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Abstract  
In this paper, we present a new algorithm for the 

calibration of a camera and the recovery of 3D scene 
structure up to a scale from image sequences using 
known angles between lines in the scene. The 
proposed method computes the intrinsic parameters 
of the camera using the invariance of angles under 
the similarity transformation. Specifically, we 
recover the matrix that is the homography between 
the projective structure and the Euclidean structure 
using angles. Since this matrix is a unique one in the 
given set of image sequences, we can easily deal with 
the problem of varying intrinsic parameters of the 
camera. 

Experimental results on the synthetic and real 
images demonstrate  the feasibility  of the proposed 
algorithm. 
 
 
1 Introduction  

 
The recovery of 3D scene structure from image 

sequences has been an active research topic in 
computer vision. A classical stereo approach first 
calibrates the camera and then recovers 3D scene 
structure using the correspondences in two images. 
Most calibration methods [1, 2] compute the relative 
positions of the cameras and their intrinsic 
parameters using 3D coordinates of points on a 
known calibration target. However, it is almost 
impossible to use the same calibration target for the 
wide range of vision tasks that require cameras with 
long focal lengths for magnification as well as short 
ones for a larger field-of-view. Moreover, many 
robotic applications demand cameras to be calibrated 
on-line, which makes impossible to set out specific 
calibration targets for different camera set-ups.  

Faugeras [3] presented a calibration method using 
the known angle between lines in the scene. First, he 
derived the constraint for the image of the absolute 
conic using the known angle between two lines that 

pass through the optical center and it is a quadratic 
on the unknown coefficients of the image of the 
absolute conic. To extend this result to the known 
angle between lines in 3D, it is required to recover 
the given scene up to affine transformations. 

Faugeras et al. [4] also presented a stratified 
approach to recover the Euclidean geometry of a 
scene by using a priori information about the scene. 
They first used a priori information about the affine 
structure of the scene such as 3-D parallel lines and 
ratios of lengths of parallel 3-D segments. To recover 
the metric structure of the scene they used a priori 
information such as 3-D angles and ratios of lengths 
of 3-D segments. They recovered the scene structure 
sequentially from the projective to the affine and 
finally to the Euclidean.  

Our proposed algorithm recovers directly the 
homography matrix between the projective and the 
Euclidean structure, without going through an 
intermediate step of affine reconstruction. 

Boufama et al. [5] presented a method for directly 
estimating the transformation matrix between the 
projective solution and the Euclidean one using 
constraints in the scene. They used fixating a point, 
layin g on the horizontal plane, vertical alignment and 
the distant between points in 3-D. 

In this paper, we present a calibration method that 
uses a constraint – angle between two lines – in the 
scene rather than a calibration target. The angle 
invariance under the similarity transformation is used 
to derive the constraint for the homography matrix 
between the projective structure and the Euclidean 
structure. This homography is a unique one in the 
given sets of images. By this homography we can 
deal with the varying intrinsic parameters of camera 
only using the projective reconstruction. 
 
 
2 Reconstruction by Homography Matrix 

 
The process of projection of a point in 3-D to the 

image plane can be expressed as a linear matrix 



operation in the homogenous coordinates.  First, there 
is a rigid body transformation between the world 
coordinates wX  and the camera-centered 
coordinates cX . The next stage is perspective 
projection of cX  onto x  in the image plane. 
Finally, the image coordinates x  are converted to 
the pixel coordinates ( )Tvu 1,,=m . These processes 
can be represented as: 

 
weucXPm =                 (1) 

where 
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eucP  is the camera projection matrix for a perspective 
camera. uα and vα  are the scale aspect of the x 
and y axis in the image, γ  is a skew factor, and 0u  
and 0v  are the pixel coordinates of the principal 
point. We assume that the skew in the camera is 
negligible: 

 0=γ                     (2) 

It is well known that projective reconstruction can 
be obtained from uncalibrated image sequences [8, 9]. 
In this case the projection equation is given by  

j
proj

i
proj

i
j XQQPm 1−≅              (3)  

where i
jm  is a 3x1 vector representing the j-th point 

in the i-th image, i
projP  is a 3x4 projective projection 

matrix of i-th camera, Q is a 4x4 nonsingular 
homography matrix in 3P , and j

projX  is a 4x1 
projective structure in 3P . 

In Eq. (3), there exist many nonsingular matrices 
Q which satisfy the equation. Among many Q, there 
exist a unique Q matrix that transforms the projective 
structure to the Euclidean structure. Through this 
unique Q matrix we can calibrate each camera and 
reconstruct a 3-D scene up to the similarity 
transformation. Such a Q matrix satisfies the 
following relations: 

j
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QPP
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where j
eucX  is a metric structure of a 3-D point. 

