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Abstract

Conventional video representation methods focus pre-
dominantly on a single video, aiming at reducing the space-
time redundancy as much as possible, while this paper de-
scribes a novel approach to simultaneously presenting dy-
namics of multiple videos, aiming at a less intrusive viewing
experience. Given a main video and multiple supplementary
videos, the proposed approach automatically constructs a
synthesized multi-video synopsis, called VideoM , by inte-
grating the supplementary videos into the most suitable
space-time portions within the main video. We formulate
the problem of VideoM as a Maximum a Posterior (MAP)
problem which maximizes the desired properties related to
less intrusive viewing experience, i.e., informativeness, con-
sistency, visual naturalness, and stability. This problem is
solved by the Viterbi beam search algorithm to optimally
find the suitable integration between the main video and
supplementary videos.

1. Introduction

The popularity of video capture devices and internet has
caused an exponential increase in the amount of available
video data and in the number of users. The technology
of video presentation becomes more and more important,
which can be used for summarizing videos for efficient
browsing, automatic new videos generating for games or
other applications.

VideoM is a compact temporal representation of multiple
videos which integrates multiple supplementary videos into
the most suitable space-time holes within a main video. The
suitableness is characterized by the least intrusive viewing
experience. Fig. 1 shows the basic idea of VideoM in which
three supplementary videos are simultaneously integrated
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Figure 1. Idea of multi-video synopsis.
VideoM temporally integrates multiple sup-
plementary videos at the most suitable
space-time holes within a main video (the yel-
low, green, and blue portions). For better
viewing, please see the color pdf file.

into a main video. Given these input videos, the detection
of space-time holes within the main video and the matching
between these holes and supplementary videos have taken
informativeness, consistency, and naturalness into consider-
ation. Such manipulation provides a region-level represen-
tation of multiple videos.

There are many situations that multiple supplementary
videos are expected to be integrated into a space-time por-
tion within a main video. For example, it is a complement
to existing video browsing and summarization if we can
display the dynamics of multiple videos at the same time.
Another applications include region or object level video
advertising (or product placement) and gaming, in which
advertisements are inserted into a source to replace some
unimportant regions or objects.

Research on video representation has proceeded along
two dimensions in terms of the input: (1) single video rep-
resentation which compactly represents the information of
a single video, aiming at reducing the redundancy as much
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as possible [1, 2, 9, 11, 12, 14], and (2) multi-video rep-
resentation which simultaneously displays the dynamics of
multiple videos, aiming at delivering information as much
as possible in a limited space or sequence [5, 7]. The first
dimension has attracted much attention of research, while
the second still needs to be investigated. The innovative
multi-video synopsis falls into the second dimension. How-
ever, we argue that existing work in this dimension has not
considered the non-intrusive viewing experience, as well as
not reached region-level integration of multiple videos. As
video has much space-time redundancy, it is reasonable to
detect the redundant portions and achieve region or even
object level integration of multiple videos.

The proposed VideoM is a novel approach to multi-video
representation. Given a main video which is usually long
enough and a set of supplementary videos which are shorter
than the main video, we aim to synthesize a new video by
inserting those supplementary videos into the most suitable
space-time portions within the main video. Such manipula-
tion is expected to achieve the least intrusive viewing expe-
rience which is regarded to be related to the following visual
properties.

• Informativeness. The created VideoM should lose
minimal space-time information of the main video.
The selected 3D holes from the main video for inte-
gration should be the least informative.

• Consistency. The composed frames of VideoM should
be consistent in appearance of the main and the supple-
mentary frames. In other words, the frames from sup-
plementary videos should be visually similar to those
from the main video where these frames are inserted.

• Visual naturalness. The connecting boundary areas
across different videos are visually natural or smooth.

• Stability. Frames of the supplementary videos should
be presented continuously and orderly, and their spatial
positions should be relatively stable in VideoM.

