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Abstract: The concept of parity-time (PT) symmetry has been used to 
identify a route toward unidirectional dynamics in optical k-space: imposing 
asymmetry on the flow of light. Although PT-symmetric potentials have 
been implemented under the requirement of V(x) = V*(-x), this precondition 
has only been interpreted within the mathematical framework for the 
symmetry of Hamiltonians and has not been directly linked to 
unidirectionality induced by PT symmetry. In this paper, within the context 
of light-matter interactions, we develop an alternative route toward 
unidirectionality in k-space by employing the concept of causality. We 
demonstrate that potentials with real and causal momentum spectra produce 
unidirectional transitions of optical modes inside the k-continuum, which 
corresponds to an exceptional point on the degree of PT symmetry. Our 
analysis reveals a critical link between non-Hermitian problems and 
spectral theory and also enables multi-dimensional designer manipulation 
of optical modes, in contrast to the one-dimensional approach that used a 
Schrödinger-like equation in previous PT-symmetric optics. 
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1. Introduction 

Optical modes are one of the critical features for defining the flow of light, by determining 
the ‘momentum’ (or wavevector k) of photons for a given spatial distribution of optical 
potentials. In the context of light-matter interactions, the manipulation of optical modes and 
wavevectors through the modulation of refractive index landscapes (or optical potentials) is 
not only a classical subject, as observed in a diffraction grating [1], but is also an emerging 
area of research involved in recent discoveries in the field of optics, e.g., subwavelength 
plasmonics [2] and indefinite metamaterials [3–5] with high-k components, optical Bloch 
oscillations [6,7] based on a graded-k design, bio-mimic reflective surface [8] with randomly-
distributed k, and drastic optical manipulation using modal orthogonality [9]. Although 
extremely encouraging, all of these achievements were obtained by controlling only the real-
valued optical potentials within the well-known restriction of Hermiticity in quantum 
mechanics and optics for real eigenvalues. Because real potentials correspond only to double-
sided spectra in Fourier space, the considerable opportunities afforded by complex potentials 
of generalized spectra have been overlooked. 

From a mathematical perspective, continuous efforts have been focused on overcoming 
the Hermitian restriction for real eigenvalues. Bender first proved the existence of real 
eigenvalues for complex potentials [10] when the potentials satisfy parity-time (PT) 
symmetry. This striking discovery has been adopted in various fields [11,12] to interpret the 
physics of complex potentials. In the field of optics, although Lorentz reciprocity cannot be 
broken with only spatially varying complex potentials [13–16], the use of cleverly designed 
PT-symmetric potentials has resulted in inspiring achievements, such as in the unidirectional 
coupling dynamics of linear [17–23] and angular [24] optical momenta, a simultaneously 
operated laser and perfect absorber [25], unidirectional invisibility from asymmetric 
reflection [26,27], and spectral realizations of PT-symmetry exploiting optical resonances 
[28–33]. Because PT-symmetric optics were initially developed as an effective model of 
quantum-mechanical problems, optical potentials in subsequent PT-symmetric applications 
have been designed to simply fulfill the condition of V(x) = V*(-x), which is derived from the 
commutative relation between PT and the Hamiltonian operators for a Schrödinger-like 
equation. Interestingly, however, investigations of the PT-symmetric potential V(x) in the 
Fourier domain, which has the intriguing consequence that the potential momentum of 
F{V(x)} is real-valued, for example, have not been attempted. Because the directional shift in 
momentum space is the underlying physics of PT-symmetric optical phenomena [13–
24,26,27], a more thorough investigation of the potential momentum F{V(x)} will provide 
new insight into PT-symmetric optics in terms of momentum interactions between light and 
potentials. 

