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Abstract: We have developed a simple and selective method for the electrochemical detection
of hydrazine (HZ) using poly(dopamine) (pDA)-modified indium tin oxide (ITO) electrodes.
Modification with pDA was easily achieved by submerging the ITO electrode in a DA solution
for 30 min. The electrocatalytic oxidation of HZ on the pDA-modified ITO electrode was measured
by cyclic voltammetry. In buffer solution, the concentration range for linear HZ detection was
100 µM–10 mM, and the detection limit was 1 µM. The proposed method was finally used to
determine HZ in tap water to simulate the analysis of real samples. This method showed good
recovery (94%–115%) and was not affected by the other species present in the tap water samples.

Keywords: hydrazine; detection; indium tin oxide electrode; dopamine; poly(dopamine) film;
cyclic voltammetry

1. Introduction

Hydrazine (HZ, N2H4) is an inorganic compound that exists as a volatile and flammable colorless
liquid. HZ and its derivatives are mainly used in fuel-cell technology [1] and as propellants in rocket
fuel, pesticides for agriculture, intermediates in photoprinting and pharmaceuticals, and deoxidizers
in boilers. HZ is considered hazardous and is classified as a carcinogen by the US Environmental
Protection Agency (EPA) [2] because it can cause chromosome aberrations and negatively affect the
lungs, liver, spleen, thyroid gland, and central nervous system. Therefore, methods for the detection
and monitoring systems for HZ should be developed to meet the demands of both industries and
environmental groups. To date, various analytical methods such as titrimetry [3], chromatography [4],
spectrophotometry [5], flow injection analysis with chemiluminescence [6], potentiometry [7], and
amperometry [8–11] have been used for HZ detection. Among these techniques, electrochemical
methods have advantages of simplicity, high sensitivity, rapid response, and low cost. To detect
HZ using electrochemical methods, electrodes should be modified using special materials with
electrocatalytic activities for the electrochemical oxidation of HZ to overcome the limitations associated
with the high overpotential and sluggish kinetics of HZ in electrochemical reactions [12]. To achieve
this, many studies have suggested the modification of electrodes by employing nanoparticles
(e.g., Au, Ti, Pd, ZnO, Co, Sn, ZrO2, Bi, and Ce) [13–21], CoPC nanoparticles [22], manganese
hexacyanoferrate [9], CoOOH nanosheets [12], zinc oxide nanowires [23], 4-pyridyl hydroquinone [24],
biomolecules [25], and branched hierarchical ZnO nanorod arrays [26]. However, in many cases,
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creating these materials and using them to modify the electrode requires several preparation steps,
which not only increases the cost of implementing the technique but also decreases its reproducibility.
Therefore, simple and reproducible modification methods are urgently needed. To meet this
requirement, in this study we adopted poly(dopamine) (pDA) to modify electrodes to detect HZ.
We used pDA as a modifier or an electrocatalyst [19,27–31], because pDA can be simply and quickly
formed on many substrates in basic solutions [32–35].

Indium tin oxide (ITO) electrodes are mainly used in display and solar cell applications because
of their good electrical conductivity, optical transparency, and low cost. These electrodes are
particularly applicable to electrochemical sensors because of their low background current and high
reproducibility [36,37]. Another characteristic property of ITO electrodes is that they have lower
catalytic activity than other metal (e.g., Pt, Au, and Pd) electrodes, which can suppress interfering
electrochemical reactions during measurements. Although the low catalytic activity of ITO electrodes
can also decrease the target (e.g., HZ) current signal, this problem can be resolved by modifying the
electrodes with specific materials.

Herein, we propose a pDA-modified ITO electrode for sensitive detection of HZ in solution.
Because the formation of pDA films from DA solution is spontaneous and rapid, pDA-modified
ITO electrodes were very easily obtained by submerging the electrodes in a DA solution for
30 min [27,33,38]. It is already known that DA polymerizes spontaneously to pDA in basic solution;
in this process, DA is first oxidized to dopaminequinone, followed by intramolecular cyclization
and rearrangement. Next, the product, leukodopaminechrome, is oxidized to dopaminechrome.
Finally, dopaminechrome polymerizes to pDA on an ITO electrode. We used the resulting pDA-ITO
electrode to detect HZ. As shown in Figure 1, the electrochemical reaction occurred on the pDA-ITO
electrode when an appropriate potential was applied. In this process, pDA on the ITO electrode is first
oxidized to poly(dopamine-o-quinone) (pDQ), generating an anodic current, and it is then reduced
back to pDA by HZ, which is a strong reducing agent. Because of this redox cycling reaction, very
high anodic currents can be obtained.
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readily detected because of the electrochemical-chemical (EC) reaction on the pDA-ITO electrode.