If we set the world coordinate system at the 
optical center of the first camera, we can obtain the 
projective projection matrix and the Euclidean 
projection matrix as [ ]333

0 0IP Xproj =  and [ ]30
0 0AP =euc

. 
If we substitute these relations into Eq. (4), we can 

obtain the elements of Q matrix: 
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Since Q is defined up to a scale, we can represent it 
as: 
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After computing Q, we can obtain an Euclidean structure 
up to a global scale and can compute the rotation and 
translation between cameras through the decomposition of 
the Euclidean projection matrix computed using Eq. (4). 
 
 

3 Camera Calibration 
 

In this section, we describe a calibration algorithm 
using a priori known angles between two lines in 3-
D. Let us assume three points A, B and C are 
specified with their world coordinates A

wX , B
wX  and 

C
wX  as shown in Fig. 1. It is a well-known result that 

from image correspondences, { }1
im  and { }2

im , we can 
reconstruct a given scene up to the projective 
transformation [6, 7]. If we set the world coordinate 
at the optical center of the first camera and if we 
know Q matrix in Eq. (3), we can compute the 
Euclidean structure, A

wsX , B
wsX  and C

wsX , up to a 
global scale.  

Fig. 1 The configuration of the imaging system 
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Since the Euclidean structure is recovered up to a 
scale, angle formed by the three points is invariant 
under the similarity transformations: 
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Set 1−Q  and the projective structure of j-th point 

as: 
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where T
i
−Q  is the i-th row of 1−Q . 

By substituting Eq. (8) into Eq. (3), the following 
equation can be derived: 
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Using Eq. (9), we can represent ABCθcos  as a 
function of the parameters of Q: 

( )32100 ,,,,,,cos qqqvuf vuABC ααθ =
•

= →→

→→

BCBA

BCBA   (10)      

Therefore, the scene constraint – the angle 
invariance under the similarity transformation – can 
be translated to a constraint on the intrinsic 
parameters. Specifically, from Eq. (10), we compute 
the Euclidean projection matrix from the projective 
one. A nonlinear least squares method computes an 
approximate solution by minimizing the following 
criterion: 
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Here, we use the Levenberq-Marquardt method 
[8] to solve the nonlinear minimization problem. The 
initial estimate of unknowns is computed using the 
method of Bougnoux [9]. The scaled Euclidean 
structure follows easily.  

The algorithm for camera calibration using the 
angle invariance is summarized in Table 1.  
 
 
Table 1 Calibration algorithm using known angles  

 
 

4 Experimental Results 
 

We have tested the proposed algorithm using the 
synthetic and real images. We used a synthetic image 
sequence of a 15x15x15cm3 hexahedron with 9 
control points on each three planes as shown in Fig. 2. 
Images were taken from six different viewing 
positions as described in Table 3. The influence of 
image noise was evaluated by adding a white 
Gaussian noise, with the standard deviation from 0.2 
to 1.5 pixels, to the control points. The internal 
parameters of the synthetic camera were varied as 
shown in Table 2. Fig. 3 shows the mean of the 
relative error of the internal parameters over 50 trial 
runs for the second and the fifth camera. Fig. 3-(a) 
and 3-(b) correspond to the second and fifth camera's 
estimated intrinsic parameter and the value of the 
intrinsic parameter varied according to Table 2. 
Proposed algorithm effectively cope with varying 
cameras. As expected, the error in the estimates of 
internal parameters increases monotonically as the 
image noise increases. 

The true value of ( )3
321 ,, qqq  is obtained by 

computing the homography of Eq. (4) between the 
known projective and Euclidean structures.  

The mean of the relative error of the external 
parameters is depicted in Fig. 4. The estimated 
Euclidean projection matrix is decompos ed into the 
rotational and transnational components. As in the 
internal parameters, a similar linear tendency to 
image noise can be observed.  

1. Find the projections i
projP  by projective    

  reconstruction between images, e.g., 1-2, …, 1-N. 
2. Obtain an initial estimate of unknowns  

( )321 ,,,, qqqvu αα  using the projective  
reconstruction between images 1 and 2. 

3. Select N sets of three control points in the scene. 
4. Find a 4x4 homography Q by solving Eq. (11). 
5. Find the Euclidean projections by QPP i

proj
i
euc ≅ . 

6. Recover the Euclidean structure by j
proj

j
euc XQX 1−≅ . 



