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ABSTRACT 
 

We present a practical self-calibration algorithm that only 
requires a linear projective reconstruction. Recently, many 
self-calibration algorithms that use only the information in 
the image have been proposed. But most algorithms require 
bundle adjustments in the projective reconstruction or in 
the nonlinear minimization. We overcome the sensitivity of 
the self-calibration algorithms due to the image noises by 
adding another constraint on the position of the principal 
point. We also propose a linear initialization method based 
on the property of the absolute quadric. Experimental 
results using real and synthetic images demonstrate the 
feasibility of the proposed algorithm. 
 
Keywords: Self-calibration, 3D reconstruction, absolute 

quadric 
 
 

1. INTRODUCTION 
 
The metric reconstruction of a given scene from image 
streams is an important step in computer vision. 
Traditional methods first calibrate a camera using a 
calibration object, and then acquire a metric structure of a 
given scene using the correspondence between images. 
These approaches need the calibration object in any given 
scene, thus their application areas are limited.  

Recently self-calibration (or auto-calibration) algorithms 
have been actively researched to relax the requirement of 
the calibration box in the scene. Self-calibration algorithms 
calibrate the camera using only the information on the 
images. Earlier algorithms for self-calibration deal with 
situations where the intrinsic parameters of cameras remain 
constant in the sequences. Most of these methods use the 
property of the absolute conic that remains invariant under 
all Euclidean transformations.  

Faugeras et al. [1] proposed a self-calibration algorithm 
which uses the Kruppa equation. It enforces that the planes 
through two camera centers which are tangent to the 
absolute conic should also be tangent to both of its images. 
Hartley [2] proposed another method based on the 

minimization of the difference between the internal camera 
parameters for the different views. Polleyfeys et al. [3] 
proposed a stratified approach that first recovers the affine 
geometry using the modulus constraint and then recovers 
the Euclidean geometry through the absolute conic. Heyden 
and mostrA

. .o

[4], Triggs [5] and Pollefeys & Van Gool [6] 
use explicit constraints that relate the absolute conic to its 
images. These formulations are especially interesting since 
they can easily be extended to deal with the varying internal 
camera parameters.  

Recently self-calibration algorithms that can deal with 
the varying intrinsic parameters of the camera were 
proposed. Heyden and mostrA

. .o

 [7] proposed a 
self-calibration algorithm that uses explicit constraints from 
the assumption of the camera intrinsic parameters. They 
proved that self-calibration is possible under varying 
cameras when the assumptions that the aspect ratio was 
known and no skew establishes about the camera. They 
solved the problem using the bundle adjustment that 
requires simultaneous minimization on the all reconstructed 
points and cameras. Moreover, the initialization problem 
was not properly presented. Bougnoux [8] proposed a 
practical self-calibration algorithm that used the constraints 
derived from Heyden and mostrA

. .o

[7]. He proposed the 
linear initialization step in the nonlinear minimization. He 
used the bundle adjustment in the projective reconstruction 
step. Similarly, Pollefeys et al. [9] proposed a versatile 
self-calibration method that can deal with a number of 
types of constraints about the camera. They showed a 
specialized version for the case where the focal length 
varies, possibly also the principal point. 

We propose a practical self-calibration algorithm that 
only requires a linear projective reconstruction. We 
overcome the sensitivity of the algorithm partially due to 
the linear projective reconstruction by adding a new 
constraint on the principal point. We also propose a new 
linear initialization method based on the property of the 
absolute quadric.  
 

2. THE SELF-CALIBRATION ALGORITHM 
 
In this section, we review the self-calibration algorithm that 
appears in [8]. The process of projection of a point in 3D 



to the image plane can be represented as the following 
sequential steps: 
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where T represents the transformation of coordinate 
systems from world to the camera-centered system, 0P  is 
the perspective projection and A  consists of the intrinsic 
parameters of camera. 

