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Abstract

In this paper, we present a new algorithm for the
calibration of a camera and the recovery of 3D scene
structure up to a scale from image sequences using
known angles between lines in the scene. The
proposed method computes the intrinsic parameters
of the camera using the invariance of angles under
the dmilarity transformation. Specifically, we
recover the matrix that is the homography between
the projective structure and the Euclidean structure
using angles. Snce this matrix is a unique one in the
given set of image sequences, we can easily deal with
the problem of varying intrinsic parameters of the
camera.

Experimental results on the synthetic and real
images demondrate the feashbility of the proposed
algorithm.

1 Introduction

The recovery of 3D scene dructure from image
sequences has been an active research topic in
computer vison. A classica stereo gpproach first
calibrates the camera and then recovers 3D scene
structure using the correspondences in two images.
Most cdlibration methods [1, 2] compute the relative
postions of the cameras and their intrinsc
parameters usng 3D coordinates of points on a
known cdibration target. However, it is dmost
impossible to use the same cdibration target for the
wide range of vison tasks that require cameras with
long focal lengths for magnification as well as short
ones for a lager fidd-of-view. Moreover, many
robotic applications demand cameras to be cdibrated
on-line, which makes impossible to set out specific
calibration targets for different camera set-ups.

Faugeras [3] presented a calibration method using
the known angle between lines in the scene. Firg, he
derived the congraint for the image of the absolute
conic usng the known angle between two lines that
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pass through the optical center and it is a quadratic
on the unknown coefficients of the image of the
absolute conic. To extend this result to the known
angle between linesin 3D, it is required to recover
the given scene up to affine transformations.

Faugeras et al. [4] adso presented a dratified
approach to recover the Euclidean geometry of a
scene by using a priori information about the scene.
They firdt used a priori information about the affine
sructure of the scene such as 3D pardld lines and
ratios of lengths of pardlel 3D segments. To recover
the metric structure of the scene they used a priori
information such as 3D angles and ratios of lengths
of 3-D segments. They recovered the scene structure
sequentially from the projective to the affine and
findly to the Euclidean.

Our proposed algorithm recovers directly the
homography matrix between the projective and the
Euclidean dructure, without going through an
intermediate step of affine reconstruction.

Boufama et al. [5] presented a method for directly
edimating the transformation matrix between the
projective solution and the Euclidean one using
congraints in the scene. They used fixating a point,
laying on the horizontal plane, vertica alignment and
the distant between pointsin 3-D.

In this paper, we present a calibration method that
uses a congtraint — angle between two lines — in the
scene rather than a cdlibration target. The angle
invariance under the similarity transformation is used
to derive the congraint for the homography meatrix
between the projective structure and the Euclidean
sructure. This homography is a unique one in the
given sets of images. By this homography we can
ded with the varying intrinsic parameters of camera
only using the projective reconstruction.

2 Recongruction by Homography Matrix

The process of projection of a point in 3D to the
image plane can be expressed as a linear matrix



operation in the homogenous coordinates. Firdt, there
is a rigid body transformation between the world
coordinates x, axd the camera-centered
coordinates X, . The next stage is perspective
projection of x_ onto x in the image plane.
Findly, the image coordinates x ae converted to
the pixel coordinates m=(u,v,1)" . These processes
can be represented as:

m=P, X, @
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P, Isthe camera projection matrix for a perspective
camera. a and a, ae the scde aspect of the x
andy axisintheimage, g isaskew factor,and u
and v, are the pixel coordinates of the pri ncipe?
point. We assume that the skew in the camera is

negligible
g=0 @
It iswell known that projective reconstruction can

be obtained from uncalibrated image sequences [8, 9].

In this case the projection equation is given by
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where n is a3x1 vector representing the jth point
inthe i-thimage, pi, is a 3x4 projective ojection
matrix of i-th camera, Q is a 4x4 nonsngular
homography matrix in P*, and xi, is a 4x1
projective sructurein  pP*.

In Eq. (3), there exist many nonsingular matrices
Q which satisfy the equation. Among many Q, there
exis aunique Q matrix that transforms the projective
sructure to the Euclidean structure. Through this
unique Q matrix we can caibrate each camera and
reconsruct a 3-D scene up to the smilarity
trandormation. Such a Q matrix sdaidfies the
following reations:
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where xi isametric structure of a 3-D point.

