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Abstract
Chromosome conformation capture (3C)-based techniques have recently been used to

uncover the mystic genomic architecture in the nucleus. These techniques yield indirect

data on the distances between genomic loci in the form of contact frequencies that must be

normalized to remove various errors. This normalization process determines the quality of

data analysis. In this study, we describe two systematic errors that result from the heteroge-

neous local density of restriction sites and different local chromatin states, methods to iden-

tify and remove those artifacts, and three previously described sources of systematic errors

in 3C-based data: fragment length, mappability, and local DNA composition. To explain the

effect of systematic errors on the results, we used three different published data sets to

show the dependence of the results on restriction enzymes and experimental methods.

Comparison of the results from different restriction enzymes shows a higher correlation

after removing systematic errors. In contrast, using different methods with the same restric-

tion enzymes shows a lower correlation after removing systematic errors. Notably, the

improved correlation of the latter case caused by systematic errors indicates that a higher

correlation between results does not ensure the validity of the normalization methods.

Finally, we suggest a method to analyze random error and provide guidance for the maxi-

mum reproducibility of contact frequency maps.

Introduction
Understanding the spatial organization of the human genome provides a deeper knowledge on
biological processes [1–3]. Chromosome conformation capture (3C) and its related (3C-based)
technologies have been used to explore the relationship between spatial genome organization
and functions [4–6]. The 3C-based technologies measure the distance between genomic loci as
a form of contact frequency [4, 5, 7, 8]. Because of the indirect measure of the distance, identi-
fying and removing systematic errors entangled in the experimental data are fundamental
steps to improving the quality of the results [4–6, 8–11].

Various methods have been suggested to remove the biases at the fragment and segment lev-
els [11–14]. Yaffe and Tanay suggested the probabilistic modeling method, where various error
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sources—such as fragment length, mappability, and GC content—were identified based on the
fragment level and corrected based on the probabilistic model [11]. Although this approach is
advantageous in that the physical origins of experimental biases are clearly shown, an unknown
portion of error sources can become magnified in the processed results. Alternatively, Imakaev
et al. suggested an iterative segment-level correction method by equalizing the coverage of each
segment from the frequency of double-sided and single-sided reads [12]. This approach avoids
systematic errors of complex physical origins but may increase the artificial error caused by
physically isolated fragments that have no nearby restriction sites.

In this study, we first obtained an upper limit of correlation (ULC) between experimentally-
obtained contact frequency maps by analyzing random error and provided a theoretical
method to estimate the ULC. We next described a method by integrating the advantages of
both fragment- and segment-level approaches to correct systematic errors. Here, we identified
two fragment-level error sources, the local density of surrounding restriction sites (DR) and
the local chromatin state (CS). We also suggest methods to remove those and three other previ-
ously described systematic errors: the fragment length between closest restriction sites (FL), the
mappability score near restriction sites (MS), and the local DNA composition near restriction
sites (DC). Among the five systematic errors, FL, DC, and DR originate from the use of restric-
tion enzymes, MS from reference genome mapping, and CS from the heterogeneous nuclear
local protein density. Note that the five systematic errors are analyzed at the level of fragment
ends, meaning that correction of the errors makes each fragment end have an equal probability
of findings. Thus, the following genomic-segment-based analysis should be divided by the
number of belonging fragment ends. Finally, we detail the effect of the systematic errors on the
results and compare the correction results with those of the previously used method.

Materials and Methods

Chromosome conformation capture data
Experimental data from chromosome conformation capture (3C)-based methods were down-
loaded from the NCBI Sequence Read Archive [(GSE18199 for genome-wide Hi-C and
SRA025848 for tethered chromatin capture (TCC)] [4, 10]. Lieberman-Aiden et al. reported on
genome-wide long-range interactions between all genomic positions using 3C-based methods
on the human lymphoblastoid cell line (GM06990), where sequence paired-end reads were pre-
pared using HindIII or NcoI restriction enzyme digests [10]. Kalhor et al. described data for
the human lymphoblastoid cell line (GM12878) by applying an improved technique and sug-
gested a population-based modeling method to build the genome-wide chromosome confor-
mation, where sequence paired-end reads were prepared using the restriction enzyme HindIII
[4]. Thus, the Lieberman-Aiden dataset can be used to assess the effect of different restriction
enzymes on the results, whereas the Kalhor dataset can be used to examine the effect of differ-
ent experimental methods on the results when compared to that obtained from the Lieberman-
Aiden study. We denote Hi-C HindIII, Hi-C NcoI, and TCC HindIII data as HH, HN, and TH,
respectively.

Mapping sequences
The paired-end reads with the same sequences were removed to reduce PCR duplication error.
Sequences containing potential ligation junction sites, such as the sequences containing
AAGCTAGCTT for HindIII and CCATGCATGG for NcoI, were trimmed after the junction
site (for example, between AAGCT and AGCTT in AAGCTAGCTT for HindIII). We only
considered 40 bp from the starting position to simplify the mappability analysis and used only
the sequences that contained� 40 bp with less than two unidentified nucleotides. Sequences
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from both sides of each paired-end read were separately mapped to the reference genome
(hg19) using Bowtie2 with the option to exclude multiple aligned sequences with a mapping
quality< 30 [15].