We use the following assumptions about the intrinsic 
parameters of camera  
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It is well known that we can reconstruct a scene up to 
the projective transformations using only corresponding 
points on the images [10, 11]. This can be represented as: 
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where i

jm~  is the j-th point in the i-th image, i
projP  is a 

projective projection matrix of the i-th image and proj
jM

~
 is 

a projective structure of scene point corresponding to the 
image point i

jm~ . The projective structure proj
jM

~
 is 

related to the metric structure by a projective 
transformation matrix Q . In Eq. (3), any nonsingular 
matrix Q  satisfies the above relation, so there can be 
many projective reconstructions. There exists a unique Q  
matrix that transforms the projective structure to a metric 
structure of a given scene. Finding this Q  matrix is 
calibration process. We can obtain the Euclidean projection 
matrix and the metric structure of a scene using this unique 
Q  matrix.  
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In general, under the pinhole camera model, we can set 

the projective projection matrix of the first camera as 
[ ]33

1 0IP =proj . We have the Euclidean projection matrix 
of the first camera [ ]31

1 0AP =euc  if we set the world 
coordinate at the optical center of the first camera. By 
substitut ing these projection matrices in Eq. (4), we obtain:  

 
[ ] [ ]









≅∃⇔

≅⇔≅

44

31
44

331
11

|),(                       
q

q T

projeuc

q

0A
Qq

Q0I0AQPP

     (5) 

Here, Q  is defined up to a scale and it can be 
represented as 
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Now Q  matrix contains six unknowns. Next we review 
the constraint for obtaining Q  matrix. 

If we set i
eucP , 
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then we have the following constraint for the Euclidean 
projection matrix, eucP [12]. 
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These equations give two constraints for the unknown 
Q  matrix for each camera and we can obtain the solution 
using at least 4 images. The resulting problem can be 
formulated as the nonlinear estimation that minimizes Eq. 
(8) for each camera. 

 
 

3. A NEW LINEAR METHOD FOR THE 
INITIALIZATION 

 
The nonlinear estimation problem needs some initial values 
of unknown parameters. The initial values of 0u , 0v  are 
set as the image center of the first image. Bougnoux [8] 
proposed the following initialization method for f using the 
Kruppa equation. 
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where F is the Fundamental matrix, A  and A′  are the 
matrices that contain the intrinsic parameters of the first 
and the second camera and e′  is the epipole of the second 
camera. If we remove the scale using eeFF ′=′= µλ ~ ,

~
 we 

have the Kruppa equation: 
 

[ ] [ ] 2

2
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µ
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Bougnoux [8] proposed the following closed-form 

solution for the initial value of f using Eq. (10). 
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where ( )Tvu 1,, 00=p , ( )Tvu 1,, 00 ′′=′p . He also presented a 
method to determine the initial values ( )Tqqq 321 ,,  using 
the property of orthogonality of the rotation matrix.  

In this paper we propose a new method for the initial 
values based on the invariancy of the absolute quadric. Our 
method can recover the initial values linearly.  
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If we apply QPP i

proj
i

euc ≅  to Eq. (12) we have 
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Eq. (13) can be represented as: 
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From the left-hand side of Eq. (14), we obtain 

ii vu λωλω // 2
022

2
011 −=− , 2112 ωω = , 3113 ωω = , and 

3223 ωω = . If we impose these equations on the right-hand 
side, this yields 4(n-1) linear equations in 

2

321
2

1 ,,,, aaaaf . If we remove 
2

a  in the given 
equations, we have 3(n-1) linear equations in 321

2
1 ,,, aaaf . 

We assume that the intrinsic parameters are constant to get 
initial parameters. We also assume the principal point of 
the first camera as the image center. Under these 
assumptions we have four unknowns 3211 ,,, qqqf  that 
can be obtained if we use more than three images through a 
least-squares estimation. 

 
 

4. ADDING ANOTHER CONSTRAINT IN THE 
MINIMIZATION 

 
We add another constraint to improve the behavior of the 
algorithm in the nonlinear minimization. We observed that 
the algorithm often gives some erroneous results when we 
only use the two constraints of Eq. (8). (This will be later 
explained in Section 5.)  

The accuracy of the algorithm depends on the accuracy 
of the projective reconstruction. We used the simple linear 
method of Hartley [13] for the projective reconstruction, 
which gives a comparable result to that of nonlinear 
minimization under the Gaussian noise distribution. In 
spite of the small residual in the projective reconstruction 
the algorithm often gives a false result as noise level 
increases while the residual of the nonlinear minimization 
decreased. This is due to the inability of the two 
constraints to constrain the solution space in the 
meaningful range when the noise perturbs the projective 
projection matrices. Each constraint is a 4th order 
polynomial so the algorithm is very sensitive to the noise. 

We partially overcome this problem by adding another 
constraint on the minimization. This is based on the 
experimental observations of the behavior of the algorithm 
that uses the constraints of Eq. (8). Among the six 
unknowns the principal point was most sensitive in the 
nonlinear minimization. Therefore it is necessary to 

constrain the position of the principal point in a restricted 
area to obtain a meaningful solution. We add the following 
constraint on the principal point. 
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where 0

~u , 0
~v  is the image center of the first camera and 

0̂u , 0̂v  is the estimated principal point in the minimization 
process. 