Fig. 5 depicts the accuracy of the method in terms 
of 3-D structure recovery. From the scaled Euclidean 
structure, we estimated the relative error of the angle 
formed by three adjacent control points and the ratio 
of length between two control points. The accuracy 
in the estimates of the angle degrades monotonically 
as image noise increases. However, it is interesting to 
note that the accuracy in the ratio of length is 
preserved nicely regardless of noise level.   
 
 
Table 2 The intrinsic parameters used for the varying 
camera. 

 Camera 1 Camera 2 Camera 3 Camera 4 Camera 5 

uα  700.0 750.0 650.0 800.0 600.0 

vα  700.0 750.0 650.0 800.0 600.0 

0u  256.0 256.0 256.0 256.0 256.0 

0v  256.0 256.0 256.0 256.0 256.0 
 
 
Table 3 The extrinsic parameters used in the generation of 
the synthetic image sequence 

 Rotation 

( )zyx θθθ ,,  [deg] 

Translation 

( )zyx ttt ,,  [cm] 
Image 1 - 2 ( )ooo 10,5,7 −  ( )5.2,0.5,5.2  
Image 1- 3 ( )ooo 15,10,2 −−−  ( )0.5,0.5,0.5 −  
Image 1- 4 ( )ooo 20,15,3 −  ( )5.7,0.5,5.7  
Image 1- 5 ( )ooo 10,20,5 −−−  ( )0.9,0.5,0.9 −  
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Fig. 2 The 3-D structure of a hexahedron used in the 
synthetic experiment: the numbered points indicate 
the control points 
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                   (b) 
Fig. 3 The relative mean error of the estimated 
intrinsic parameters  (a) intrinsic parameters of the 
second camera (b) intrinsic parameters of the fifth 
camera 
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                    (b) 
Fig. 4 The relative mean error of the estimated 
extrinsic parameter (a) the rotation error between 
cameras 1 and 2 (b) the error in the translation 
direction.  
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                   (b) 
Fig. 5 The relative mean error of the angle between 
control points and the length ratio (a) the angle  
between control points (b) the length ratio. 

 
Fig. 6 shows the images of an outdoor building 

scene used for verifying the effectiveness of our 
method. The image sequence is obtained by using a 
hand-held camcoder. The corresponding points 
between images are manually selected. The control 
angles between two lines are assumed to be o90 . We 
used 9 control angles, which is shown in Fig. 6-(a), 
to compute the Q matrix. Fig. 6-(b) shows all the 
corresponding points used in the reconstruction.  

The mean and standard deviation of angles 
formed by the control points from the estimated 3-D 
structure are oo 27.3/2.92 . It is a good estimate since 
the window frames are manufactured to have the 
right angle. The rotation angles between image 1 and 
2 are ( ) ( )ooo 96.3,3.13,75.6,, −−−=zyx θθθ  and the estimated 
unit translation direction is ( )zyx TTT ,,  
= ( )178.0,00976.0,984.0 . It can be seen that these 
estimates are reasonable according to the images 1 
and 2. Fig. 7-(a) shows the estimated 3-D structure of 
all the corresponding ponts. The proposed algorithm 
recovers an Euclidean structure up to a global scale, 
thus we arbitrarly select this scale for display. Fig. 7-
(b) shows a bird’s-eye view of the estimated 3-D 
structure. We can observe that the coplanarity of the 
original structure is well preserved in the recovered 
structure.  

     

(a) 

 
(b) 

Fig. 6 The building image sequences: (a) image 1 
and control angles formed by three neighboring 
points (b) image 2 and all the corresponding points 
used in the reconstruction.  
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(b) 
 

Fig. 7 The recovered 3D structure by proposed 
algorithm (a) estimated 3-D structure of all the 
corresponding points (b) the bird’s-eye view of (a). 
 
 
5 Conclusion 
 

We have presented a calibration algorithm using a 
specific scene constraint – the invariance of angles 
under similarity transformations – while recovering 
the Euclidean structure up to a scale from image 
correspondences. It is well known that a non-singular 
transformation matrix Q, whose elements consist of 
the intrinsic parameters of the camera, translates the 
projective reconstruction to the Euclidean one. Based 
on this property of Q matrix, our method exploits the 
invariance characteristic of angles under the 
similarity transformation for the camera calibration 
and the 3-D structure recovery. Since the strong 
scene constraint is applied to the minimization 
process to compute the camera parameters, the 
estimated Euclidean structure automatically satisfies 
the scene constraint. Furthermore, it can effectively 
cope with the varying intrinsic parameters of the 
camera by only using projective reconstruction.  

One limitation is, however, that the method needs 
a priori 3-D scene information. We envision that this 
method will be effective to the scene consisting of 
man-made objects, such as buildings.  
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