Screening paired-end reads
We analyzed the mapping sequences based on restriction sites because normal mapping posi-
tions of both sequences from a paired-end read are located near restriction sites. For the analy-
sis, each restriction site was orderly indexed from the beginning of the reference genome,
where the numbers of restriction sites in the human reference genome (hg19, excluding the Y
chromosome) are 830,194 and 744,516 for HindIII and NcoI, respectively. Each restriction site
contains two fragment ends according to the direction on the reference genome, and the two
fragment ends were treated separately. Because the analysis of sequences for systematic error
corrections has been performed near fragment ends, we defined the location of sequence blocks
according to each fragment end for convenience. If a sequence block is located before a frag-
ment end or after a fragment end, the block was defined as a BFE or AFE sequence,
respectively.

Each mapping position of the sequences was then represented as a label constituting three
elements: an index of the closest restriction site located in the sequencing direction, a genomic
distance from the restriction site to the starting position of the mapping sequence, and a sign
designating the fragment end belonging to the restriction site with a "+" sign for the reference
genome direction and a "-" sign for the opposite direction. Thus, a paired-end read can be
expressed as {(r1,d1,s1),(r2,d2,s2)}, where r, d, and s denote an index of the closest restriction
site, the genomic distance, and the direction sign, respectively. In the label for each mapping
position, a fragment end is uniquely described by two elements, r and s, without d. Because
only the paired-end reads with a sequence length� 500 bp (or d1 + d2 � 500 bp) are valid in
our analysis, one-side sequences from paired-end reads must have a genomic distance (d) rang-
ing from 40 bp to 460 bp [11, 12].

The coverage value of each fragment end in the experimental data was evaluated by count-
ing the total number of paired-end reads containing the fragment end. We excluded some frag-
ment ends based on their coverage value, where we fit the distribution of all coverage values
using a standard Gaussian model and then simply excluded the extreme cases (standard
score> 3). Paired-end reads containing the excluded fragment ends were removed.

The resulting paired-end reads were divided into five groups by following the method used
in reference [12]. The five groups are cis-contact, trans-contact, self circle, single end, and dan-
gling end (Fig 1A). The coverage value of each fragment end was recalculated by counting the
valid one-side sequences from all five groups, and these coverage values were used for the cor-
rection of systematic errors.

Explanatory variables for systematic errors
We corrected systematic errors based on the coverage values of fragment ends (the systematic
errors being FL, MS, DC, DR, and CS). Conceptual diagrams of the systematic errors are
shown in Fig 1B. We developed the following explanatory variables for the correction of the
systematic errors.

For FL, digesting the two closest restriction sites in a chromosome generates a restriction
fragment with two fragment ends. The genomic length of the fragment is used as an explana-
tory variable of the two fragment ends.

For MS, we extracted a 460-bp BFE sequence from each fragment end in the genome and
obtained 421 small 40-bp sequences from the 460-bp sequence by shifting a 40-bp window

Reducing Errors in Chromosome Conformation Capture

PLOS ONE | DOI:10.1371/journal.pone.0146007 December 30, 2015 3 / 17



from the fragment end. The small sequences were then individually mapped onto the reference
genome. Thus, the mapping sequences for a fragment end can be represented as a vector with
421 elements, where an element value is 1 for a uniquely mapped sequence and 0 for other
cases. For the evaluation of the previous mappability score, we added all the elements in each
vector, divided the sum by 421, and used the result as an explanatory variable [11]. We
improved the score by implying two findings, that the population of the genomic distances (the
d values in the mapping position label) in the experimental data is unevenly distributed accord-
ing to their position from the fragment end (S1B Fig) and that the number of 40-bp sequences
extracted from the genome sequence depends also on their position because of the existence of
short restriction fragments of< 460 bp. A probability vector was built by dividing the popula-
tion by the number of 40-bp sequences according to their position and normalizing the sum of
elements to be 1. A new mappability score is a vector dot value of the mappability vector with
the probability vector. The score was used as a new explanatory variable for MS.

For DC, we extracted a 300-bp BFE sequence from each fragment end in the genome and
then represented the sequence as a vector with 300 elements, where an element value is 1 for G
or C and 0 for A or T. These elements were used as explanatory variables for the multiple linear
regression.

For DR, we analyzed the BFE and AFE sequences at each restriction site< 3 Mbp for each
direction, divided each sequence into 300 sectors with a 10-kb genomic length, and counted
the number of restriction sites that belong to each sector. This method yielded two vectors with
300 elements for each restriction site. We assumed that the coverage value of a fragment end is
mainly affected by the genomic length between the fragment end and nearby restriction sites.
We combined the two vectors into one using the vector sum. The 300 elements in a vector
were used as explanatory variables.

For CS, chromatin states classified by Ernst et al. were used, where 15 classes of chromatin
states were assigned to the human genome [16]. For each fragment end, we analyzed the

Fig 1. Conceptual diagrams of contacts and systematic errors. (A) Two different types of contacts, cis-contact and trans-contact, are shown. A self-circle
denotes a cis-contact between the closest restriction sites. (B) Conceptual diagrams of five systematic errors are shown, where fragment ends are denoted
as red triangles, thick curved lines with different colors denote DNA chains from different chromosomes, and purple oval figures denote DNA-binding
proteins. FL: a DNA chain with a longer fragment length has a greater chance of being bound with nearby chains. MS: all possible 40-bp sequences for each
fragment end are mapped into the reference genome, and the mapping results are indexed. DC: fragment ends with different DNA compositions show
different characteristics under an experimental condition. DR: denser nearby restriction sites yield a higher chance of meeting the target fragment end. The
number of restriction sites belonging to each genomic segment is indexed into a vector. CS: the local density of the proteins that bind nearby DNA chains has
an effect on the coverage value.

doi:10.1371/journal.pone.0146007.g001
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chromatin state composition of a 1000-bp BFE sequence by counting the number of nucleo-
tides belonging to each class of the chromatin state, making a vector with 15 elements contain-
ing the number of nucleotides as its elements and normalizing the vector to have a magnitude
of 1.