2. Materials and Methods

2.1. Chemicals and Instruments

Dopamine hydrochloride, HZ, KCl, Na3PO4, CaCO3, ZnCl2, MgSO4, MnCl2, FeCl2, CoCl2, and
Tris were acquired from Sigma–Aldrich (Yongin, Korea). Unless otherwise indicated, all reagents
were used as received. Tris buffer was prepared using 0.05 M Tris, 0.138 M NaCl, and 0.0027 M KCl.
All aqueous solutions were made with ultrapure water (>18 MΩ¨ cm, Millipore, Darmstadt, Germany).
ITO electrodes (30 Ω) were purchased from Samsung Corning (Daegu, Korea). Electrochemical
measurements were performed using a CHI617B device (CH Instruments, Austin, TX, USA).

2.2. Electrochemical Measurement

A standard three-electrode cell with an ITO working electrode, a Au wire counter electrode,
and a Ag/AgCl reference electrode (3 M KCl) was used. The area of the ITO working electrode was
0.28 cm2. The ITO working electrodes were sequentially washed in acetone, ethanol, and ultrapure
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water with ultrasonication for 15 min. The pDA-ITO working electrodes were obtained by submerging
the cleaned ITO electrodes in Tris buffer containing 1 mM DA for 30 min. Subsequently, the pDA-ITO
electrodes were washed with distilled water. All HZ-detection experiments were conducted in Tris
buffer using pDA-ITO electrodes. All experiments were carried out at room temperature. Air-saturated
solutions were used without any further preparation step (e.g., Ar bubbling).

3. Results and Discussion

3.1. Electrochemical Detection of HZ

The electrochemical oxidation properties of HZ were examined on a bare ITO electrode using
commercially available Tris buffer (pH 8) (Figure 2). In the absence of HZ, only the capacitive current
of the bare ITO electrode was measured (Figure 2A). In the presence of 1 mM¨HZ, a sluggish oxidation
peak was observed because of the slow electron transfer between HZ and the bare ITO electrode
(Figure 2B). This slow electron transfer leads to a low anodic current and prevents sensitive detection.
Thus, for HZ sensing applications, the HZ oxidation current must be increased.
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Figure 2. Cyclic voltammograms of (A) Tris buffer (pH 8) and (B) 1 mM¨ HZ in Tris buffer (pH 8) using
an ITO electrode at a scan rate 50 mV/s.

Spontaneous formation of a pDA film was achieved on a bare ITO electrode by simply immersing
the electrode in Tris buffer containing 1 mM DA for 30 min. The resulting pDA film can be easily
oxidized at the ITO electrode [34]. Previously, we suggested a DA-detection method using pDA films
on ITO electrodes in the presence of HZ, wherein the oxidation current of pDA increased proportionally
to the concentration of DA [35]. By inverting the concept underlying the previously described method,
pDA films can be used as electrocatalytic mediators for sensitive detection of HZ oxidation. For this
purpose, HZ oxidation was performed on pDA film-modified ITO electrodes in Tris buffer containing
1 mM¨HZ. Unlike the case with the bare ITO electrode, we observed a large peak-shaped HZ oxidation
current of approximately 60 µA at roughly 0.3 V in the modified electrode (Figure 3).
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This 60 µA current represents an increase of nearly 40-fold compared with that with the bare ITO
electrode (ca. 0.15 µA). These results indicate that HZ oxidation by the pDA film could be applied
for sensitive detection of HZ. Two reactions occurred simultaneously at the pDA-ITO electrode: the
first is electrochemical oxidation of pDA to pDQ on the ITO electrode surface, and the second is pDQ
reduction by HZ oxidation. We believe that the high anodic current shown in Figure 3 (red line) is
governed by the diffusion process of HZ in solution. This is confirmed by the plot of the anodic peak
current versus square root of the scan rate (Figure 4). As shown in Figure 4B, the anodic peak currents
showed good linearity with the square root of scan rate. Therefore, it is clear that the anodic current is
certainly generated by the diffusion process of HZ in solution at the pDA-ITO electrode.
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3.2. Optimization of the Experimental Conditions for HZ Detection