In this paper, we propose a novel pathway toward unidirectional coupling in k-space in the 
context of light-matter momentum interactions to demonstrate the role of potential 
momentum F{V(x)}. We start from the general problem of light excursions in k-space, 
focusing on ‘unidirectional modal transitions’ along the isofrequency contour (IFC). Under 
the weak-coupling regime, we then demonstrate that ‘causality’ in potential momentum 
space, i.e., causal potential momentum, produces a unidirectional k-transition of light inside 
the IFC k-continuum, corresponding to exceptional point (EP) dynamics on the degree of PT 
symmetry. Our results provide a logical mechanism for understanding PT symmetry through 
spectral analysis and enable the ‘design’ of momentum shifts through potential modulations 
rather than the ‘observation’ of momentum shifts at given PT-symmetric potentials, thereby 
providing designers control of optical modes, such as for collimated beam steering or 
excitations in the extreme regime of low- or high-k states. 

Figure 1 shows examples of light excursions in k-space. Because the wavevector k affects 
the direction and effective wavelength of wave propagation, applications such as beam 
steering (controlling the direction, Figs. 1(a) and 1(b)) and high- / low-k excitation 
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(controlling the wavelength, Fig. 1(c) and Fig. 1(d), respectively) could be enabled through 
modification of wavevectors. To tailor the evolution of the optical state in k-space, we address 
the unidirectionality for the modal transition along the IFC (red arrows in Fig. 1), which 
suppresses the back transfer (gray arrows in Fig. 1) to the initial state, thereby efficiently 
delivering optical energy into the targeted mode. It is noted that the unidirectional modal 
transition can be understood in the context of the relation between ‘cause’ (the initial state 
with incident waves) and ‘effects’ (the directionally excited states from the unidirectional 
coupling) along the IFC (Fig. 1(e)). This description naturally leads to the concept of 
‘causality’ [34,35], which has usually been used to define the relation between an event and 
the following results in the temporal domain, e.g. Kramers-Kronig relation [35]. We note that 
the genenalized concept of causality has not restricted to the temporal domain [35] but widely 
extended to various physical axes, including spectral [36], spatial [37] or momentum [38] 
domains. In the following discussions we employ the notion of causality in the k-axis [38] 
(red arrows in Fig. 1(e)) rather than the time axis, i.e. causal momentum, as analugous to non-
temporal applications [36–38]. 

 

Fig. 1. Schematics of one-way transitions along (a, b) elliptic, (c) hyperbolic, and (d) quasi-
linear IFCs. (a) Counterclockwise and (b) clockwise transitions; dotted lines denote the 
direction of the flow of light for beam steering. (c) High-k and (d) low-k excitations. Blue (or 
purple) circles denote the initial (or excited) state for each IFC. (e) Schematic linking one-way 
optical transition with causality. Red (or gray) arrows show allowed (or forbidden) transitions 
along the IFC in (a-e). 

2. Coupled mode equation in 2-dimensional anisotropic materials 

To investigate the relationship between one-way transitions and causality, by generalizing the 
continuous coupled mode theory [39] to 2-dimensional anisotropic materials, we derive the 
coupled mode equation for analyzing the coupling and energy transfer between optical 
modes. Without loss of generality, we consider a TM-polarized wave in a nonmagnetic 
anisotropic material (Hz, Ex, and Ey with εx,y) that produces a k-continuum for an elliptic IFC 
(Figs. 1(a) and 1(b)), a hyperbolic IFC [3–5] (Fig. 1(c)), or a quasi-linear IFC with extreme 
anisotropy [40] (Fig. 1(d)) in k-space. Here, we apply two standard approximations to the 
time-harmonic wave equation at a frequency ω: a weak (|Δεx,y(x,y)| << |εx0,y0|, where εx,y(x,y) = 
εx0,y0 + Δεx,y(x,y)) and a slowly-varying modulated potential (|Δεy

−1·∂xΔεy| << |kx| and 
|Δεx

−1·∂yΔεx| << |ky|). We use the IFC relation of k0
2 = kx

2/εy0 + ky
2/εx0, where k0 = ω/c is the 

free-space wavenumber, to derive the following expression (see Appendix A) 

 ( ) ( )

[ , ] [ , ]( ( , )) 2 ( ) ,x y x y

x y x y

i k x k y i k x k y

k k x y k k x yk k k
x y e dk dk i e dk dkβ σ ψ β ψ− + − +⋅ = ⋅ ∇ ⋅   

 
 (1) 
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where ψ[kx,ky] is the spatially varying envelope [39] of the magnetic field imposed on the 
planewave solution exp(-ikx·x-iky·y) as Hz(x,y) = ψ[kx,ky](x,y)·exp(-ikx·x-iky·y)dkxdky, βk = 
(kx·εy0