If we set the world coordinate system at the
optica center of the first camera, we can obtain the
projective projection matrix and the Euclidean
projection matrix as PO =[x O] ad po =[A, 0,]-
If we substitute these rdations into Eq. (4), we can

obtain the dements of Q matrix:
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Since Q is defined up to a scale, we can represent it
as.

8

éa, 0 u, Ou
é u
g0 a v, 0

= a 6
Q=% 0 1 o ©

€ u
gh Gz O3 19

After computing Q, we can obtain an Euclidean structure
up to a global scale and can compute the rotation and
trandation between cameras through the decomposition of
the Eudlidean projection matrix computed using Eq. (4).

3 Camera Calibration

In this section, we describe a calibration agorithm
using a priori known angles between two linesin 3
D. L& us assume three points A, B and C are
specified with their world coordinates x#,x® and
x ¢ & shown in Fig. 1. It is a well-known result that
from image correspondences, {m} and {mz}, wecan
recondruct a given scene up to the projective
transformation [6, 7]. If we set the world coordinate
a the opticd center of the first camera and if we
know Q matrix in Eg. (3), we can compute the
Euclidean dtructure, sx4,sx® and sx¢, up to a
globd scae.

Fig. 1 The configuration of the imaging system



Since the Euclidean Structure is recovered up to a
scale, angle formed by the three points is invariant
under the smilarity transformations:
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Set”' Q! and the projective structure of j-th point
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By subdtituting Eqg. (8) into Eq. (3), the following
equation can be derived:
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Using Eq. (9), we can represent cosg,,. &S @
function of the parameters of Q:
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Therefore, the scene constrant — the angle
invariance under the smilarity transformation — can
be trandated to a condraint on the intringc
parameters. Specificaly, from Eq. (10), we compute
the Euclidean projection matrix from the projective
one. A nonlinear least squares method computes an
approximate solution by minimizing the following
criterion:
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Here, we use the LevenbergMarquardt method
[8] to solve the nonlinear minimization problem. The
initiad estimate of unknowns is computed using the
method of Bougnoux [9]. The scaed Euclidean
dructure follows easly.

The dgorithm for camera cdibration using the
angle invariance is summarized in Table 1.

Table 1 Cdibration dgorithm using known angles

1. Find the projections Pl by projective
recongruction betweenimages eg., 1-2, .,.1-N

2. Obtain aninitid esimate of unknowns
(a,.,,0,,0,,05) using the projective
recongtruction betweenimeges 1 and 2.

3. Sdect Nsts of three control pointsin the scene.

4. Find a4x4 homogrgphy Q by solving Eq. (11).

5. Find the Euclidean projectionsby pi_ @pi. Q-

proj

6. Recover the Eudlidean structure by X} J @ X!

proj *

4 Experimental Results

We have tested the proposed agorithm using the
synthetic and red images. We used a synthetic image
sequence of a 15x15x15cn  hexahedron with 9
control points on each three planes as shown in Fig. 2.
Images were taken from sx different viewing
positions as described in Table 3. The influence of
image noise was evauated by adding a white
Gaussian noise, with the standard deviation from 0.2
to 15 pixds, to the control points. The internd
parameters of the synthetic camera were varied as
shown in Table 2. Fig. 3 shows the mean of the
relative error of the internal parameters over 50 tria
runs for the second and the fifth camera. Fig. 3(a)
and 3-(b) correspond to the second and fifth cameras
edtimated intrindc parameter and the vaue of the
intrindc parameter varied according to Table 2.
Proposed agorithm effectively cope with varying
cameras. As expected, the error in the estimates of
internal parameters increases monotonically as the
image noise increases.

The true veue of (q,,q,.q,)° IS oObtained by
computing the homography of Eq. (4) between the
known projective and Euclidean structures.

The mean of the relative error of the externd
parameters is depicted in Fig. 4. The estimated
Euclidean projection matrix is decomposed into the
rotational and transnational components. As in the
internal parameters, a sSmilar linear tendency to
image noise can be observed.



