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Recent change in evaluation criteria from accuracy alone to trade-off with time delay has inspired multivariate energy-based
approaches in motion segmentation using acceleration. The essence of multivariate approaches lies in the construction of highly
dimensional energy and requires feature subset selection in machine learning. Due to fast process, filter methods are preferred;
however, their poorer estimate is of the main concerns. This paper aims at empirical validation of three objective functions for
filter approaches, Fisher discriminant ratio, multiple correlation (MC), and mutual information (MI), through two subsequent
experiments.With respect to 63 possible subsets out of 6 variables for accelerationmotion segmentation, three functions in addition
to a theoretical measure are compared with two wrappers, k-nearest neighbor and Bayes classifiers in general statistics and strongly
relevant variable identification by social network analysis.Then four kinds of new proposedmultivariate energy are compared with
a conventional univariate approach in terms of accuracy and time delay. Finally it appears that MC and MI are acceptable enough
to match the estimate of two wrappers, and multivariate approaches are justified with our analytic procedures.

1. Introduction

As one of the human computer interactions, Inertial Mea-
surement Unit (IMU) applications have been prominently
increasing in quantity [1]. Of the related technological issues,
motion segmentation using accelerometers has long been a
significant problem [2–6]. Motion segmentation implies the
discrimination of motion-involved periods and is handled
within various domains depending on the detection signal. In
the IMU applications, which generally depend on accelerom-
eters, the process can be understood as acceleration end point
detection in terms of signal processing. Since linear acceler-
ation and angular rates from IMUs are rarely used without
integration, motion segmentation is inevitable because it
indicates the initial and final points in the integration or
the starting and ending points in the period of interest for
processing [4, 7, 8].

Typical problems in motion segmentation using acceler-
ation have been associated with how accurately both ends
can be found; thereby several constraints have been reported.

First, measured acceleration is corrupted with the gravi-
tational acceleration which is intractable to separate from
acceleration by body motion [2, 8, 9]. Since it is exposed to
noisewhose source is also bodymotion, such as unintentional
trembles or minute motion, the estimated motion segmen-
tation might consequently include teacher noise. Addition-
ally, measured acceleration prevails in such low frequency
bands (0–20Hz) that spectral information is sparse. As a
result, motion segmentation specialized for acceleration is
temporally processed mainly [3–6, 9]. While calculating the
acceleration energy in the time domain, another constraint
emerges. Sample-wise linear separation between motion and
nonmotion states is formidable without modifying a multi-
valley structure; plus, time delay produced by modifying the
multivalley structure has proportional relation to accuracy
[3].

The proportional tendency between accuracy and time
delay in conventional approaches provokes a new require-
ment for rapid response time with the advent of smart devi-
ces [9, 10]. Motion segmentation obsessed with accuracy
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naturally leads to requiring an appropriate trade-off between
accuracy and delay. For accomplishing maximum accuracy
with minimum time delay, the employment of multivari-
ate energy appended to hyper decision boundaries has
been introduced as a promising alternative [9, 11]. This
approach achieves the time delay reduction by skipping
energy smoothing, which is the main cause of the time delay
in the previous univariate approach. Instead of an explicit
energy smoothing process, a shorter time delay is produced
implicitly when multivariate energy vectors are generated.
The loss of accuracy resulting from the reduced time delay
in this approach is compensated by motion state decision
making with a nonlinear hyper decision boundary in high-
dimensional space.

Consequently, accuracy is dependent on the separability
between data distributions of two states represented by
multivariate energy in high-dimensional space, and it is
required to predict the discriminality of each data distribu-
tion represented by variables or their multidimensional com-
binations for building optimal multivariate energy. Because
the performance of classifiers implementing a hyper decision
boundary may well have a limit, it is important to find and
identify variables that can have discriminant distributions
between two states in multivariate space. In addition, it is so
fundamental to depend on statistical regularities represented
by data in pattern recognition that state separability can be
used to showhowwell data is distributed in high-dimensional
space for a given task.