−1)x + (ky·εx0
−1)y is the ε-normalized wavevector, and σk(x,y) = (kx·Δεy(x,y)/εy0)x + 

(ky·Δεx(x,y)/εx0)y is the local modulation vector. Equation (1) clearly shows the source of the 
modal transitions βk·σk(x,y) that induce the locally modulated envelope ∇ψ. Additionally, note 
that ψ[kx,ky] corresponds to the amplitude of the k-space optical mode k = (kx,ky). 

With the Fourier expansion (Δεpq(p,q)) of the modulated potential Δε(x,y) and the use of 
the divergence theorem, the 2-dimensional coupled mode equation between the optical modes 
of k = (kx,ky) and (kx-p,ky-q) is now obtained as 

 

2
[ , ]

2 2

[ , ]2 2
0 0

8

( ) ( )
.

x y

x y

k k kS

x ypq y xpq
k p k q

y xV

i ds

k p k q
dpdqdv

π ψ β

ε ε
ψ

ε ε
∞
−∞ − −

⋅ ⋅

 − Δ − Δ
= +  

 



 


 

 (2) 

3. Design of one-way coupling potentials 

Equation (2) defines the coupling along the IFC k0
2 = kx

2/εy0 + ky
2/εx0 (including the multipath 

coupling through Δεpq(p,q) with a finite bandwidth) and can be used to derive the criterion for 
the directional coupling that prohibits back transfers (gray arrows in Fig. 1). Note that the 
potential momentum Δεpq in Eq. (2) mediates the coupling between states, and a highly 
efficient unidirectional modal transition can be obtained by enforcing a restriction in potential 
momentum space (p,q), such as Δεpq ≠ 0 only for a single quadrant, to achieve a zero value for 
the integral of the back transfer. Such a restriction can indeed be realized with the causality 
condition in multi-dimensions by replacing the axis condition k > 0 with the quadrant 
condition kx > 0 and ky > 0, defined by the multi-dimensional Hilbert transform for single 
orthant spectra [41,42]. The selection of a nonzero quadrant is also clearly determined by the 
transition direction, e.g., the high-k excitation toward larger k (the red arrow in Fig. 1(c)) is 
produced by restricting the potential momentum to the 1st quadrant (p,q ≥ 0), whereas the 
low-k excitation toward smaller k (red arrow in Fig. 1(d)) is produced by selecting the 3rd 
quadrant spectrum (p,q ≤ 0). 

The implementation of the aforementioned conditions in the momentum and spatial 
domains can easily be achieved by employing the multi-dimensional Hilbert transform for 
single orthant spectra [41,42], such as Δεpq = [1 ± sgn(p) ± sgn(q) + 
sgn(p)·sgn(q)]·Δεrpq(p,q)/4, where the upper (lower) sign refers to the high- (low-) k 
excitation, Δεrpq*(-p,-q) = Δεrpq(p,q), where Δεr(x,y) = (1/4π2) · Δεrpq(p,q) · exp(-ipx-iqy)dpdq 
is a real function. In the spatial domain, the “unidirectional coupling potentials” for the low-k 
and high-k excitations then become 

 

,

2

( , )

( ', ')1 1
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4 ( ')( ')
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L H

r
r
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x y
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x y dx dy

x x y y
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dx dy
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ε
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π

ε ε
π

∞ ∞

−∞ −∞

∞ ∞
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Δ
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= Δ − − − 

 Δ Δ
± + − − 

 

 