To maximize the HZ oxidation current, we varied the amount of DA and the pH of the Tris buffer
containing HZ. First, the oxidation currents in 1 mM¨HZ were measured with different amounts of
DA on the ITO electrodes. The amount of DA can be controlled by varying the duration for which ITO
electrodes are submerged in Tris buffer containing 1 mM DA. Figure 5 shows that the HZ oxidation
current linearly increases up to a submersion time of 20 min and reaches saturation at 30 min.
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Based on this result, we selected 30 min of submersion as the optimal value. Next, the pH of the
Tris buffer used for the electrochemical measurement was investigated because the oxidation current of
pDA to pDQ can be altered based on the pKa value (8.8) of DA [39]. ITO electrodes submerged in 1 mM
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DA for 30 min were tested in Tris buffer containing 1 mM¨HZ with various pH values. The tested
pH values ranged from 8 to 10, and the highest oxidation current was observed at pH 9 (Figure 6).
Therefore, Tris buffer with pH 9 was chosen as the optimal test solution for HZ detection.
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Figure 6. Oxidation currents based on the pH of the Tris buffer. The ITO electrodes were submerged in
1 mM DA for 30 min and then measured in 1 mM¨ HZ. The error bars indicate the standard deviations
of at least three measurements.

The subsequent HZ-detection experiments were performed under the optimal conditions of
30 min of ITO electrode submersion in DA solution and measurement in Tris buffer with pH 9.

3.3. HZ-Sensing Performances

Cyclic voltammetry was conducted to determine the concentrations of HZ on the pDA
film-modified ITO electrodes at a scan rate of 50 mV/s. The oxidation peak currents at approximately
0.3 V were linearly proportional to the HZ concentration in the range of 100 µM–10 mM (Figure 7A).
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The linear relationship between the oxidation currents and HZ concentrations in this range can be
described by the following equation (Figure 7C):

y “ 60.5 log pxq p˘8.37%q´ 101 p˘14.9%q; pR2 “ 0.9070, 102ď xď 104q

Unlike the case of high concentrations (ě100 µM), another oxidation peak with an ambiguous
shape appeared at approximately 0.1 V at low concentrations (ď10 µM) (Figure 7B). We believe that
this phenomenon occurred owing to the oxidation of the pDA film when the HZ concentration was
lower than the DA concentration [30]. Therefore, we chose to measure the HZ concentration using the
oxidation peak current at 0.3 V.

Although the oxidation peak currents increased with the HZ concentration (Figure 7), Figure 7C
shows that this relationship was not linear when the concentration was lower than 10 µM. Indeed, the
oxidation current of 1 µM HZ shown in the inset of Figure 7C is higher than the 3SD line, indicating
that the limit of detection of this method is 1 µM HZ. Therefore, the linear concentration range for HZ
detection is 100 µM–10 mM, and the detection limit is 1 µM. These values are comparable to those of
other previously reported methods using, for example, nanoparticles [12,40], oxide materials [25,41],
and polymers [42] (Table 1).

Table 1. Comparison of surface-modified electrodes for HZ detection.

Type of Electrode Detection
Limit (µM)

Linear
Range (µM) Sample Condition Reference

a MnHCF-modified graphite-wax composite 6.65 33.3–8180 Fe(CN)6
4´/Fe(CN)6

3 [9]
CoOOH nanosheets 20 0–1000 0.1 M NaOH [12]
b CoPc-(CoTPP)4/c GCE 230 _ 0.2 M NaOH [22]
d Hb/ZnO/e CNF/GCE 6.60 19.8–1710 0.1 M f PBS (pH 7) [25]
SnO2/guar-gum hybrid nanocomposite 2760 2000–22,000 Fe(CN)6

4´/Fe(CN)6
3 [40]

Zinc oxide nanorods ~515.7 0.3–300 0.1 M PBS [41]
Overoxidized polypyrrole 3.7 1.3–2000 0.1 M ammonium buffer (pH 9) [42]
ZnO-g RGO 0.8 1–33,500 0.1 M NaOH [43]
ZnO nanoparticles 0.35 0.5–5000 0.01 M PBS (pH 7.5) [44]
ZnO nanoparticles II 0.147 _ 0.01 M PBS (pH 7.0) [45]
ZnO nanofilm 0.5 0.5–14,200 0.1 M NaOH [46]
Mn2O3 nanorods 1.1 2–1300 0.01 M PBS (pH 7.0) [47]
h PdNPs/I PTAA/GCE 0.00267 0.008–10 0.01 M PBS (pH 7.0) [48]
j PEDOT:k PSS/Pd 0.12 0.4–100 0.2 M PBS (pH 6.86) [49]
Pd-lGG-g-PAM-silica 4.1 50–180,000 PBS (pH 7.0) [50]
m AuNPs/n poly(BCP)/˝ CNT/GCE 0.1 0.5–1000 0.1 M PBS (pH 10.0) [51]
p PNi-TPPS4-NPs 0.11 _ 0.1 M NaOH [52]
q nano-CoTAPC SPEs 30 10–100 PBS (pH 7.4) [53]
PdNPs/RGO r RDEs 0.007 0.1–1000 0.2 M PBS (pH 7.4) [18]
pDA/ITO 1 100–10,000 0.05 M Tris buffer This work