Variance inflation factors (VIF) of explanatory variables were evaluated to check the multi-
collinearity using R packages, where the factor is close to 1 for independent variables and a
large value for the variables dependent on other explanatory variables [17–19]. The 15 explana-
tory variables for CS show high multicollinearity (VIF of 200). To reduce the multicollinearity,
we removed 1 variable classified as the "heterochromatin state," where a regression coefficient
of the variable was the smallest and the removal of the variable had a slight effect on other
regression coefficients. To evaluate the standard deviation of the coefficients, we systematically
increased the length of BFE sequences from 500 bp to 5000 bp by 500-bp intervals. VIFs of the
14 explanatory variables were less than 3 and used as explanatory variables for CS. VIFs of all
616 explanatory variables were evaluated together (S2 Fig). In our case, all VIFs are still less
than 3, indicating that the explanatory variables are independent.

Multiplicative systematic errors
The free energy change for a coverage value (C) of a fragment end can be described as
ΔGC = −RT ln(αCC), and the free energy changes for the five systematic errors are
ΔGX = −RT ln(αXX), where X is a quantity caused by one of the five systematic errors, and
the quantity is linearly proportional to the coverage value. We considered the quantity an
abundance caused by each systematic error. For convenience, we denote the quantities
caused by the five systematic errors, FL, MS, DC, DR, and CS, as L,M, D, R, and S, respec-
tively. Summation of the free energies results in multiplicative systematic errors as
C = α�L�M�D�R�S, where α is a scaling constant to adjust the arbitrary size of the experimen-
tal data and is not changed according to a fragment end.

Coefficients of explanatory variables
First, we investigated the effect of FL on the coverage value of each fragment end. To reduce
the bias caused by other systematic errors, we only used a group of fragment ends with an MS
of 1. Because of the scarcity of longer FLs, the common logarithm of FLs was used to classify
fragment ends into several bins ranging from 0 to 4 by 0.02 intervals on the logarithm scale.
The average of the coverage values of each bin was evaluated and normalized by the maximum
value among the averages, which were subsequently used as the abundance caused by FL. We
found that the averages were almost constant in the range from 2kb to 10kb. This length range
was used to evaluate the regression coefficients of other explanatory variables as below.

Second, coverage values were collected according to MS and their average value was evalu-
ated. The average values are linearly correlated with MS, meaning that MS directly represents
the abundance. We used an MS of 1 in the analysis of DR and DC to reduce MS-caused error.

Third, the effect of variance in DC to the abundance is considered in a physical concept that
each nucleotide in the DNA sequence contributes energetically to the abundance. Thus, the
natural logarithm of the abundance is directly proportional to the linear combination of the
DNA composition from a fragment end. The regression coefficients for DC were evaluated
using the multiple linear regression with the natural logarithm of the abundances as dependent
variables.

Fourth, the abundance caused by DR was evaluated based on the 300 explanatory variables.
Each variable for DR denotes the number of restriction sites. Thus, each variable can indepen-
dently contribute to the abundance with a weighting factor to consider the effect of the
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different locations of each element to the contact probability with the target fragment end. The
weighting factors were evaluated using the multiple linear regression. Because of the multicolli-
nearity between DR and DC, the simple product of R and D for the evaluation of the coverage
value causes an error. We solved the multicollinearity using the iterative method explained in
the next section.

The above four systematic errors reflect artificial effects caused by a restriction enzyme and
by a mapping error to the reference genome. If we can successfully remove the artificial effects,
then the only remaining error source that affects the coverage value of each fragment end is the
heterogeneous density of proteins, which entangle nearby DNA chains after the addition of
formaldehyde. We conjectured that the density of proteins depends on the local chromatin
states. The 14 variables for CS were used as independent variables, and the abundance after
removing the four systematic errors was used as a dependent variable for the multiple linear
regression. In the regression, we used the fragment ends with MS> 0.5 and FL between 460 bp
and 10 kb.

Iterative method for entangled systematic errors
Errors attributed to DC and DR are not separable. We developed an iterative method to eval-
uate the parameters for each systematic error using the multiple linear regression. For this,
we assumed that each vector element for DR was additively proportional to the abundance
and that each vector element for DC was additively proportional to the logarithm of the
abundance, as explained in the previous section. Let us assume that Ci, Rij, and Dij denote the
abundance, jth element of the DR vector, and jth element for the DC vector of the ith frag-
ment end, respectively. The purpose of the iterative method is to evaluate the contribution of
DR and DC to the coverage value. Additionally, let us denote Ri and Di as the contribution of
DR and DC to the coverage value of the ith fragment end, meaning that Ci = α�Ri�Di. The
regression coefficients for independent variables for the multiple linear regressions are evalu-
ated as follows:

1. Perform the multiple linear regression for the equation

lnðCiÞ ¼ d0 þ d1Di1 þ d2Di2 þ � � � þ dnDin:

The regression yields a set of regression coefficients dj and the estimated dependent variable

hln(Ci)i. If we denote the predicted value of Di as D̂i, then D̂i has a relation with the esti-

mated dependent variable as lnðD̂iÞ ¼ hlnðCiÞi.
2. Because we want to evaluate the coverage value as a form of a product of Ri with Di, division

of the coverage value by D̂i is proportional to Ri. Performing the multiple linear regression
for the equation

Ci=D̂i ¼ r0 þ r1Ri1 þ r2Ri2 þ � � � þ rnRin:

yields a set of regression coefficients rj and the estimated dependent variable hCi=D̂ii. If we
denote the predicted value of Ri as R̂i, then R̂i is equal to hCi=D̂ii.