 (3) 

or simply ΔεL,H = {[Δεr–HT(Δεr)] ± i[Hpx(Δεr) + Hpy(Δεr)]}/4, where ΔεL (ΔεH) is the potential 
for the low- (or high-) k excitation with the upper (or lower) sign, and HT (or Hp) is the total 
(or partial) Hilbert transform [41,42]. We emphasize that Eq. (3) not only reveals that 
complex potentials in the spatial domain are essential for producing unidirectional modal 
transitions but also that the PT-symmetric complex potentials of Δε0·exp(-ip0x) that have been 
previously studied [13,14,23] are only a manifestation of a special case, i.e., pointwise 
unidirectional coupling (Δεrp = Δε0·π[δ(p–p0) + δ(p + p0)]) in a 1-dimensional problem. Note 
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that our formalism based on potential momentum causality allows the deterministic design of 
potentials for unidirectional modal transitions: from the Δεrpq in potential momentum space. 
This condition can easily be extended to isofrequency ‘surfaces’ in 3-dimensional problems 
by employing a 3-dimensional Hilbert transform [41,42]. 

4. Link between PT symmetry and causality in potential momentum space 

Most importantly, Eq. (3) offers implicit link between PT symmetry [10–33] and causality in 
potential momentum space, which, to the best of our knowledge, has not been previously 
elucidated. The unidirectional coupling potentials of Eq. (3) from causality satisfy the 
necessary condition [10] for PT symmetry ΔεL,H(x,y) = ΔεL,H*(-x,-y) and also guarantee real-
valued spectra in momentum space (p,q). Because ‘perfect’ modal unidirectionality in PT-
symmetric potentials is achieved only at the EP [17–22,24] where PT symmetry breaking 
occurs, we note that the causality potentials of Eq. (3) that have unidirectionality correspond 
to the EP on the degree of PT symmetry (within the approximations of weak and slowly 
varying modulation; see Appendix A). Accordingly, the regimes before and after the EP will 
correspond to noncausal, real-valued spectra in potential momentum space. 

 

Fig. 2. Potential momentum spectra for degrees of PT symmetry: (a) at the EP (Δεsr0 = Δεsi0), 
(b) before the EP (Δεsr0 > Δεsi0), and (c) after the EP (Δεsr0 < Δεsi0). Lower figures illustrate the 
corresponding coupling between momentum states for each degree. Green (purple) solid line 
denotes the momentum state that corresponds to the ‘cause’ (‘effect’). As shown, causality is 
only maintained at the EP. Gaussian spectra with σ = 0.25 and p0 = q0 = 1 are assumed, without 
loss of generality. 

We illustrate the aforementioned results with a PT-symmetric potential Δεs(x,y) in space, 
where Re[Δεs] (or Im[Δεs]) is an even (or odd) real-valued function that satisfies the 
precondition Δεs(x,y) = Δεs*(-x,-y). The potential momentum Δεm(p,q) = F{Δεs(x,y)} is then 
expressed by the sum of real-valued functions as Δεm(p,q) = Δεm-even(p,q) + Δεm-odd(p,q), where 
Δεm-even = F{Re[Δεs(x,y)]} is an even function and Δεm-odd = –Im[F{Im[Δεs(x,y)]}] is an odd 
function. To clarify the relation between the degree of PT symmetry and the potential 
momentum, we assume the simplest potential for which the real and imaginary parts of 
Δεs(x,y) with a Gaussian envelope Δεs(x,y) = [Δεsr0 · cos(p0x + q0y) + iΔεsi0 · sin(p0x + q0y)] · 
exp(-(x2 + y2)/(2σ2)), where both Δεsr0 and Δεsi0 are real values and Δεsr0 = Δεsi0 at the EP. 
Figure 2 shows the calculated potential momentum at each different degree of PT symmetry. 
Although the spectrum of the potential momentum satisfies causality (p,q ≥ 0) at the EP (Fig. 
2(a)), the potentials of the regimes before (Fig. 2(b)) and after (Fig. 2(c)) the EP break 
causality. In this respect, the concept of PT symmetry breaking can be interpreted as a phase 
transition from an in-phase potential momentum spectrum to an out-of-phase potential 
momentum spectrum (Fig. 2(b) vs. Fig. 2(c)) separated by the causal phase (Fig. 2(a)). 
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Note that the above interpretation provides an intuitive understanding of the degree of PT 
symmetry, providing a perspective not restricted to the relative magnitude between the real 
and imaginary parts of the potentials [17–22,24] but rather from a direct spectral analysis of 
the ‘degree of the causality’ for the real-valued potential momentum. Furthermore, with the 
multi-dimensional expression of Eq. (3), our results allow the multi-dimensional extension of 
the PT-symmetric condition to overcome the one-dimensional effective model [13–27] based 
on the paraxial wave equation in the description of PT-symmetric optics. 

