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Abstract: The three-dimensional finite-difference time-domain method
that can handle dispersive and dynamic nonlinear-gain media is proposed
and realized. The effect of carrier diffusion is included through the laser rate
equations. Through this three-dimensional nonlinear gain FDTD method,
rich laser-dynamics behaviors, such as the lasing threshold, the relaxation
oscillation, and the spatial hole burning, are directly observed from a
hexapole mode.
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1. Introduction

In recent years, varieties of prototype photonic-crystal (PhC) lasers have been developed
[1, 2, 3]. Unlike the case with the conventional semiconductor lasers, analysis approaches em-
ploying the simplified rate equations are not adequate to describe dynamics of PhC lasers be-
cause of their complicated multi-dimensional mode profiles. The finite-difference time-domain
(FDTD) method [4], solving the Maxwell equations linearly, has enabled us to understand var-
ious characteristics of passive PhC resonators, such as mode profiles, quality (Q) factors, and
so on. However, this method, using time-independent material parameters, is not suitable when
dispersive and nonlinear media are involved. So far, there has been less effort to apply the FDTD
method in studying dynamical interaction of light and matter in active PhC devices such as the
electrically-driven PhC laser reported recently by the present group [5]. A PhC microlaser anal-
ysis which combined the two-dimensional laser rate equation solver [6] with the FDTD mode
solver in a crude fashion, which can hardly be considered self-consistent.

In this study, in order to study the dynamic interaction between the gain medium and elec-
tromagnetic fields in the PhC-laser cavity, we have developed a self-consistent scheme which
integrates the active FDTD scheme taking account of the Lorentz-dispersive nonlinear medium
characteristics, combined with the equation of ambipolar carrier diffusion is directly addressed
under current injection. This study has revealed several interesting details in the fast transient
dynamics of the PhC single-cell laser such as hole burning and suppressed relaxation oscillation
in a micro-size semiconductor injection laser.

2. Nonlinear dispersive gain FDTD method

The gain medium is approximated by the complex electric permittivity based on the classical
model of Lorentzian dipole oscillators, corresponding to the displacement vector DDD(rrr, ω) =
ε(rrr, ω)EEE(rrr, ω), and is expressed in the frequency domain as

ε(rrr, ω) ∼= ε∞

[
1+

Γ(rrr)
ω0 −ω− iγ0

+
Γ(rrr)

ω0 +ω+ iγ0

]
, (1)

where ω0 and γ0 is the resonance frequency and the damping constant respectively, and ε∞ is the
base-level electric permittivity. The numerator Γ(rrr) of the Lorentzian is related to the material
gain G in each spatial position:

Γ(rrr, t) ∼= 2γ0 cn(rrr)
ω0

G(N(rrr, t); rrr), (2)

where n(rrr) is the real part of the refractive index of the gain medium. Note that the material
gain is dependent on the carrier density N(rrr, t). To convert these relations in the frequency-
domain to those in the time domain, the Fourier recursive-convolution scheme [7] is employed
for numerical implementation of

DDD(rrr, t) ≡ PPP(rrr, t)+ ε0 EEE(rrr, t) =
∫ t

−∞
ε̌(rrr, t − t ′)EEE(rrr, t ′)dt ′, (3)

where ε̌(rrr, t) =
∫ ∞
−∞ ε(rrr, ω)e−iωt dω/2π. To construct the formulas suitable for numerical im-

plementation, we have employed the piecewise-constant recursive-convolution (PCRC) tech-
nique [8]. This technique is considered the best one for computation speed and numerical ac-
curacy in the result from the FDTD simulation of various dispersive media. A realistic medium
with inhomogeneous gain spectrum can be represented by a combination of different Lorentzian
oscillators spread over the region being simulated.
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To obtain the material gain, which is related to the residue of the Lorentz dispersion at each
position the following modified rate equation is solved at each step of FDTD computation:

dN(rrr, t)
dt

=
J(rrr, t)

qe
− N(rrr, t)

τ
+

EEE(rrr, t)
�ω0

··· ∂PPP(rrr, t)
∂ t

+D′ ∇ 2N(rrr, t), (4)

where qe and � are the elementary charge and the Planck constant, respectively. The ambipolar
carrier-diffusion effect is included in the last term in Eq. (4) with D′ being the ambipolar carrier-
diffusion coefficient [10]. Here, J(rrr, t) is the pump-current density at each calculation position
and τ is the carrier life-time.