3. From the set of R̂i values, the D̂i values can be refined by performing the multiple linear

regression for the equation lnðCi=R̂iÞ ¼ d0 þ d1Di1 þ d2Di2 þ � � � þ dnDin. If we denote the

estimated dependent variable as hlnðCi=R̂iÞi, then D̂i can be evaluated from the relation

lnðD̂iÞ ¼ hlnðCi=R̂iÞi.
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4. Iterate the steps from 2 to 3 until the standard deviation between the actual and estimated
coverage values converges.

If a percent change of the standard deviation after an iteration was less than 0.0001, we

stopped the algorithm. The dependence of the product R̂i � D̂i on the initial values used in step
1 is not significant (data not shown).

Normalized contact frequency maps
A correction factor of nth fragment end Cn is equal to the product of all systematic errors, or
Cn = α�Ln�Mn�Rn�Dn�Sn. We evaluated a normalization factor of the ith genomic segment by
summing all correction factors of the fragment ends consisting of the genomic segment as

Ni ¼
X

n2iCn. If we define Cij as the raw contact frequency between the ith and jth genomic

segments, then normalized contact frequency is evaluated as

NCij ¼
Cij � �N 2

Ni � Nj

where NCij and �N denote a normalized contact frequency and the mean of Nis, respectively. To
reduce an artificial effect of the magnification from small normalization factors, we considered
only the genomic segments with Ni= �N > 0.4 for the comparison between the normalized con-
tact frequency maps.

Results
The experimental error in 3C-based data consists of random and systematic errors. Random
error originates inherently from the limited size of paired-end reads because the limited size
results in their random inclusion. This error cannot be fixed by processing the data, and it
affects the resolution and quality of contact frequency maps. In contrast, systematic errors can
be corrected by analyzing their physical origins. Systematic errors include errors due to FL,
MS, DC, DR, and CS.

Random error
High reproducibility is critical for experimental results. To quantify the reproducibility, we
used Pearson's correlation coefficient between contact frequency maps. Depending on the con-
tact frequency map, there is a ULC with other maps caused by the data size. Here, we describe
a method to estimate the ULC. Contact frequency maps can be notably different from each
other due to minute differences in experimental conditions. Although one may generate the
experimental results by identical means, there is still stochastic error in experimental data
acquisition. An inevitable stochastic error source is a limited sequencing depth that causes an
uncertain break in data acquisition. In this demonstration, we only address the stochastic error
of technical replicates from the same experimental result. Because the error from minute differ-
ences in experimental conditions is independent of the stochastic error, inclusion of both errors
will generate a lower correlation between experimental results than when including only sto-
chastic error. Thus, analysis of the experimental results containing only the stochastic error
indicates the ULC of a contact frequency map when one obtains the map from another experi-
ment. In this study, we report on Pearson's correlation coefficients between contact frequency
maps and compare the results to their ULCs.

Evaluation of the ULC. Spatial distances between genomic segments are indirectly mea-
sured as a relative frequency of paired-end reads that connect the segments. A contact
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frequency map can be obtained as a result, consisting of many square blocks on a two-dimen-
sional surface. Each block displays the individual contact information between two genomic
segments. Paired-end reads from 3C-based methods then appear as points on the block. The
number of points on each block, or a contact frequency, follows an absolute probability that
represents the spatial proximity of two genomic segments. To measure the reproducibility of a
contact frequency map, we randomly divided experimental data into two groups, which were
then used to evaluate two contact frequency maps. Pearson's correlation coefficient of off-diag-
onal elements between the two contact frequency maps was used as an experimental value for
the ULC. The ULC of the contact frequency maps was obtained from one of the two maps
using the mean and variance of contact frequencies as represented in Equation 2 in S1 Text.

For any given experimental setup, the segment size and data size would be the determinant
factors in a map’s reproducibility. First, we systematically changed the segment sizes from 50
kb to 1 Mbp at the fixed data size of 5,000,000 points for TH data. In Fig 2A, ULCs are plotted
as solid circles with error bars, while the corresponding experimental values are plotted as
thick lines. ULCs accurately predict the experimental values for both cis- and trans-contacts.
Second, we systematically increased the data size from 1,000,000 points to 5,000,000 points by
500,000-point intervals at a segment size of 200 kb. In Fig 2B, similar to the previous case,
ULCs matched the experimental data precisely.