5. High-k excitations in indefinite materials 

Without loss of generality, we investigate a case of high-k excitations along the hyperbolic 
IFC (p,q ≥ 0, Fig. 1(c)). Although high-k features of hyperbolic metamaterials provide an 
ideal template for subwavelength imaging [3,4] or light confinement [5], the large mismatch 
in k-vector hinders the excitation of high-k modes in the indefinite IFC. Here, we apply the 
unidirectional modal transition for the adiabatic transfer of optical energy to the high-k state. 
A y-axis-invariant wave incident on a unidirectional potential (x ≥ 0) from the left side (kx0 > 
0) is considered, as illustrated in Fig. 3(a). Note that potentials of arbitrary shape can be 
accommodated by discretizing the potential in both the spatial (Fig. 3(a)) and momentum 
(Fig. 3(b)) domains. By setting the y-infinite unit volume V with a deep-subwavelength 
spatial discretization Δx, the surface integral of Eq. (2) is determined on the SL(xL) and SR(xR) 
surfaces, and the volume integral can be evaluated from the average of the values in SL and 
SR. The discretization for the momentum states was also performed on the IFC (circles in Fig. 
3(b)) from the phase-matching condition. The discretized form of Eq. (2) is then expressed as 
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where the subscript m denotes the m-th momentum state of (kxm,kym); n = 1 is the incident 
state; p = kxm – kxn; q = kym – kyn; Δpn = kx(n+1) – kxn; and Δqn = ky(n+1) – kyn. Equation (4) can be 
used to perform a serial numerical calculation for the integral of the envelope, starting from 
the left boundary (detailed procedure for the serial calculation is provided in the Appendix B). 
As a result of the causality condition that is imposed on Δεpq, only the eigenstates on the 
bounded region of the IFC (blue circles in Fig. 3(b)) participate in the coupling to the (kx,ky) 
state. 

 

Fig. 3. Discretization of (a) spatial and (b) momentum domains for the derivation of Eq. (4). SL 
and SR present the left and right surfaces, respectively, of the unit volume V (in blue). A wave 
with a unit amplitude (at the (kx0,ky0) state, shown by red arrows in (a)) is incident on the left 
side of the spatial domain. Circles in (b) represent discretization in momentum space. Blue 
circles denote states that participate in the coupling to the calculated state (kx, ky). 
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The high-k excitation process is shown in Fig. 4. For general curvilinear IFCs, the 
transition through the multiple linear-path coupling should be adopted, as shown in the 
example presented in Fig. 4(a). In this specific example, we assume a potential modulation 
that provides five real-valued momentum spectra (Fig. 4(b)) for multiple transitions. A finite 
bandwidth is used for each spectrum to accommodate quasi-phase matching. Figures 4(c) and 
4(d) show the normalized amplitude and phase of the complex potential given by Eq. (3) and 
present the confinement in space from the finite bandwidth and the mixed phase evolution 
from the multi-harmonics. From Figs. 4(c) and 4(d), the spatial profiles of anisotropic 
permittivity are determined as εx(x,y) = εx0 + Δεx(x,y) and εy(x,y) = εy0 + Δεy(x,y). This 
spatially-varying anisotropic material can be realized with spatially-varying, one-dimensional 
alternating layers composed of isotropic materials, in the regime of the effective medium 
theory (EMT) [3–5]. To validate the use of EMT with practical material parameters, we 
restrict the maximum variation of εx and εy to 20%, and the spatial variation is slow enough 
compared to the wavelength (p / k0 ~0.2 and q / k0 < 0.8), enabling the realization based on 
metamaterial platforms. 