Basically this is a difficult problem since some properties
are defined on the frame level and they are hard to be com-
bined together. Furthermore, the searching space is huge
for finding the optimal 3D holes in the main video, which
is also a 3D space. In the proposed approach, the properties
are formulated to the probabilistic form, accordingly a pos-
terior model is defined to measure the desired properties of
the inserting positions for supplementary video frames. Op-
timal inserting positions are obtained by the Viterbi Beam
search algorithm, which maximizes the posterior probabil-
ity while keeping the video stability to obtain the best visual
effect. The supplementary video frames are then inserted to
the corresponding optimal positions and an effective infor-
mation guided probabilistic seamless blending is adopted to
naturalize the connecting boundary.
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Figure 2. Illustration of problem formulation.

We will formulate the problem of VideoM in Section 2,
and then present the solution to the problem, i.e, search-
ing the optimal inserting positions for supplementary videos
in Section 3. Section 4 presents the informative blending
method for naturally integrating video frames. Section 5
gives the experimental results, followed by the conclusion
in Section 6.

2. Problem Formulation

There are two main steps in VideoM: finding the opti-
mal inserting holes for arranging the supplementary video
frames, and seamless integration. Optimal inserting holes
detection is the key for the system. Assuming that the in-
serting region for each frame is a rectangle of a proper size,
detection of inserting holes is to decide the spatial-temporal
positions of the region centers in the main video and the
corresponding supplementary frame to be inserted simulta-
neously. If we directly search each possible inserting posi-
tion for each supplementary frame, obviously the searching
space is too huge to handle, also the resulted inserting posi-
tions most probably will break the order and stability of the
supplementary video.

In the proposed method, the visual properties on the
frame level considered in VideoM are measured in a prob-
abilistic form and the detection of inserting holes is formu-
lated as a Maximum a Posterior (MAP) problem. The solu-
tion is to decide a sequence of inserting positions for frames
of each supplementary video. In the next we will show the
probabilistic formulation of VideoM.

Fig. 2 illustrate the problem of VideoM using a main
video {Mt}T

t=1 containing T frames, let (x, y) denote the
spatial coordinate in the frame, the supplementary video
frames are arranged in the 3D space of (x, y, t). Without
lose of generality, we first consider the case of one supple-
mentary video and then extend to multi-video. The supple-
mentary video is denoted by {Si}T ′

i=1, T ′ is the number of
frames of this supplementary video. The objective is to de-
cide the optimal inserting positions l = {li}T ′

i=1 for frames
{Si}, where li = (xi, yi, ti) is the position in (x, y, t) space.
Using z to represent the desired properties of VideoM intro-
duced in section 1, and the probability P (z) as the mea-
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(a) (b)

Figure 3. An example of saliency map calcu-
lation. (b) is the saliency map of (a). Higher
intensity indicates higher saliency.

surement, optimal li is obtained by maximizing a posterior
probability:

l∗ = arg max
l

∏
i

P (z|li, Si)P (li) (1)

i.e.,

l∗ = arg max
l

∑
i

{log(P (z|li, Si)) + log(P (li))} (2)

Here measurement for a single supplementary frame Si be-
ing inserted to the position li is formulated as P (z|li, Si) ·
P (li). P (li) is the prior model that defines how much a
given area in the main video is expected to be inserted, i.e.,
the informativeness measurement. P (z|li, Si) is the fitness
measurement of inserting frame Si to the area centering at
li, which is used for evaluating the properties of consistency
and visual naturalness, given by

log(P (z|li, Si)) = log P con(Mti , Si) + λ log P nat(li, Si) (3)

where Mti
is the corresponding main video frame into

which Si is integrated, λ is a weighting parameter.
P con(Mti

, Si) is the measurement of the consistence be-
tween the two frames to be combined. Pnat(li, Si) mea-
sures the connecting naturalness of putting Si in the area
defined by li. In the next these measurements defined for
these properties on the frame level will be detailed.

2.1. Informativeness measurement

The informativeness is a prior knowledge for inserting
positions li defined in terms of the saliency measurement
P sal(li) and the smoothness measurement P smo(li).

P (li) = P sal(li) · P smo(li) (4)

To minimize the informational loss of the main video and
the intrusiveness of inserting, highly smooth areas should
have more prior while areas containing salient parts are less
expected to be inserted.

To measure the saliency and smoothness of the inserting
area defined by a position, firstly a saliency map is calcu-
lated for each main frame using the visual attention model

of [3] which combines static and temporal saliency maps.
The static contrast-based saliency map investigating the ef-
fects of contrast in human perception while the temporal
saliency map integrates the motion inductors. Fig. 3 gives
an example of the saliency map of a frame.