Estimation of the ULC for a larger data size. The ability to predict the ULC for a larger
data size from a smaller constituent would be advantageous with respect to experimental meth-
odology. Pearson's correlation coefficients for larger data sizes were measured experimentally,
and corresponding ULCs were predicted using the mean and variance of the data size of

Fig 2. Random error effect. Pearson's correlation coefficients of off-diagonal elements between contact frequency maps from TH data are plotted. In the off-
diagonal elements, cis- and trans-contacts are separately considered. Mean values of experimentally-determined ULCs are plotted as thick lines.
Theoretically-determined ULCs are plotted as solid circles with error bars. (A) The segment size effect on ULC was evaluated at the data size of 5,000,000
points. (B) The data size effect on ULC was evaluated based on the fixed segment size of 200 kb. ULCs for larger data sizes were predicted from the data
size of 1,000,000 and plotted as thin lines with error bars. (C) ULCs for normalized contact frequency maps were evaluated at the data size of 5,000,000
points. Here error bars denote the standard deviation obtained from the analysis of 10 data sets.

doi:10.1371/journal.pone.0146007.g002
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1,000,000 (see Equation 3 in S1 Text). In Fig 2B, the experimentally-measured ULCs, theoreti-
cally-evaluated ULCs, and predicted ULCs from a small data size are plotted as thick lines,
solid circles, and thin lines, respectively. The predicted ULCs from a 10-times-smaller data size
matched both the experimentally-measured ULCs and the theoretically-evaluated ULCs
precisely.

ULC for normalized contact frequency maps. A contact frequency between two genomic
segments can be influenced by many error sources. Therefore, contact frequency maps have
been normalized by various factors for a meaningful comparison in the majority of cases. We
detail a method of how to obtain the ULC for a normalized contact frequency map in Equation
4 in S1 Text. For this, we systematically changed the segment size of a contact frequency map,
compared the experimentally measured ULCs with the corresponding ULCs and found them
to be in agreement (Fig 2C).

Systematic errors
In contrast to random errors, systematic errors can be corrected by proper normalization
methods. We suggest correction methods for five different sources of systematic errors: FL,
MS, DR, DC, and CS. Of these, DR and CS are newly identified sources, while the other three
have been reported previously [11]. Restriction enzymes cut specific sites throughout the
genome by recognizing specific palindromic sequences, generating a great number of frag-
ments in the process. Characteristic properties of each fragment—the heterogeneous distribu-
tion of restriction sites, quality of the reference genome, and unique mapping sequences—
cause four of the systematic errors (excluding CS, which originates from the properties of the
cell nucleus). Conceptual diagrams of the systematic errors are shown in Fig 1B. Each system-
atic error takes effect on the coverage value of each fragment end.

Let us explain the five different sources of systematic errors. First, each fragment has a dif-
ferent length and different probability to be chemically linked to an adjacent DNA chain,
which is described as the systematic error due to FL. Second, each fragment contains a specific
sequence and exhibits its own unique mapping ability (mappability) to the reference genome,
where MS is linearly correlated to the coverage value. Third, the DC of each fragment end
causes some experimental bias because each nucleotide contributes energetically to a binding
ability for unknown targets. Fourth, the probability of a fragment end coming into contact with
another one is proportional to the density of nearby fragment ends, which is the physical origin
for DR. Last, the local protein density in a chromosome has a relation with CS. Higher local
protein density causes more connections between DNA chains in that region.

For the evaluation of contributions of the five systematic errors to the coverage value of
each fragment end, we assumed that the errors contribute individually to the coverage value of
each fragment end as a form of free energy change, ΔG = −RT ln (αP), where P is a finding
probability, and α is a constant with the gas constant R and temperature T, meaning that a
higher coverage value has a larger free energy change. This connection between the free energy
change and finding probability has been used in previous studies [20, 21]. In the free energy
equation, the finding probability is linearly proportional to the coverage value of a fragment
end. The coverage value can be increased in two ways: negative free energy change and
increased finding probability. Among the systematic errors, DR and DC have multiple explana-
tory variables. Each element in DR denotes the number of restriction sites in a given genomic
sector, and thus, each element increases the coverage value of the fragment end additively
because the coverage value is proportional to the number of surrounding restriction sites. On
the contrary, each element in DC denotes a different type of nucleotide and each nucleotide
may bind to some unknown materials with a certain interaction energy, where the interaction
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energy increases the coverage value. This is the suggested physical model for the DC contribu-
tion, where each nucleotide contributes to the coverage value as an additive interaction energy.
The two quantities affect the coverage value with different mechanisms, but the quantities are
integrated using the free energy equation.

Systematic error: FL. Coverage values are systematically affected by FL. A longer fragment
has a greater chance of matching a ligating partner in 3C-based experiments. Thus, it is
expected that a longer fragment may have a larger coverage value than a shorter one. In S3 Fig,
the three experiments gave different patterns in individual categories of paired reads, such as
cis-contact, trans-contact, self-circle, dangling-end, and single-end, where average contact fre-
quencies of fragment ends consistently go up and down as FL increases. On the contrary, the
mean coverage values show an expected pattern for FL. The mean coverage value increases rap-
idly up to 2 kb and flattens at approximately 10 kb, as shown in Fig 3A. Because of the consis-
tency between experimental results and physical expectation, we used the mean coverage
values as the abundance of a fragment end caused by FL.