We do not fix the value of the principal point of the first 
camera as the known value of the image center of the first 
image. This gives also a bad behavior in the minimization 
process. 

The overall structure of the self-calibration algorithms is 
as follows: 

(a) Find the projection matrix i
projP  by projective 

reconstruction between images, e.g., 1-2, 1-3, …, 
1-N.  (b) Transform the projective reconstruction of (a) to 
have an equal basis in 3P  

(c) Obtain some initial values of the unknowns using 
the linear method. 

(d) Obtain a 4X4 homography Q through the nonlinear 
minimization. 

(e) Recover the Euclidean projection by QPP i
proj

i
euc ≅  

(f) Recover the Euclidean structure by 
proj
j

euc
j MQM

~~ 1−≅   
The step (b) is necessary because Eq. (3) establishes under 
an equal basis in 3P . We use the method proposed by 
Csurka & Horaud [14] to transform the projective 
reconstruction to have an equal basis in 3P . 
 
 

5.  EXPERIMENTAL RESULTS 
5. 1 EXPERIMENTAL RESULTS USING SYNTHETIC 

IMAGES 
 

At first we present experimental results using the synthetic 
images. For three different types of 3D structures, we 
generated the image sequences using the predefined values 
of intrinsic and extrinsic parameters. We investigated the 
performance of the algorithm using images with a Gaussian 
noise. All the results are from error statistics after 100 trials 
at each noise level. Fig. 1 and Fig. 2 compare the estimated 
initial value by the proposed method with that of 
Bougnoux [8]. In Fig. 1, D.C. represents the Degenerated 
Case when the square root term in Eq. (11) has a negative 
value or the denominator becomes zero. In the simulation, 
the proposed initialization method gives no degenerated 
cases. Also the proposed method gives better initial values 
when the noise level is smaller than 0.8. 
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Fig. 1. The variation of initial value of (a) f and (b) q 
obtained from the method by Bougnoux [8] and the 
proposed method with respect to the noise variance. 
 

We could not always obtain the meaningful solution in 
the simulation when the noise level is greater than some 
values using the original two constraints in Eq. (8). But in 
these cases the residual in the projective reconstruction 
remains small and the residual of minimization function 
decreased too. This is due to the sensitivity of the 
constraints, which is a 4th order polynomial, to the noise. 
Fig. 2 represents the result using the original two 
constraints. We evaluated the accuracy of the estimated 
solution by comparing the values of f and q with those of 
true ones. True value of q can be obtained using Eq. (4) by 
the transformation matrix between the true projective and 
metric structures. We represent the error of the estimated q 
vector by the angular difference with the true one. Fig. 2 
shows the estimated mean value, the minimum and 
maximum value at a fixed noise level. We found from the 
analysis of experimental results that the estimated principal 
point varies much when compared to other values. Fig. 3 
represents the result when we added a new constraint of Eq. 
(15). We could obtain consistent results in the simulation 
and the proposed algorithm gives a better performance. 
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Fig. 2. The estimated values of (a) f (b) q when used the 
original constraints of Eq. (8). 
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(b) 

Fig. 3. The estimated values of (a) f (b) q when used 
additional constraint of Eq. (15). 

 
Next we present the performance of the new linear 

initialization method using the additional constraint in the 
self-calibration algorithm. We used a synthetic image 
sequence of a 15x15x15cm3 hexahedron with 27 points on 
each three planes. Images were taken from six different 
viewing positions as described in Table 2. We consider a 
situation where the intrinsic parameters of cameras vary as 
shown in Table 1. Fig. 4 shows the mean of the relative 
error of the internal parameters over 30 trials for the sixth 
camera. The error in the estimates of the intrinsic 
parameters increases monotonically as the image noise 
increases.  

The mean of the relative error of the external parameters 
is depicted in Fig. 5. We obtained the rotation and the 
translation parameters through the decomposition of the 
estimated Euclidean projection matrix. As in the internal 
parameters, a similar linear tendency to image noise can be 
observed.  

Fig. 6 represents the accuracy of the method in terms of 
3D structure recovery. From the scaled Euclidean structure 
we estimated the relative error of the angle formed by three 
adjacent points and the ratio of length between two points. 