The saliency measurement of li is calculated over the in-
serting area centering at it. Since high saliency of even a
small part of this area causes information loss, we measure
this informativeness using the highest J saliency value in
the area. J is defined as 1

8 of the area size according to
the viewing experience, and {Ij}j=1,...,J are the highest J
saliency values, Ij ranges over (0 255).

P sal(li) = 1 −
J∑

j=1

Ij

255 × J
(5)

High saliency prior indicates there is almost no salient part
in this area.

Since the saliency map also contains the region segmen-
tation information, the smoothness measurement for li can
be defined using all the saliency values in the inserting area
I = {Ij}j=1,...,8J :

P smo(li) = exp
{
−

√
var(I)
255

}
(6)

where var(I) is the variance of vector I. High P smo means
the inserting area defined by li is quite smooth and less in-
formative.

2.2. Consistency measurement

By consistency measurement, we expect that the inserted
supplementary frames and the corresponding main frames
appear to be visually similar in VideoM, which makes the
result look natural. Inspired by the recent success of mod-
eling scenes using texture and colore distribution [4, 13],
the combination of color similarity P ccon(Mti

, Si) and tex-
ture similarity P tcon(Mti

, Si) is used to measure the con-
sistency between main frame Mti

and supplementary frame
Si:

P con(Mti , Si) = P ccon(Mti , Si) · P ccon(Mti , Si) (7)

The color similarity is calculated using the color his-
togram correlation. For each pixel of color (R,G,B), we
calculate its chromaticity color [g, b] = [ 16×G

R+G+B
, 16×B

R+G+B
].

Based on which a 16 × 16 color histogram HM for a main
frame and HS for a supplementary frame can be obtained
by accumulating the points. The color relevance likelihood
is obtained by:

P
ccon

(Mti
, Si) =

∑16
i=1

∑16
j=1 HM (i, j)HS(i, j)√∑16

i=1
∑16

j=1 HM (i, j)2
√∑16

i=1
∑16

j=1 HS(i, j)2

For texture, following the texton histogram representa-
tion in [13], a set of filter-banks are applied to each frame
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Figure 4. Connecting boundary areas. In
the left image, a supplementary frame is in-
serted into the red rectangle. The right col-
umn shows the outside and inside areas of
the connecting boundary.

using the intensity value of each pixel. The filter-banks
include three Gaussians (with the scale parameter σ =
1, 2, 4), four Laplacian of Gaussians (with σ = 1, 2, 4, 8)
and four order-1 derivatives of Gaussians (with σ = 2, 4 and
x, y directions). Therefore, each pixel is associated with an
11-dimensional texture feature vector. We randomly select
some training pixel features from the main frames and clus-
ter to a vocabulary of texton by k-means. By mapping each
pixel to one texton in the vocabulary and accumulating, a
texton histogram can be gotten for each frame. The texture
relevance P tcon(Mti

, Si) is then calculated using the same
histogram correlation method as used for color relevance.

2.3. Visual naturalness measurement

Inconsistent appearance of the two sides of connect-
ing boundaries in VideoM causes visual unnaturalness.
The connecting boundary area between different videos in
VideoM should be natural and has no much contrast be-
tween two sides. The naturalness can be evaluated by judg-
ing the consistency in appearance between the two side ar-
eas. The left column of Fig. 4 shows an example of the
connecting boundary areas between an inserted supplemen-
tary frame and a main frame. The red rectangle indicates
the inserting region. In the right column, O and W areas
between the green and red rectangles are the neighboring
areas outside and inside the boundary, respectively. The vi-
sual naturalness is defined as the consistence of O and W .

To consider the naturalness in different directions of the
inserting area, boundary areas Oi and Wi are divided evenly
to eight sub areas {Oj

i }8
j=1 and {W j

i }8
j=1 according to the

direction, as shown in Fig. 5. Color and texture feature
are extracted and the consistency is measured between the
corresponding sub inside area Wi and sub outside area Oi

respectively. The same feature extraction and relevance cal-
culation methods as used for the previous frames consis-
tency property are adopted. The naturalness measurement
Pnat(li, Si) given supplementary frame Si and inserting
position li is obtained by summing the consistency mea-
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Figure 5. Illustration of boundary area feature
extraction.

surements of the sub areas

P nat(Si, li) =
∑8

j=1
P con(Oj

i , W
j
i )/8 (8)

where the method for calculating P con is defined in equa-
tion (7).

