence of the Young’s modulus is
shown in figure 5 (right-hand part). The superlattice system has a tetragonal symmetry as a consequence of the
orientation of the material layers within the superlattice. The Young’s modulus along [001] is predicted as
400 GPa, i.e. very close to the measured value of 408 GPa and within the 32 GPa error-bar of the
nanoindentation measurements.

The small differences (10 GPa) between the directional dependences of the Young moduli of the AIN /CrN
superlattice directly predicted from quantum-mechanical simulations (figure 4) and the linear-elasticity
continuum model (figure 5 right, color-coded scales are identical in these two cases) are attributed to the
following effects. First, the linear-elasticity method of Grimsditch and Nizzoli [49] does not take into account the
actual interface (only compatibility and equilibrium of normal stress apply). Second, the linear elastic
continuum model is length-scale independent, i.e. it does not consider the thickness of the layers but only their
volume fraction, and hence would predict the same result for any kind of planar dispersion of the AIN/CrN
layers. Third, when we used the method of Grimsditch and Nizzoli, the input single-crystalline elastic constants
were those computed for equilibrium lattice parameters of each of the two phases (4.07 A for B1-AIN and 4.15 A
for B1-CrN) whereas the all-atom simulated AIN/CrN superlattice is coherent and has an in-plane lattice
parameter of 4.11 A that is common to both phases (and different from their equilibrium lattice parameters) and
corresponds to the minimum energy of the whole superlattice system. Our approach here reflects the fact that,
without either quantum-mechanical calculations or advanced experimental measurements the equilibrium
lattice parameter of the AIN/CrN superlattice, this value would not be known. This is even more true in case of
elastic constants of individual phases B1-AIN and B1-CrN (with these two materials artificially kept off their own
individual equilibria at the equilibrium lattice parameter of the AIN/CrN superlattice). This fact can be crucial
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Figure 5. Directional dependences of the Young moduli of B1-AIN (top left), B1-CrN (bottom left) and the AIN/CrN multilayer
(right) computed by a linear-elasticity approach (schematically visualized by the arrows) of Grimsditch and Nizzoli [49] using ab initio
determined single-crystal elastic constants of B1-AIN and B1-CrN as published in [24] as input. Please mind different color-coded
scales.

when applying the approach of Grimsditch and Nizzoli to other materials systems with more mismatching
lattice parameters (bench marking quantum-mechanical calculations would be necessary in these cases).

Considering the close match between all three values of the Young modulus established for the layer normal
direction [001] by two theoretical (400 and 428 GPa) and one experimental method (408 £ 32 GPa), the
comparably crude linear-elasticity approach [49] appears to be a suitable candidate for high-throughput
screening of elastic properties. A particular speed advantage is the applicability of the same (equilibrium bulk)
elasticity tensors for different crystallographic orientations of layer interfaces, e.g. {111} or {110} instead of
{100} used here. In contrast, atomic and electronic structure quantum-mechanical calculations would have to
be re-run with different supercells specifically constructed for each interface orientation (consuming months to
years of CPU time). Hence, the approach of Grimsditch and Nizzoli allows to explore a vast space of different
crystallographic orientations of the interface separating the two deposited phases probing the opposite hard/soft
crystallography of the two deposited phases (see subfigures on the left of figure 5).

In order to examine elastic properties of CrN/AIN superlattices with different interface orientations, we
limit ourselves to situations when both phases have the same molar fraction and are deposited with the same
crystallographic orientation repetitively one on top of the other. Employing the approach of Grimsditch and
Nizzoli for different interface orientations and molar fraction of B1-AIN phase, we have computed the Young’s
modulus that would be detected in the direction perpendicular to these interfaces. A directional dependence of
the Young’s modulus as a function of molar fraction of B1-AIN is shown in figure 6 for each of the three main
crystallographic interface orientations, (001), (110) and (111). As seen, a much higher Young’s modulus (even
over 600 GPa) in the direction perpendicular to the interface can be achieved if the phases are deposited on top of
each other along the (111) crystallographic direction.

Most importantly, this rather superior stiffness is not due to the stiffness of CrN, i.e., the phase that exists as a
bulk under ambient conditions, but mostly due to the B1-AIN (see the directional dependences of both phases
on the left of figure 5), that is not stable in the B1 crystal structure as a bulk and is stabilized in the form of nano-
sized layers inside of the studied superlattice. The theory-guided materials design thus enters potentially
unlimited area of metastable material phases, which do not exist as a bulk, but that can provide unprecedented/
superior properties to nano-patterned composites in which they would be stabilized in crystal structures
determined by other composite components. As there are no experimental data for these metastable phases,
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Figure 6. Computed directional dependence of the Young’s modulus (GPa) of the superlattice predicted by the approach of
Grimsditch and Nizzoli [49], that would be detected in the direction perpendicular to the interfaces between both phases, as a function
of crystallographic orientation of these interfaces, i.e. the crystallographic direction along which both phases are repetitively deposited
one on top of the other (visualized as a function of the molar fraction of the B1-AIN phase).

which normally do not exist as a bulk, quantum-mechanical calculations can serve as an excellent guide in this
uncharted territory. We thus pave a path towards a theory-guided fine-tuning of the overall superlattice Young
modulus responding to application-driven industrial needs by changing either /both properties of (meta-)stable
phases present in the superlattice and/or interface orientations.

Conclusions

We have employed quantum-mechanical calculations to predict elastic properties of AIN/CrN superlattices and
compared our results to nanoindentation data collected from coherent multilayers deposited by reactive RF
magnetron sputtering. The ab initio predicted Young modulus (428 GPa) along [001] is in excellent agreement
with the measured nano-indentation value (408 £ 32 GPa). Aiming at a future high-throughput materials
design of superlattices, we assessed predictions from a linear-elasticity continuum model [49]. Required elastic
constants of B1-CrN and B1-AIN phases were calculated ab initio and their volume fractions determined by APT
and HRTEM. Since excellent agreement between predictions and experiment is reached also in this case—at
much reduced computational cost—we speculate that Grimsditch and Nizzoli’s approach [49] is suitable for
designing nano-scaled superlattices by varying the crystallographic orientation of the layer interface.

The role of quantum-mechanical calculations is irreplaceable here for two reasons. First, in the studied
superlattice, AIN occurs as metastable B1 (NaCl) phase for which experimental values do not exist. Therefore,
ab initio calculations of individual bulk phases are the only way to obtain the unknown parameters. Second, the
success of the linear-elasticity approach might be specific to the studied B1-AIN/CrN superlattice (with small
mismatch in lattice parameter) and bench marking quantum-mechanical calculations should be performed
before applying the continuum approximation in a high-throughput manner to superlattices containing other
phases. The combined approach nevertheless allows to explore a vast and yet uncharted territory of different
orientations of multilayers and individual phases that, depending on their properties, can be very rich and
potentially providing unprecedented /superior properties. A path towards a high-throughput theory-guided
optimization of Young modulus in nano-scale bi-layer composites by changing the properties of (meta-)stable
constituents and/or layer interface orientations [51-53] is thus paved for future exploration.
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