2. Problem Description

The key cause of the given problem is the multivalley struc-
ture that commonly occurs in calculating temporal energy.
Figure 1 shows the parsed acceleration signal 𝑎(𝑡) from a
simple arm motion and its basic energy |𝑎(𝑡)|. There, the
red dotted line represents the motion period, where nonzero
values stand for motion state. Acceleration from arm motion
has a multipeaked structure that is a representative of all
human arm motion [3]. The energy calculation transforms
themultipeaked structure into themultivalley structure at the
bottom of Figure 1, which is commonly observed in various
energy types [3–6, 9–11]. In this structure, the multiple
valleys prevent a linear threshold from simply discriminating
motion and nonmotion states, and this phenomenon explains
why energy smoothing is required. As smoothing means to
extract the desired signal by removing multiple peaks and
valleys in the original signal in terms of signal processing, it
represents the process to fill the valleys tomake the difference
between two states clear in this case. The main difference
among algorithms is techniques employed to smooth these
valleys: low-pass filtering including moving average, axial
information integration, inactivated interval setting, extra
signal addition, and so forth [2–6, 12].

The performance evaluation of motion segmentation
algorithms is generally given on the basis of accuracy;
however, time delay in algorithms has recently started to be
taken into consideration [5, 6, 10]. A related phenomenon
is explained in Figure 2, where energy is calculated by a
piecewise moving variance given by Benbasat and Paradiso
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Figure 1: Acceleration and its temporally calculated energy.
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Figure 2: Multivalley structure change over time delay increase in
smoothing.

[3]. In this approach, the length of a slidingwindow is directly
proportional to the size of the time delay.The graph (without
time delay) at the bottom of Figure 1 is again shown at the
top of Figure 2 for comparison, and each smoothed energy
variation with time delays of 70ms and 150ms, respectively,
follows by turn. It is clearly shown that the discrimination
between two states gets easier by a simple threshold, as the
time delay increases.

Theoretically, in this situation, accuracy equates to indi-
cating the exact motion starting and ending points; practi-
cally, however, thewhole detectedmotion period is compared
with the one given by the target label (red dotted line),
whichmeasures their overlapwith the number of successfully
detected samples with respect to full samples or similarity
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measurements between two time series [5, 6]. If accuracy
is 100%, the annotated and estimated motion periods must
be coincident. When fluctuation in acceleration is occasion-
ally extreme and energy smoothing is disabled to flatten
the valleys fully, the motion discontinuity happens in the
estimated motion period, and such a phenomenon needs to
be considered a detection failure regardless of accuracy. To
avoid this, energy smoothing is reinforced, thereby increasing
time delays.

Time delay in this paper results solely from algorithms
excluding computation and communication. It is determined
by the past data length stored in short-term memory and
the group delay for digital filtering, regardless of hardware
enhancements. It is basic in statistical inference to make a
decision based on previous data. The capacity to store the
previous data for processing current data is called the short-
term memory [13]. In signal processing, sliding windows
implement this by generating a time delay proportional
to a window length for the derivative of the signal with
respect to time, moving average/variance, and digital filtering
often found in algorithms. Group delay is an integrated
measurement of the time delay by frequency band when the
signal goes through filters. Filtering produces group delay
𝜕𝜙/𝜕𝜔, where 𝜙 and 𝜔 represent phase shift and radian
frequency, respectively [14]. Moving average is a special case
of low-pass filtering to generate group delay.Moving variance
can be interpreted as a case ofmoving average with additional
operations since themoving average is used in its calculation.
Given that motion segmentation is generally a part of full
interaction, time delay by motion segmentation should be
much less than the optimal delay of 150–200ms reported by
event-related brain potential measurements for a computer
response to a user action [15, 16].