Fig. 5 depicts the accuracy of the method in terms
of 3-D gructure recovery. From the scaled Euclidean
structure, we estimated the relative error of the angle
formed by three adjacent control points and the ratio
of length between two control points. The accuracy
in the estimates of the angle degrades monotonically
as image noise increases. However, it is interesting to
note that the accuracy in the ratio of length is
preserved nicely regardless of noise level.

Table 2 The intrinsic parameters used for the varying
camera.

Cameral | Camera2 | Camera3| Camera4d | Camerab
a, | 7000 7500 | 6500 | 800 | 6000
a, | 7000 750.0 650.0 800.0 600.0
u, | 2560 256.0 256.0 256.0 256.0
v, | 2560 256.0 256.0 256.0 256.0

Table 3 The extrinsic parameters used in the generation of
the synthetic image sequence

Rotation Translation
S s W We D M L PP A
(79-5°10°) | (25 50, 25)
M3 1 58 105159 | (50, - 50,5.0)
maget® 1 (32-15%209) | (7.5,5.0, 7.5)
et S s 207-107) | (90, - 50,9.0)

Fig. 2 The 3-D structure of a hexahedron used in the
nthetic experiment: the numbered points indicate

the contral points
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Fig. 3 The reative mean eror of the estimated
intringc parameters: n@ intrinsc parameters of the
second camera (b) intrinsic parameters of the fifth
camera
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Fig. 4 The reative mean error of the estimated
extringc parameter () the rotation error between
gagg_ras and 2 (b) the eror in the trandation
irection.
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Fig. 5 The relative(r%ean error of the angle between
control points and the length ratio (&) the ange
between control points (b) the length ratio.

Fig. 6 shows the images of an outdoor building
scene used for vernifying the effectiveness of our
method. The image sequence is obtained by using a
hand-held camcoder. The corresponding points
between images are manually sdected. The control
angles between two lines are assumed to be 90°. We
used 9 control angles, which is shown in Fig. 6(3),
to compute the Q matrix. Fig. 6(b) shows dl the
corresponding points used in the reconstruction.

The mean and standard deviation of angles
formed by the control points from the estimated 3D
structure are 92.27/3.27°. It is a good estimate since
the window frames are manufactured to have the
right angle. The rotation angles between image 1 and
2 ae (q,q,q,)=[ 675 133%-3967 and the estimated
unit  trandation  direction” is  (r,,T,.T,)
=(0.984,000976,0.178) . It can be seen that these
edimates are reasonable according to the images 1
and 2. Fig. 7-(a) shows the estimated 3-D structure of
al the corresponding ponts. The proposed agorithm
recovers an Euclidean structure up to a globa scale,
thus we arbitrarly select this scale for display. Fig. 7-
(b) shows a bhird s-eye view of the estimated 3D
structure. We can observe that the coplanarity of the
origina structure is well preserved in the recovered
structure.

b
Fig. 6 The building imaf;é sequences. (a) image 1

and control angles formed

three neighboring

points (b) image 2 and al the corresponding points

used in the reconstruction.
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Fig. .7 The recovered 3D dructure roposed
dggorithm (@ esimated 3-D siructurgy ofpall the

corresponding paoints (b) the bird s-eye view of (a).

5 Concluson

We have presented a cdibration algorithm using a
specific scene congtraint — the invariance of angles
under similarity transformations — while recovering
the Euclidean dructure up to a scae from image
correspondences. It iswell known that a non-singular
transformation matrix Q, whose eements consist of
the intrinsc parameters of the camera, trandates the
projective reconstruction to the Euclidean one. Based
on this property of Q matrix, our method exploits the
invariance characteristic of angles under the
smilarity transformation for the camera caibration
and the 3-D dructure recovery. Since the strong
scene condraint is applied to the minimization
process to compute the camera parameters, the
estimated Euclidean structure automatically satisfies
the scene condraint. Furthermore, it can effectively
cope with the varying intrinsgc parameters of the
camera by only using projective recongtruction.

One limitation is, however, that the method needs
apriori 3-D scene information. We envision that this
method will be effective to the scene consigting of
man-made objects, such as buildings.
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