Systematic error: MS. We denoted the mappability of each fragment end as a vector,
where the mean of the vector elements was used for MS in the previous method [11]. We
grouped fragment ends according to the previous MS and evaluated the mean of their coverage
value. The previous MSs are linearly correlated with the mean coverage values (S1 Fig). We
developed new MS by considering the difference in experimental conditions. Following the
new MS, we evaluated the mean of the coverage values. The new MSs are also linearly corre-
lated with the mean coverage values, similar to the previous MS. However, the variances in the

Fig 3. Explanatory variables and coefficients for various systematic errors. (A) A fragment length of a fragment end is an explanatory variable of FL,
and an average coverage value is a coefficient of the explanatory variable. (B) The standard deviations of the coverage values classified by old mappability
scores and newmappability scores were plotted as open circles and solid circles, respectively. (C) The regression coefficients for DR from the iterative
method are plotted according to the position of nearby segments. (D) The regression coefficients for DC are plotted according to the nucleotide positions from
fragment ends. (E) The regression coefficients for CS were measured using 14 explanatory variables, where the variables denote 14 different chromatin
states classified by a previous study. The positive value of a chromatin state means that the chromatin state contains more proteins for binding nearby DNA
chains. The error bars denote standard deviations of the coefficients from three experimental results.

doi:10.1371/journal.pone.0146007.g003
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coverage values grouped by the new MS are consistently smaller than those by the previous
MS, as shown in Fig 3B. The lower variances demonstrate that the new MS predicts fragment
mappability more accurately than the previous one.

Systematic error: DC. We represented the DC of each fragment end by a vector. We
assume that each nucleotide in the sequence contributes independently to the abundance via
its binding energy; in other words, the sum of a nucleotide’s binding energies is proportional to
the logarithm of the abundance. Vectors for all fragment ends were fitted to a logarithm of cor-
responding frequencies using multiple linear regression. The correlation improves rapidly up
to a threshold (200 bp) where it then becomes saturated (S4 Fig).

Systematic error: DR. We represented the DR of a fragment end by a vector. The vectors
were fitted to their corresponding abundance using multiple linear regression. It is readily
apparent that including a wider range of nearby sequences improves the correlation results. Fit-
ting results were then plotted according to their covering genomic length from a target restric-
tion site in S4 Fig, where the correlation increases rapidly up to 1 Mbp and becomes nearly
saturated at approximately 2 Mbp.

Systematic error: CS. A remaining source of coverage value variation is the binding prob-
ability of any fragment with adjacent DNA chains. Various proteins in a nucleus tie adjacent
nucleotides after formaldehyde fixation. Thus, the coverage value variation of a fragment end
after removing four systematic errors—FL, MS, DC, and DR—is proportional to a local density
of the proteins. To quantify a local density of the proteins, we used the local chromatin state as
independent variables for protein density because the local chromatin state affects the density.
We used 15 categories of chromatin state reported from a previous study [16]. In our model,
we excluded the "heterochromatin state" variable among the 15 categories to reduce the multi-
collinearity between independent variables.

Regression coefficients for 14 categories of chromatin states were evaluated. To check the
robustness of the method on the selection of a genomic length for CS explanatory variables, we
prepared 10 different chromatin state vectors for each fragment end by systematically extend-
ing BFE sequences from 500 bp to 5000 bp by 500-bp intervals. Multiple linear regression for
each chromatin state vector was performed, and its regression coefficients were evaluated.
Standard deviations of the regression coefficients are marked as error bars on the bar graph in
S5 Fig. The small standard deviation indicated that the selection of a genomic length for CS
explanatory variables took a little effect on the results. For each chromatin state, three experi-
mental results gave the same sign of direction. The mean and standard deviation of 14 regres-
sion coefficients are plotted as a bar graph in Fig 3E.

At the level of fragment ends, we compared the abundance caused by CS between three
experiments. Because different enzymes gave different restriction sites, comparison at the frag-
ment level is impossible. Thus, we compared the abundance for the three experiments at the
segment level. The correlation between experimental methods ranges from 0.521 to 0.878 for
50-kb segments and from 0.598 to 0.930 for 1-Mbp segments.

Multicollinearity between DC and DR. We developed the iterative method to reduce the
multicollinearity between DC and DR. The method gave regression coefficients for DC and DR
simultaneously. In Fig 3C, the coefficients for DR are plotted. The segments located in closer
proximity exhibit a larger value than those spaced farther apart, as explained in a previous
study [22]. Interestingly, the three experiments all show a similar patterning with Pearson's
correlation coefficients> 0.8 for all cases, even when we exclude the contribution of the largest
value (inclusion of the value dramatically increases the correlation coefficients).

In Fig 3D, the regression coefficients for DC are plotted according to their relative positions
from the fragment ends. Note that positions proximal to the fragment end exert a stronger
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effect on the results; however, the parameters do not exhibit a clear common pattern and corre-
lation between experiments.

Effect of systematic errors on the results. Systematic errors may increase the correlation
observed between experimental results if they share the same direction of bias. For example,
correlations between the experimental results increase when the mappability bias is not cor-
rected. To show the effect of the bias on the results, we evaluated five correction factors of each
fragment end for HH and TH data, to compare the data at the fragment level. First, we com-
pared the raw coverage value between experimental data by adjusting a criterion of MS, where
we only include fragment ends with an MS larger than the criterion. In Fig 4A, Pearson's corre-
lation coefficients are plotted as circles according to the MS criterion, where an MS� 0.1 has
more bias than an MS of 1.0, and the number of participated fragment ends for an MS of 1.0 is
61% of those of an MS� 0.1. From the comparison results, we observed that the correlation
between raw coverage values for more biased data (MS� 0.1) is higher than for less biased
data (MS of 1.0), as shown in the open circles in Fig 4A. For comparison, we removed four sys-
tematic errors in the raw frequency by dividing the frequency by the four correction factors.
Thus, the value after the correction involves only CS and noise. Contrary to the raw coverage
values, the correlation between corrected values shows an invariance with the addition of
biased data, as shown in the solid circles in Fig 4A.