If part of the inserting region boundary is the boundary
of the main frame, the consistence measurement of sub ar-
eas in this direction is set to a relative high value since the
overlapped boundary does not bring any visual intrusive-
ness

3. Searching for Optimal Insertion Positions

The optimal inserting positions must maximize the like-
lihood defined in equation (1) while satisfying some con-
straints such as the video frames should be inserted contin-
uously and orderly. Therefore the problem is to to search
an optimal inserting path, i.e., a series of inserting positions
and their corresponding frames of a supplementary video
in the 3D main video space. We adopted the Viterbi Beam
search algorithm which is designed for find an optimal se-
quence of states for the likelihood measurement. In this
process, the stability property is considered by limiting the
searching paths’ extension of spatial position. Most pre-
vious works utilize the energy minimization algorithms to
find a local maximal or minimal value of the measurement
such as [2]. The computation is high and increases signifi-
cantly when the number or the size of videos increases.

3.1. The Viterbi beam search

The Viterbi algorithm is a dynamic programming algo-
rithm that discovers the most likely explanation of a hidden
states sequence for an observation. It is an efficient, recur-
sive algorithm that performs an optimal exhaustive search
along the time line. The computing of the most likely se-
quence up to a certain time point t depends only on the ob-
servation at point t, and the most likely sequence at point
(t − 1) [8]. The Viterbi method searches every possible
pathes and yields the global best results. But the number
of possible pathes increases exponentially as the length in-
creases, which brings the heavy load of computation and
storage for long sequential data.
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Figure 6. The HMM representation of the sup-
plementary video.

To improve the efficiency, the beam search method [6]
is usually applied to reduce the effective size of the search
space. The beam search defines a pruning beam width Δ
relative to the most probable path likelihood Pmax(t) at
frame t. Hypotheses outside the beam, i.e., with likelihoods
less than Pmax(t) − Δ, are pruned from the search. It is a
heuristic search method and may miss the global best result
when pruning. However, it shows to be effective in practice
such as speech recognition.

3.2. HMM representation

A supplementary video is modeled by a discrete left to
right Hidden Markov Model (HMM), and each state cor-
responds to a number of frames which is fixed to three in
our implementation. The graphical view is shown in Fig.
6. Each state of the supplementary video corresponds to
three inserting positions with the same spatial coordinates
in three continuous main video frames. Because of the tem-
poral continuous property of video, assigning three frames
to one state does almost no influence on the fitness of insert-
ing paths, but can improve the efficiency and video stability.

According to the HMM structure, if the current state is−→
St, the next candidate states to be inserted can be

−→
S t+1 or−→

S t+2. The transition probability is

P (
−→
St → −→

S t+1) = 1.0; P (
−→
St → −→

S t+2) = 0.9 (9)

Thus some states could be jumped over, by this way some
parts of the inserted video can be accelerated. By this dy-
namical adaptation the better visual effect may be achieved.
It also does not cause the information loss of the supple-
mentary video for its temporal continuous property.

To find the inserting positions for the HMM states se-
quence, the possible paths are extended along the time line
of the main video. Each path X contains a historic list of
the inserting positions {lt} and a historic list of states {−→S t}.

The probability of the path Xt up to state t whose state
−→
S t

is assigned to the position lt is:

P (Xt = (lt,
−→
S t)) (10)

= max
Xt−1

{
P (Xt−1 → (lt,

−→
S t))P (z|lt, Si)P (lt) + P (Xt−1)

}

where Xt−1 is the path at state (t − 1) whose likelihood is

P (Xt−1) and P (Xt−1 → (li,
−→
S t)) is the transition proba-

bility of extending to the next state to (lt,
−→
S t). Si denote the

current corresponding frames of the supplementary video.
At each possible inserting position, we initialize the

paths from the beginning state of the supplementary video.
Paths that reach the end of the supplementary video are
saved to the output and deleted from the current path list.
Finally the path with the highest likelihood in the output list
is obtained as the optimal solution.