a MnHCF: Manganese hexacyanoferrate; b CoPc-(CoTPP)4: Cobalt(II)phthalocyanine-
cobalt(II)tetraphenylporphyrin pentamer; c GCE: Glassy carbon electrode; d Hb: Hemoglobin; e CNF: Carbon
nanofiber; f PBS: Phosphate-buffered saline; g RGO: Reduced graphene oxide; h PdNPs: Pd nanoparticles;
I PTAA: Poly(thiophene-3-acetic acid); j PEDOT: Poly(3,4-ethylenedioxythiophene); k PSS: Poly(styrene
sulfonate); l GG-g-PAM: Guar gum grafted with poly(acrylamide); m AuNPs: Au nanoparticles; n poly(BCP):
Poly(bromocresol purple); ˝ CNT: carbon nanotube; p PNi-TPPS4: poly-(5,10,15,20-tetra(4-sulfophenyl)
porphyrin-nickel); q nano-CoTAPC SPEs: Cobalt (II) phthalocyanine nanoparticle-modified screen-printed
electrodes; r RDEs: Rotating disk electrodes.

3.4. Influence of Interference Molecules for Detecting HZ and the Stability of pDA-ITO Electrodes

To apply this method to real samples, the pDA-ITO electrodes were used to detect various
HZ concentrations in tap water solution with additional ions (containing 50 mM Tris, 300 µM Na+,
100 µM Ca2+, 100 µM Zn2+, 100 µM Mg2+, 100 µM Co2+, 100 µM Fe2+, 600 µM Cl´, 100 µM PO4

3´,
100 µM SO4

2´, and 100 µM CO3
2´) (see the Supporting Information, Figure S1). As shown in Table 2,

eight samples of tap water, four containing 100 µM and the other four containing 1000 µM HZ, could
be detected using the pDA-modified ITO electrode with good recovery (94%–115%).
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Table 2. Determination of HZ in tap water containing ions.

Added (µM) Sample Current at 0.3 V (µA) Found (µM) Recovery (%) a

100

1 21.5 105 105
2 20.1 100 100
3 23.2 112 112
4 21.1 104 104

1000

1 78.9 940 94
2 81.3 1030 103
3 79.6 966 96.6
4 84.2 1151 115

All solutions comprise tap water containing ions (50 mM Tris, 300 µM Na+, 100 µM Ca2+, 100 µM Zn2+,
100 µM Mg2+, 100 µM Co2+, 100 µM Fe2+, 600 µM Cl´, 100 µM PO4

3´, 100 µM SO4
2´, and 100 µM CO3

2´);
a Recovery (%) = (CFound/CAdded) ˆ 100%.

Stabilities of pDA-ITO electrodes were measured with respect to time in a tap water solution
containing additional ions (containing 50 mM Tris, 300 µM Na+, 100 µM Ca2+, 100 µM Zn2+, 100 µM
Mg2+, 100 µM Co2+, 100 µM Fe2+, 600 µM Cl´, 100 µM PO4

3´, 100 µM SO4
2´, and 100 µM CO3

2´).
Sixty-four electrodes were prepared on the same day, and four electrodes were used to measure the
same amount of HZ each day (tap water solution with additional ions). The prepared electrodes
were stored in a refrigerator at 4 ˝C. As shown in Figure 8, the normalized currents indicated that the
detection currents decrease with time. When we used pDA-ITO electrodes 1 day later, 93.9% (˘7.96%)
and 90.1% (˘10.5%) currents were observed when detection experiments were carried out at 1 mM
and 0.1 mM¨HZ, respectively. After 3 days, the normalized currents decreased to 69.5% (˘4.34%) and
67.6% (˘1.2%), respectively, for 1 mM and 0.1 mM¨HZ. We observed similar decreasing trends in both
1 mM and 0.1 mM¨HZ detection experiments. This result means that the pDA-ITO electrodes are
not suitable for long-term usage. However, more experiments are needed to extend the stability of
pDA-ITO electrodes.
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4. Conclusions

We have developed a simple and fast EC-based HZ-detection method using pDA film-modified
ITO electrodes. The modification of ITO electrodes with pDA films was easily achieved by submerging
the electrodes in a DA solution for 30 min. The pDA film acts as a mediator for the EC reaction and
shows good performance in the detection of HZ. This HZ detection method has a linear dynamic range
of 100 µM–10 mM and has a detection limit of 1 µM. When it is used to analyze tap water containing
various concentrations of HZ, it showed good recovery and was not affected by other ionic species
present in the samples.
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