For all fragment ends with MS� 0.1, we compared the abundance between the two experi-
ments at the fragment level. The comparison results are shown in Fig 4B. The systematic errors
from FL, MS, and DR show a strong positive correlation; however, DC shows a negative corre-
lation, indicating that the DC is influenced by the experimental setup. After correcting the four
systematic errors, the correlation coefficient increases from 0.27 to 0.36. Notably, the addition
of systematic errors—except DC—improves the correlation to 0.52.

Normalized contact frequency map. The contact frequency maps for three sets of experi-
mental data were prepared based on 1-Mbp segments. The maps were normalized to reduce
systematic errors, which improved a correlation between contact frequency maps (S6 Fig). To
compare the normalization performance of our method with the previous method, we evalu-
ated the normalized contact frequency maps using three correction factors, FL, MS, and DC,
where DC partly contained the effect of DR because of multicollinearity. This normalization

Fig 4. Systematic errors increase the correlation. Comparison results at the fragment level between HH and TH data are shown. (A) The correlation
coefficients between raw coverage values are plotted as open circles, and those between corrected values (CS + noise) are plotted as solid circles. (B) The
correlation coefficients between correction factors from two experimental results are shown as a bar graph.

doi:10.1371/journal.pone.0146007.g004
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method simulates the method suggested by Yaffe and Tanay [11] and is compared to our
method, which uses all the correction factors. The difference between the maps from the two
methods comes from the different correction factors.

First, we compared the correction factors used for the two methods at the fragment level.
The correlation coefficients between the correction factors were 0.96 for HH, 0.89 for HN, and
0.98 for TH. Although, the high similarity between correction factors made little difference
between normalized contact frequency maps (S7 Fig), the correction factors for our method
gave a higher correlation coefficient with their coverage values compared to the previous
method by 4.7% for HH, 14.6% for HN, and 3.4% for TH.

Because of the different normalization factors, ULCs for normalized contact frequency
maps from the two methods were different from each other; thus, the correlation between con-
tact frequency maps should be evaluated relative to their ULC, where we used a ratio of the cor-
relation value to its corresponding ULC as a performance of the normalization method.

In Table 1, we compared the performance between methods. For the comparison between
the experimental results from different restriction enzymes, normalization of the raw data
improved the performance. For cis-contacts, performances for HH and HN increased from 76
with raw data to 95 with the previous method and 89 with the new method; those for HN and
TH increased from 81 with raw data to 97 with the previous method and 96 with the new
method. For the comparison between the experimental results from the same restriction
enzyme, normalization of the raw data decreased the performance. For cis-contacts, the perfor-
mance for HH and TH decreased from 97 with raw data to 91 with the previous method and
91 with the new method. For trans-contacts, normalization of the raw data improved the per-
formance significantly.

Discussion
Experimental data obtained from 3C-based methods can be affected by various errors from the
restriction enzyme, reference genome, and local chromatin state. In this study, we character-
ized two new systematic errors that result from DR and CS; furthermore, we provided clear
physical concepts of the two systematic errors and showed a common pattern amongst the
three analyzed experimental results. We could also identify the previously reported systematic
errors and succeed in correcting for these using the methods described. Thus, there are five sys-
tematic errors, FL, MS, DC, DR, and CS, where the reference genome-derived error is MS, the
local chromatin state-derived error is CS, and the restriction enzyme-derived errors are FL,
DC, and DR. In addition, we introduced the role of random error to determine the ULC. We

Table 1. Pearson's correlation coefficients between contact frequency maps.

Raw Previous methoda New method

Data Exp. ULCb Ratio (%) Exp. ULC Ratio (%) Exp. ULC Ratio (%)

cis HH /HN 0.746 0.984 76 0.924 0.978 95 0.869 0.977 89

HH /TH 0.955 0.986 97 0.896 0.984 91 0.899 0.984 91

HN /TH 0.806 0.990 81 0.951 0.985 97 0.948 0.984 96

trans HH /HN -0.015 0.258 -6 0.136 0.143 96 0.137 0.148 93

HH /TH 0.101 0.180 56 0.134 0.158 84 0.149 0.173 86

HN /TH 0.135 0.235 57 0.096 0.117 82 0.089 0.116 77

a Yaffe's method for normalization of contact frequency maps.
b We used ULC by evaluating a geometric mean of ULCs from both contact frequency maps

doi:10.1371/journal.pone.0146007.t001
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provided several equations to address the effect of random error on the results. Using these
equations, it is now possible to estimate the required data size to obtain a contact frequency
map with a specific segment size and reproducibility.

Contribution of the dangling end and self-circle to normalization of a contact frequency
map has been ignored in previous studies [11, 12]. Without these contributions, we could not
obtain the desired relationship between FL and the coverage value of paired-end reads. One
might expect that longer genomic fragments would have a higher coverage value than its
shorter counterpart because a longer one has a higher possibility of being linked to other
nearby DNA chains. Thus, the desired pattern is that the coverage value rapidly increases ini-
tially and saturates as the length increases. This saturation occurs because the binding position
between DNA chains distantly located from fragment ends is similar to two fragment ends
with a longer chain length, where the longer chain length diminishes the meeting chance
between the two fragment ends [23]. The desired pattern was obtained from the case after sum-
ming all contributions.