To guarantees the spatial stability property of VideoM,
we limit the HMM state extension of {lt} in a spatial neigh-
boring area of the current position. Lower transition proba-
bility is set to farther positions in the neighborhood and vice
versa while probability for the same position is maximum.

3.3. Implementation details

Considering each pixel in the main video as a possible
inserted point is computationally heavy, and slightly mov-
ing the inserting positions does not yield much difference in
view. Therefore we densely sample some points evenly in
the search space as the candidates. All these designs are un-
der the consideration that they do not influence the viewing
measurement much.

In the search process only path list of the current frame
needs to be kept in memory. For an T ′-frame supplemen-
tary video, which has Ns states, and an T -frame main video
which has L possible inserting positions in each frame, the
maximal paths number we need to keep is (Ns · L). If the
number of extension candidates for a state is limited to E,
the size of paths searching space is at most (Ns ·L ·E). The
proposed method is computationally efficient and practical
for long videos and online videos processing.

3.4. For multiple supplementary videos

It is straightforward to apply the approach in previous
sections to the cases of multiple supplementary videos.
Each supplementary video keeps an individual path list
when searching along the time line. Finally an optimal solu-
tion with no overlap between the inserting paths of different
supplementary videos and the relative highest overall like-
lihood is outputted. It is also convenient to output a list of
candidates to combine with the user interaction.

4. Information Guided Probabilistic Blending

From previous steps, we can get the optimal positions
that are well suitable for inserting corresponding frames
naturally. But still there are clear seams that impair the vi-
sual effect of the output. Therefore, a seamless blending
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(a) (b) (c) (d) (e)

Figure 7. Effect of the informative blending.
(a) the frame to be inserted, (b) saliency map
of (a), (c) no blending, (d) prob. blending, (e)
informative prob. blending.

algorithm is necessary to create smooth transitions between
different videos. The idea of a probabilistic alpha matting
approach designed for videos is adopted [10].

The blending algorithm is applied on an extended area
which covers both the inserting and its neighboring area.
For each pixel e, a vector {Pe(M), Pe(S)} representing the
probabilities it belongs to main frame and supplementary
frame is assigned. The output value of this pixel is obtained
by:

e = Pe(M) ∗ eM + Pe(S) ∗ eS , Pe(M) + Pe(S) = 1, (11)

where eM and eS represent the corresponding pixel value in
original main frame and supplementary frame respectively.

Since the overlapped cases of different supplementary
frames is not considered, in one blending step only a main
frame and a supplementary frame are considered. Frames
from different supplementary videos can be inserted one
by one by using the previous integrated frame as the main
frame. Then, an iterative process is taken to distribute each
pixel’s probabilities equally to its four-connected neighbor-
ing pixels, to drive neighboring pixels to have similar prob-
ability vector. The resulted probabilities are used as alpha
values for alpha matting between the inserted frame and the
extended inserting area of the main frame.

The probability that a pixel belongs to the supplemen-
tary frame Pe(S) is associated according to its information,
i.e., saliency value in the supplementary video. The saliency
value is obtained using the method in section 2.1. The prob-
ability Pe(S) is set to 1 if its saliency value Ie is above a
threshold Th, or Ie

Th if not. Through which the informa-
tive parts of the inserted frame are kept while the integra-
tion is highly natural. Fig. 7 compares the visual effects of
an example integrated frame with no blending, probabilistic
blending of [10], and the proposed informative probabilis-
tic blending. Clearly we can see blending is crucial for vi-
sual naturalness while the proposed informative probabilis-
tic blending shows good effect.

5. Experimental Results

We collected 16 videos as the main videos which con-
sist of four home videos, four TV programs, four movies,

and four sports videos. The durations of these videos vary
from less than 1, 000 frames to more than 6, 000 frames. For
each main video a set of related supplementary videos were
collected from internet. In our experiments, for the conve-
nience of processing, all the main frames were resized to
300 in width. The supplementary frames are resized to 1/4
to 1/3 of the size of the main frames in width. The size of
extended patches for calculating connecting naturalness of
section 2.3 is set to 5/4 size of the inserted frames.