The accuracy degrades monotonically as the image noise 
increases. 

We can observe that the proposed algorithm can 
effectively cope with the given situation in spite of the 
varying internal parameters of camera. 

 
 

Table 1 The values of intrinsic parameters used in the 
varying camera image sequences. 

 C1 C2 C3 C4 C5 C6 

uα  700 700 730 760 790 820 

vα  700 700 730 760 790 820 

0u  256 256 256 256 256 256 

0v  256 256 256 256 256 256 

 
 
Table 2 The extrinsic parameters used in the generation of 
synthetic image sequences  

 Rotation 
( )zyx θθθ ,,  [deg] 

Translation 
( )zyx ttt ,,  [cm] 

C1 - C2 ( )ooo 10,5,7 −  ( )5.2,0.5,5.2  
C1 - C3 ( )ooo 15,10,2 −−−  ( )0.5,0.5,0.5 −  
C1 – C4 ( )ooo 20,15,3 −  ( )5.7,0.5,5.7  
C1 – C5 ( )ooo 10,20,5 −−−  ( )0.9,0.5,0.9 −  
C1 – C6 ( )ooo 15,30,10 −−−  ( )0.10,0.8,0.7 −  
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Fig. 4 The relative mean error of the estimated intrinsic 
parameters of the sixth camera 
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(b) 

Fig. 5 The relative mean error of the estimated extrinsic 
parameter (a) rotation between camera 1 and 6 (b) direction 
of the translation 
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(b) 

Fig. 6 The relative mean error of the angle among three 
points and ratio of length (a) angle among three points (b) 
ratio of length. 

 
5.2 EXPERIMENTAL RESULTS USING REAL 

IMAGES 
 

In this section, we present the experimental results using 
real images. Fig. 7 shows an image sequence of a calibration 
box used in the experiments. In the experiments we used 
the cross points on the calibration box to define the 
correspondence. We compare the quality of estimated 
structure using the angle between each plane and the ratio 
of length between points. We obtain the normal vector of 
the plane after fitting a plane using the estimated Euclidean 
structure on each plane.  

The algorithm using the original two constraints gives 
angles between each plane as o74.82 , o97.81  and o95.81 . 
The mean and standard deviation of the ratios of length 
between horizontal points is 0266.00.4790 ±  and 
between vertical points is 0200.00.4702 ± . The ratio of 
horizontal and vertical length is 1.0187. The proposed 
algorithm gives angles between each plane as 

o15.87 , o63.88  and o11.88 . The mean and standard 
deviation of the ratios of length between horizontal points 



is 0043.00.2656 ±  and between vertical points is 
0062.00.2668 ± . The ratio of horizontal and vertical length 

is 0.9956. The true angle between each plane is o90  and 
true value of the ratio of horizontal and vertical length is 1. 
The proposed algorithm gives much improved results. Fig. 
8 shows the estimated Euclidean structure by the proposed 
algorithm.  

Fig. 9 represents an outdoor image sequence captured by 
a hand-held camcorder. The algorithm using the original two 
constraints gives the mean and standard deviation of the 
ratios of length between horizontal points as 

615.00.1321±  and between vertical points as 
0016.00.0615 ± . The ratio of the length between the 

horizontal and vertical lines is 2.14. The proposed 
algorithm gives 0012.00.0421±  and 00046.00.0179 ± . 
The ratio of length between the horizontal and vertical lines 
is 2.35. The real value of ratio of the length by 
measurement is 2.48.  

The proposed algorithm gives a better quality of 
Euclidean reconstruction in both experiments. 

 
 
 

 

 
Fig. 7 A real image sequence of a calibration box. 

 
(a) 

 
(b) 

Fig. 8 A scaled Euclidean structure obtained by the 
proposed self-calibration algorithm (a) a perspective view; 
(b) a different view of (a). 
 

 
Fig. 9 An input image sequence of an outdoor building. 
 
 

 
(a) 

 
(b) 

Fig. 10 The reconstrcuted Euclidean structure by the 
proposed algorithm (a) a perspective view; (b) another 
view of (a). 

6.  CONCLUSIONS 
 

We have presented a practical self-calibration algorithm 
under varying cameras that only requires a linear projective 
reconstruction. We also proposed a new linear initialization 
method for the self-calibration based on the property of the 
absolute quadric. We improved the performance of 
self-calibration by adding a new constraint about the 
position of the principal point. By using this constraint it 
is possible to use only the linear projective information for 
practical self-calibration. 
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