We suggested new methods to correct systematic errors at the fragment level. First, gather-
ing fragment ends according to the new MS generated better results compared to the previous
method in the sense that the variance of the coverage values of the gathered fragment ends is
lower. Second, we identified two new systematic errors. It is known that contact frequencies are
highly affected by closely located genomic loci [22]. This pattern is also apparent in the effect
of DR, where all three experiments commonly show a larger effect of closely located genomic
loci on the coverage value, in spite of using different restriction enzymes. After correction of
the enzyme-derived error and reference-genome-derived error, three experimental results
show that a common pattern came from CS, where the systematic error originates from differ-
ent local protein densities, which modulates the binding probability between DNA chains.
Third, we suggested an iterative method to evaluate the contribution of DC, where DC is
affected severely by the experimental setup, but we were unable to find a common pattern
across the three experiments.

Many proteins participate in duplicating and packing DNA chains and thus yield different
chromatin states. We provided regression coefficients for CS, which is related to the density of
proteins, that link nearby DNA chains, over various chromatin states. Negative coefficients for
active, inactive promoter regions indicate a lower density of DNA-binding proteins. This lower
protein density supports the nucleosome depletion in promoter regions [16, 24], but the results
are also controversial regarding the coefficient of the weak promoter, which has a small positive
value that deviates from the expected pattern. Contrary to the obvious artifacts such as the ref-
erence genome-derived error and restriction enzyme-derived errors, the abundance caused by
CS is a property of the nucleus. However, CS hinders the correct interpretation of contact fre-
quencies into spatial distances; thus, we also removed the abundance caused by CS in the nor-
malization process of contact frequency maps.

In previous studies, it has been assumed that better correlation between normalized contact
frequency maps proves a better normalization method; however, we showed in this study that
a better correlation does not always ensure a better normalization method. Here, we suggested
a new normalization method. Although, the new method did not yield a better performance
than that of the previous method, the newly-suggested correction factors showed better corre-
lation with the coverage values, meaning that the new method is more efficient in removing the
systematic errors.
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Supporting Information
S1 Fig. A new mappability score. (A) Average coverage values classified by the old MS were
plotted as open circles, open triangles, and open squares for three different experiments. The
linear fitting results for each data are plotted as solid lines. (B) The genomic distances of map-
ping positions of paired-end reads were collected. The distribution of the distances depends on
experimental methods. (C) The average coverage values classified by the new MS were plotted.
(D) The standard deviations of the coverage values classified by both MSs were plotted, where
open figures denote the result using the old MS, and solid figures denote the result using the
new MS.
(TIF)

S2 Fig. VIF for explanatory variables. For each experiment, we randomly divided all fragment
ends into 10 groups. VIFs of the 616 explanatory variables were evaluated for each group using
R. The mean values of VIFs were plotted as solid circles with error bars.
(TIF)

S3 Fig. Experimental setup affects the type of contacts. Five categories of contacts, cis/trans-
contact, self-circle, single-end, and dangling end can be easily classified in the analysis of
paired-end reads. (A-E) Average frequencies for each category were evaluated according to
their FL. (F) Average coverage values according to FL are shown. The right panel of each cate-
gory shows normalized values by the maximum value.
(TIF)

S4 Fig. Two entangled systematic errors.Multiple linear regressions were performed to evalu-
ate the correlation coefficient between explanatory variables and coverage values. (A) The
results for DC are plotted as solid figures. For comparison, results for the explanatory variables
prepared by the AFE 500-bp sequences are plotted as open figures. (B) The results for DR are
plotted as solid figures. Here, circles, triangles, and squares denote HH, HN, and TH data,
respectively.
(TIF)

S5 Fig. Regression coefficients of CS for individual experimental results. The regression
coefficients for CS were measured individually for three sets of experimental results: HH, HN,
and TH data. For each experimental result, standard deviations of coefficients were measured
using 10 sets of explanatory variables generated by systematically extending BFE sequences.
(TIF)

S6 Fig. Contact frequency maps between chromosomes 1 and 2. Contact frequency maps
between chromosomes 1 and 2 were prepared based on 5-Mbp segments and normalized using
two normalization methods. The intensity of the red color represents a natural logarithm of
contact frequency.
(TIF)

S7 Fig. Contact frequency maps. Contact frequency maps for HH, HN, and TH data were pre-
pared based on 1-Mbp segments and normalized using two normalization methods. The inten-
sity of the red color represents a natural logarithm of contact frequency.
(TIF)

S8 Fig. Distribution of contact frequencies in contact frequency maps. For three different
data sizes of HH data, contact frequency maps with 1-Mb segment sizes were prepared. Histo-
grams of contact frequencies for each map were evaluated and normalized to yield probability
distributions. For a data size of 5,000,000 points, the experimental probability distributions are
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fitted (a) using seven linearly combined Poisson distribution functions for cis-contacts and (b)
using three linearly combined Poisson distribution functions for trans-contacts. The fitting
curves were used to predict the probability distributions of different data sizes (c) for cis-con-
tacts and (d) for trans-contacts.
(TIF)

S1 Text. Detailed equations for ULC evaluation.
(DOC)
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