 

Fig. 4. High-k excitations along the hyperbolic IFC (εx0 = –9, εy0 = 2.25). (a) Design strategy 
with 5-stage transitions. (b) Normalized real-valued momentum spectra of Δεpq (Gaussian 
bandwidth of σx,y = k0/100 for each spectrum). (c) Normalized amplitude and (d) phase of the 
corresponding complex potential in the spatial domain. The profile of momentum spectra in (b) 
is assigned to both Δεxpq and Δεypq. The amplitude of the envelopes in momentum space at x = 
100λ0 are shown for different bandwidths of (e) σx,y = k0/200 and (f) σx,y = k0/100. (g) Variation 
in the effective index along the x-axis for different bandwidths (solid lines show σx,y = k0/100, 
and dotted lines show σx,y = k0/200). The phase of the magnetic field at each position (red 
circles in 4g) is also shown in the right panel of (g). Maximum values of modulations are 
Δεx(x,y)/εx0 = Δεy(x,y)/εy0 = 0.04, 0.12, and 0.20. Discretization parameters at the deep-
subwavelength scale are Δx = λ0/50, Δky = k0/100, and Δp = Δq = σx, y/10 for all cases. 
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Figures 4(e) and 4(f) present the results for high-k excitations in k-space at the point x = 
100λ0 for different bandwidths of the potential momentum spectra. The variation in the 
effective index along the x-axis is illustrated in Fig. 4(g), using neff(x) = 
n(kx,ky)·|ψ[kx,ky](x)|2dkxdky / |ψ[kx,ky](x)|2dkxdky and the excited envelopes at each x value. For 
all cases, successful multistage delivery of optical energy to the high-k regime is observed 
and is found to be more efficient for larger modulation depths (Fig. 4(g)). Notably, even the 
higher-k states are excited above the targeted final (5th) state (black dotted line in Fig. 4(g)), 
which results from the linear asymptotic behavior of the hyperbolic IFC (ky ~(–εx/εy)1/2·kx) that 
alleviates the phase-matching condition in the high-k regime. This result indicates that a 
perpetual transition to higher-k states becomes possible for the hyperbolic IFC, provided that 
the minor phase-mismatch is compensated by the bandwidth of the modulation spectra, as 
evidenced by the superior excitations in the high-k regime with the application of broadband 
potentials (solid vs. dotted lines after the arrows in Fig. 4(g)). 

6. Collimated beam steering in definite materials 

Figure 5 shows another application to definite materials, in which selective transitions are 
determined by the lateral component ky of the wavevector. For clockwise beam steering along 
the elliptic IFC (Fig. 5(a), with the nonzero 4th quadrant of (p,q) space), the transition is 
allowed only within the 1st quadrant of the IFC, as can be clearly observed from the transition 
states (red squares) along the IFC. Figure 5(b) shows the beam trajectories in spatial domain 
calculated from Eq. (4) and confirms that strong, selective beam steering occurs only with 
lateral positive wavevector components ky0, as predicted. In contrast to the high-k excitation 
example with asymptotic behavior (Figs. 4(e)-4(g)), we note that in this case, selective 
convergence toward the final k state is obtained, facilitating asymmetric steering and 
collimation of the beam (blue solid lines, angular bandwidth from 44° to 17°). 

 

Fig. 5. Nonreciprocal beam steering and collimation in the elliptic IFC (εx0 = 9, εy0 = 2.25). (a) 
IFC with 5-stage transitions. Red (gray) squares denote allowed (forbidden) states for the 
transition. (b) Beam trajectories (solid lines) for different incidences of ny > 0 (blue dotted 
lines) and ny < 0 (orange). Maximum values of modulations are εx(x,y)/εx0 = εy(x,y)/εy0 = 0.2. 
σx,y = k0/200. All other parameters of the potential are the same as those presented in Fig. 4. 