Note that the term for the loss of the carrier density due to nonradiative recombination is
replaced by a well-accepted approximate model of

N(rrr, t)
τ

∼= AN(rrr, t)+BN2(rrr, t)+C N3(rrr, t) (5)

with A, B, and C being the coefficients due to surface recombination, spontaneous radiative
recombination, and Auger recombination, respectively [9]. The term for the net generation of
carriers by light emission, both stimulated and spontaneous, and absorption is contained in the
right-hand side of Eq. (4), which is to be replaced following the recipe of

−BN2 +
EEE

�ω0
··· ∂PPP

∂ t
=

EEE
�ω0

···
[
−∇∇∇ ×××HHH + ε∞

∂EEE
∂ t

]
(6)

according to the Poynting theorem [11]. Correct handling of the last substitution is important for
guaranteeing numerical stability in association with the physical energy balance in the context
of FDTD calculation. The values of EEE(rrr, t) and HHH(rrr, t) are to be supplied from the FDTD
calculation. When combining with the rate-equations with the FDTD method, the number of
the photons created in the FDTD computation is set to be equal to the number of recombining
electron-hole pairs in the rate-equation. The simulation confirmed that the afore-mentioned
conservation principle is indeed well observerd.

The material gain of the nonlinear quantum well (QW) is assumed to have typical logarithmic
dependence on the carrier density, as in [9]

G(N; rrr, t) = G0 ln(N(rrr, t)/Ntr), (7)

where Ntr is the transparent carrier density. If the carrier density is larger than Ntr, the material
gain G(N) ∝ Γ in Eq. (2) becomes positive and the electric field will be amplified.

In order to represent the natural incoherent spontaneous emission, dipole sources with ran-
dom phases are distributed over the entire gain medium. At each calculation step, the rate of
emission from a dipole is set to be equal to that of the radiative recombination, BN2(rrr, t),
by changing their oscillation amplitudes. In other words, the amplitudes of the dipoles are
dependent on the radiative recombination rate. The employed random dipoles are distributed
inhomogeneously over the frequency spectrum with the standard deviation corresponding to
the half-width of the Lorentzian gain profile used above. For temporal incoherence, the phases
and frequencies of the dipoles are rearranged with a tuned and randomized rate in the order of
∼ 1 ps−1.

In order to combine the FDTD with the nonlinear rate equations properly, electric fields and
magnetic fields should be updated in a proper sequence. The temporal development of the non-
linear three-dimensional FDTD method, including the gain medium, is schematically explained
in Fig. 1. Remembering that the gain directly amplifies electric field amplitude, the latter should
be calculated from the convolution integral, as shown before, which involves the gain dispersion
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Fig. 1. The scheme of the gain FDTD method.

under the FDTD Fourier recursive-convolution technique. The field from spontaneous dipole
emission is superposed into the updated electric field. Finally, the material gain in each spatial
position is calculated by the laser rate equation. Thus, the electric field and the material gain
are fed back to each other during each iteration step. The time increment ∆t of ∆/2c, smaller
than the critical value of ∆/

√
3c, was used in our computation to satisfy the condition of nu-

merical stability [4], where c and ∆ are the speed of light and the space increment used for the
finite differences in each field component calculation respectively. The scheme of uniaxial per-
fectly matched layers (UPML) is used for the realization of an appropriate absorbing boundary
condition.

3. Simulation results and discussion

The InGaAsP-InP multiple quantum wells (MQWs) are employed as the gain material. Pa-
rameters at room temperature used in the simulation are listed in Table 1 [12]. The intrinsic
carrier density 1.5×1012 cm−3 is used as the initial carrier density, and thus the QW medium
is absorptive in the beginning (t = 0).

Table 1. Parameters of gain medium used in simulation

Parameters Values Parameters Values
G0 1 500 cm−1 Ntr 1.5×1018 cm−3

A 3.5×107 s−1 ω0/2π 193.41 THz (1 550 nm)
B 1.6×10−10 cm3-s−1 γ0 1 THz (∼ 8 nm)
C 5.0×10−29 cm6-s−1 D′ 7.466 cm2-s−1

A simple PhC single-cell laser is selected as a test structure as shown in Fig. 2. The radii
of the outer air holes and the nearest neighbor holes are 0.35a and 0.20a, respectively, with a
being the lattice constant. The thickness of the PhC slab is 0.5a. The nonlinear gain medium is
buried in the PhC slab as shown in Fig. 2(b). The size of the calculation domain in the FDTD
simulation is 10a×8a×6.5a.