The minimized time delay requirement turns efficient
energy smoothing in previous approaches into an estimate
of the probability at two states in high-dimensional space by
expanding univariate energy to multivariate. Borza [11] and
Lim et al. [9, 17] introducemotion segmentation based on this
idea, but multivariate energy and state decision methods in
their approaches differ. While Borza’s approach emphasizes
axial integration and the difference between only two time
sequences given in (2) for generating variables, Lim et al.
are interested in various variables and their combinations,
including the time series of a certain length without axial
integration as shown in Table 1. Consider the following:

{𝑎 (𝑡 − 1) , 𝑎 (𝑡) , Δ𝑎 (𝑡)} , (1)

where

𝑎 (𝑡) = √𝑎
2

𝑥
(𝑡) + 𝑎

2

𝑦
(𝑡) + 𝑎

2

𝑧
(𝑡),

Δ𝑎 (𝑡)

= √(𝑎
𝑥
(𝑡) − 𝑎

𝑥
(𝑡 − 1))

2

+ ⋅ ⋅ ⋅ + (𝑎
𝑧
(𝑡) − 𝑎

𝑧
(𝑡 − 1))

2

.

(2)

The interest in various candidates of Lim et al. naturally
induces the question of how to choose the best combination,
and feature subset selection in machine learning is conse-
quently employed to build multivariate energy in motion

Table 1

Candidates

Variables

{𝑎
𝑖
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󵄨
,
󵄨
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𝑖
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󵄨
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󵄨
󵄨
Δ𝑎
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
}

segmentation [13, 18–20]. They adopt a näıve sequential
feature selection to estimate the predictability between each
candidate and target values with correlation coefficients as
an objective function. It will very rarely work since the
estimation of multivariate feature subsets is discarded in this
strategy by not accounting for variable dependence.

Feature subset selection is the process of identifying and
eliminating as much irrelevant and redundant information
as possible [13, 20, 21]. Diminishing the dimensionality of
the data may allow learning algorithms to operate faster
and more effectively, and, in most cases, final classification
accuracy can be improved and data can be easily interpreted
as a representation of the target concept. Filter and wrapper
methods, which vary in how to estimate feature subset candi-
dates, are generally accepted. Filter methods are the earliest
approaches to feature selection within machine learning.
They use additional objective functions based on general
characteristics of the data to evaluate the merit of feature
subsets, whereas wrapper strategies use a learning algorithm
to estimate suchmerit. As a result, filtermethods are generally
much faster than wrapper methods and, as such, are more
practical for use on high-dimensional data. The rationale
for wrapper approaches is that the task-dependent induction
algorithms should provide a better estimate of accuracy than
a separate measure with inductive bias. Despite the better
estimate ofwrappers tuned to the specific interaction between
an induction algorithm and its training data, they tend to be
much slower than filter strategies because feature selection
must be accompanied by a model selection process for the
induction algorithm used.

In this study, filter strategy is scrutinized with several
causes. Our problem is the investigation as to how to choose
relevant variables for multivariate energy construction to
reduce time delays with superior or equivalent accuracy
guaranteed. For the given task, an evaluation of the estimate
by a few objective functions is required. Another underlying
goal that can be accomplished during this investigation is the
justification of a multivariate approach compared with the
previous univariate approach. To achieve this, we put more
emphasis on the understanding of general characteristics
of acceleration data than on a learning algorithm. The
comprehension of data distribution is followed by designing a
hyper decision boundary that should be so independent that
more various applications can be expected; however since
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Table 2: Univariate energy and multivariate energy.

Abbreviation Energy Dim.

BENBASAT.𝑛 {

𝑡

∑

𝑡−𝑛

𝑎
2

𝑖
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󵄨
󵄨
󵄨
Δ𝑎
𝑖
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󵄨
󵄨
󵄨
󵄨
} 𝑛 + 1

LIM7,. . .,LIM63 {LIM1, LIM2} , {LIM1, LIM3} , . . . , {LIM1, LIM2, LIM3, LIM4, LIM5, LIM6} 2, . . .,6
LIM7(LIM2.𝑛) {LIM1, LIM2.𝑛} 𝑛 + 2

Univariate Multivariate

Ex2

Reference data

Ex
1

Filter
Fisher discriminant ratio

Multiple correlation
Mutual information

Wrapper
Decision tree

Instance-based learning
Bayesian classifier

Figure 3: Overall experiment process.

wrapper methods are generally accepted to provide better
estimates of feature subsets, the reliability and limitations in
discriminality of filter strategies need to be compared with
those of wrapper strategies.