7. Conclusion 

Our approach offers a fundamental understanding of the degree of PT symmetry in terms of 
causal momentum interactions between light and potentials to allow the multi-dimensional 
extension of the PT-symmetric condition, and provides us with the ability to tailor optical 
evolution in k-space via unidirectional complex potentials directly designed in k-space. We 
have demonstrated novel applications, such as excitations in the extreme k regime and 
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nonreciprocal beam steering and collimation. Although we assumed the realization in 
continuous permittivity landscape in these applications, our analysis linking the causality in k-
space and PT symmetry can be extended into more practical platforms such as photonic 
molecules composed of discrete optical elements (e.g. optical waveguides [21,43], resonators 
[44], or lumped RLC elements [45]), simply by applying discrete Fourier transform. A further 
application for complex potentials could also be made in the frequency ω domain, i.e., using 
time-varying complex potentials for temporal non-Hermitian dynamics. It is envisaged that 
the relation between causality and a complex potential momentum may also provide a clue to 
the physical interpretation of non-PT-symmetric potentials [46,47] with real spectra. 

Appendix A: Detailed derivation of Eq. (1) 

For spatially varying materials, the time-harmonic wave equation at a frequency ω takes the 
following form: 

 2 1 2 1 2 1 1
0 ,z y x z x y z x y x z y x y zk H H H H Hε ε ε ε− − − −= − ∂ − ∂ − ∂ ⋅∂ − ∂ ⋅∂  (5) 

where k0 = ω/c is the free-space wavenumber. Here, we apply two standard approximations of 
weakly and slowly varying modulated potentials to the time-harmonic wave equation. In the 
weak coupling regime (|Δεx,y(x,y)| << |εx0,y0|, where εx,y(x,y) = εx0,y0 + Δεx,y(x,y)), the field can 
be expanded using a spatially varying envelope ψ[kx,ky] as follows: Hz(x,y) = ψ[kx,ky](x,y)·exp(-
ikx·x-iky·y)dkxdky. Then, Eq. (5) becomes 
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Assuming that the modulations are weak, i.e., |Δεx, y / εx0,y0| << 1, and the IFC relation k0
2 = 

kx
2/εy0 + ky

2/εx0, Eq. (6) can be approximated as follows: 
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The left-hand side of Eq. (7) corresponds to the source of the spatially varying envelope 
∂ψ that appears on the right-hand side of the equation. Assuming that the modulations are 
slowly varying, i.e., (|Δεy

−1·∂xΔεy| << |kx| and |Δεx
−1·∂yΔεx| << |ky|), the first-order derivatives of 

Δεx, y can be neglected, and Eq. (7) becomes 
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We simplify Eq. (8) by introducing the ε-normalized wavevector βk = (kx·εy0
−1)x + 

(ky·εx0
−1)y and the local modulation vector σk(x, y) = (kx·Δεy(x, y)/εy0)x + (ky·Δεx(x, y)/εx0)y, 

which results in Eq. (1). 
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Appendix B: Serial calculation of discretized coupled mode equations 

We apply the spatial discretization of y-infinite unit cells (Fig. 3(a)) and the causality 
condition for the potential momentum (p, q ≥ 0) to the integral form of the coupled mode 
equations; thus, Eq. (2) becomes 
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We apply the subwavelength limit to evaluate the volume integral from the average of the 
values in SL and SR as 
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For discretization in k-space with sufficiently small Δk (Fig. 3(b)), Eq. (9) can be 
approximated by the following equation for the mth k-state: 
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where p = kxm – kxn, q = kym – kyn, Δpn = kx(n+1) – kxn, Δqn = ky(n+1) – kyn, and n denotes each k-
state before the mth state. Because the spatial boundary condition is applied to the left side of 
the structure, the calculation is performed from the left to the right side in space. Additionally, 
because of the causality condition, n has the lower limit of n = 1, which is defined by the k-
state of an incident wave (kx0,ky0), and the calculation in k-space should be performed from n 
= 1 to n = m. Therefore, we separate the unknown and known integral terms in Eq. (11) as 
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We can now perform the serial calculation with the boundary condition ψ1(x=0)dy. At the 
fixed point (x = xf), all of the k-states can be obtained from Eq. (12) in the order ψ1(x=xf)dy, 
ψ2(x=xf)dy, …, ψm(x=xf)dy. These results are applied to calculate the states at the next 
position (x = xf + Δx). For a unity incidence wave on the boundary, the density of the envelope 
is directly proportional to the integral of the density of the envelope. 
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