5.1. Impact of different properties

To compare the influence of different properties to the
result, in this experiment we detect the optimal inserting
positions for one supplementary frame in a main video of
movie, using different properties settings in the MAP for-
mulation, i.e., informativeness, naturalness, consistence and
their combinations. The result is shown in Fig. 8. We
can observe that considering the informativeness property
alone, the inserting region is smooth and non-informative
but there is obvious contrast between this region and its
neighborhood which brings visual unnaturalness. The result
yielded by the naturalness property has less visual contrast
but this area is not smooth and contains much information
of the main frame. The combination of the informativeness
and naturalness properties yields a better result. However, it
looks awkward to integrate these two frames together. Fur-
ther combination with the consistency property gives result
the most reasonable shown in Fig. 8 (d). This result vali-
dates the reasonableness and complementary characteristics
of the properties we considered in VideoM.

5.2. Single video synopsis

It is straightforward to apply the proposed algorithm to
single video synopsis tasks. In this experiment we randomly
extract four different parts from a home video and set the
longest one as the main video and the other three as the
supplementary videos. Fig. 9 shows some frames of the
input videos and the resulted video, the red, green and blue
lines indicating three inserted supplementary videos respec-
tively are set below the inserting area. It can be seen that
the detected inserting regions are reasonable since the in-
serted frames are well fusion with the neighboring snow
background and they do not defect the main frame scene.
This is an easy case since there are always some scenes sim-
ilar or related to the supplementary videos in the main video
as they come from a single video. While video synopsis [9]
naturally packs many activities of instances in the video,
only the information of activities matter can be kept, regard-
less of their temporal context and background information.
Comparatively more information can be kept in VideoM.
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(a)

(b) (c) (d) (e)

supplementary video main video

Figure 8. Detected inserting positions using different properties settings. (a) a supplementary frame
(top left) and some frames of a movie. The detection results: (b) informativeness; (c) naturalness;
(d) informativeness and naturalness; (e) informativeness, naturalness, and consistency. A green line
is intentionally added at the bottom of the supplementary video for better viewing.

main video supplementary video # 1

supplementary video # 2 supplementary video # 3

multi-video synopsis (the frames are listed from left to right and from top to down in terms of  temporal order)

Figure 9. An example of single video synopsis using a home video. The red, green, and blue lines
are intentionally added at the bottom of the supplementary videos for clarification.

5.3. Multi-video synopsis

Furthermore, the proposed synopsis approach is well de-
signed for multiple videos of various scenes. Fig. 10 shows
the result of integrating two different supplementary adver-
tising videos to a TV program. Interestingly, there is the
beach in both the main video and the supplementary video
# 2. The proposed algorithm successfully detects the opti-
mal inserting regions and naturally integrates the two beach
scenes together. For another supplementary video, even
though there is no similar scene in the main video, the op-

timal integration does not cause much intrusiveness while
keeping the information.

Fig. 10 is a good example of applying VideoM to video
advertising. In today’s TV programs or videos on the In-
ternet, hard insertion of advertisements often annoys the
audience. The proposed VideoM can optimally insert ad-
vertising videos with much less intrusiveness. While the
VideoSense system proposed in [5] has applied video syn-
thesization to advertising, it does not achieve region-level
advertisements insertion. The proposed VideoM is an effi-
cient approach to region-based advertising.
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main video

supplementary video # 1 supplementary video # 2

multi-video synopsis (the frames are listed from left to right and from top to down in terms of  temporal order)

Figure 10. An example of multi-video synopsis using a TV program.

6. Conclusion and Future Work

In this paper, we propose a novel approach to multi-video
synopsis which automatically creates a synthesized video
from a main video and multiple supplementary videos. This
synthesized video, called VideoM, is a kind of video-to-
video integration at region level while preserving the least
intrusive viewing experience.

The future work and extensions to the current approach
could include: 1) Automatically detecting the existence of
the valid holes in the main video for a supplementary video
can be integrated into VideoM as a pre-step. 2) The HMM
representation does not consider the content summarization
of supplementary videos. More complex sequential models
for both the main and supplementary videos can be consid-
ered to improve the flexibility of VideoM. Moreover, simple
user interactions can be incorporated to improve the subjec-
tive visual effect.
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