We choose a hexapole mode [Fig. 3(d)], as a test vehicle, artificially. To selectively excite
the hexapole mode, the resonance frequency of the hexapole mode is positioned at the center
of the gain spectrum, as shown in Fig. 4, so that it prevails over other modes. The Q-factor
of this hexapole mode is relatively low at 550, because just two rows of surrounding air holes
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Fig. 2. The PhC cavity structure in the simulation. The gray area in (a) and (b) is the
nonlinear gain region in the PhC slab. The black area in (c) and (d) is the spatially uniform
current pumping area with the radius of 2.5a.

Fig. 3. Hz-field profile of the hexapole mode. The hexapole mode shows up from sponta-
neous emission. See also animation. (gif, 141kb)

cannot contain photons efficiently. Choosing the mode with such a relatively low Q helps the
simulation in terms of reducing the excessive computation time in reaching the steady state. The
electrical current is set at 10 mA, well above the threshold. Such a strong pump current reduces
the turn-on delay of the starting laser, which also saves the computation time substantially. The
current is uniformly supplied over the circular region of radius 2.5a, as shown in Fig. 2(c).

To study the temporal development of the laser mode, the photon number participating in the
hexapole laser mode and the modal gain are computed with the result plot given in Fig. 5. The
modal gain is evaluated as the material gain weighted by the electric-field intensity profile of
the resonance mode in question, as

Gmod =
∫∫∫

Gmat(rrr) · ε(rrr) |EEE(rrr)|2 d3rrr∫∫∫
ε(rrr) |EEE(rrr)|2 d3rrr

, (8)

where Gmod and Gmat are the modal and the material gain, respectively. The integration was
taken over the whole FDTD calculation domain.

Before lasing, the injected carriers recombine inducing radiative spontaneous emission.
However, the gain medium is assumed to be initially absorptive and photons from the spon-
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Fig. 4. (a) The Lorentz dispersion of the imaginary part of ε and the locations of the reso-
nant modes of PhC single cell cavity. (b) The Hz profiles of the resonant modes.

Fig. 5. Dynamics of the hexapole photonic-crystal laser mode. (a) The solid and dashed
curves represent the changing number of the participating photons and the temporal vari-
ation of the modal gain, respectively. Lasing action begins at A. (b) Temporal behavior of
the Hz field.

taneous emission are absorbed before traveling over the PhC cavity. As the carrier density in-
creases, the initially absorptive gain medium becomes transparent. Then, photons can be aware
of the existence of the PhC cavity and the signature of the hexapole mode becomes very visible
out of the background of the random spontaneous emission as shown in Fig. 3. Once the carrier
density and the modal gain reach the threshold values, the resonant field begins to be ampli-
fied. See the lasing action starting from time A in Fig. 5. During the rapid development of the
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Fig. 6. Carrier density snapshots at successive time intervals, revealing the hole-burning
effect. The inset in (d) is the inverted plot for the electric field intensity.

laser mode, the spatial hole-burning effect is clearly observable as shown in Fig. 6. Due to the
hole burning, the spatial profile of the carrier density would approximately give an inverted plot
from the electric field intensity, which is the inset in Fig. 6(d). The laser mode preferentially
consumes the carriers shaping up the region of the strong electric field with a characteristic
carrier-density profile.

It is also interesting to observe the relaxation oscillation after the onset of the laser mode.
This oscillation gradually decays out. It is expected that both the photon number and the modal
gain approach their asymptotic steady-state values in a few ns, since both of the carrier life time
and the diffusion time are in the order of ns [9]. In fact, the time span of this length is very long
in a typical FDTD simulation. After a couple of relaxation oscillations, the modal gain and the
photon number approach their steady-state value of 35 cm−1 and 13 000, respectively, in Fig.
5. These values for the modal gain and the photon number agree reasonably well with those
obtained by the simple rate equation analyses. Note that the carrier spatial distribution becomes
gradually blurred owing to carrier diffusion as shown in Fig. 6.

4. Summary

In summary, we have developed the three-dimensional dispersive nonlinear-gain FDTD method
using Lorentz-gain/dispersion profile which can be applied to the numerical simulation of the
semiconductor device with active gain media. Using this method, we have studied lasing dy-
namics of a PhC single-cell hexapole mode laser. The study includes the creation of the laser
mode from spontaneous emission, the spatial hole-burning effect, and the relaxation oscillation.
With further refinement, we hope that the method could also be used to study some semiclassi-
cal aspects of cavity quantum electrodynamics.
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