3. Experiment

With respect to handwriting acceleration, univariate energy
proposed by Benbasat and Paradiso [3] and multivariate
energy by Lim et al. [9, 17] are created, and each separability
estimate is measured by filter and wrapper processes. For
the rigorous comparison, theoretical errors are calculated as
reference data based on the conditional probability density
function of both motion and nonmotion states. A detailed
explanation of experimental conditions will be provided.
Figure 3 shows overall experiments. Throughout the exper-
iments, the following questions are pursued:

(i) Can filter approaches estimate accurately enough to
predict discriminality between motion and nonmo-
tion states?

(ii) Can it be justified that multivariate energy guaran-
tees superior time delay and accuracy to univariate
energy?

(iii) Can the analysis of the above results offer the under-
standing of the underlying structure of data distribu-
tions?

3.1. Data. A total of 294 handwriting measurements are col-
lectedwith a 3Dpen embeddedwith three-axis accelerometer
MMA 7260Q (Freescale) from 7 subjects (male 4, female
3) thrice when drawing the numbers from 0 to 9 and four
kinds of symbols. In data acquisition by microcontroller
Atmega8 (Atmel), two least significant bits are discarded to
cancel the noise effect for 10-bit quantization and 100Hz
sampling. Samplewise motion state annotations paired with
acceleration profiles, that is, target values, are measured
by subjects pushing a button to mark when drawing [22].
Collected data has been finally grouped into training (98
pieces, 17189 samples), validation (98 pieces, 16728 samples),
and test set (98 pieces, 17489 samples). Since acceleration and
its paired target label are considered at a single axis, accel-
eration profiles at three axes integrate to their samplewise
mean.

3.2. Energy Generation by Univariate and Multivariate
Approaches. The univariate energy used by Benbasat and
Paradiso [3] and multivariate energy by Lim et al. [9, 17]
have been chosen for the investigation. In the approach by
Benbasat and Paradiso, the energy is calculated by piecewise
moving variance, which combines energy calculation and
smoothing. It is an upgraded version of earlier energy calcu-
lation of absolute conversion or squared acceleration and is
widely accepted as one of the baseline methods considering
that several variations have been created.

For multivariate approaches the multivariate energy in
Lim et al. [9, 17] aremainly used for the experiment. Note that
every type of energy is abbreviated as in Table 2 for clarity and
simplicity hereafter. For feature subset selection and strongly
relevant variable identification, the subsets of LIM1∼LIM63
are employed in the experiment 1, and, after selecting the
best subset, it is compared with BENBASAT.𝑛 in experiment
2 (Figure 3). While LIM1∼LIM6 are subsets including each
basic variable, LIM7∼LIM63 are subsets composed of the
combinations of basic variables.

3.3. Theoretical Measure. To compare filter and wrapper
estimates, we need a theoretical reference. We define the
likelihood of each state as a conditional probability density
function with two assumptions: each is Gaussian distributed
and variables V

𝑖
of subsetV = {V

1
, V
2
, . . . , V

𝑛
} are independent
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Figure 4: Likelihood of each state.

and identically distributed for 𝑖 ̸= 𝑗. The density distribution
of each state is given as follows and in Figure 4:

𝑁 = {V
𝑖
| V
𝑖
∈ non-motion state} ∼ 𝑁 (𝜇

1
, 𝜎
2

1
) ,

𝑀 = {V
𝑖
| V
𝑖
∈ motion state} ∼ 𝑁 (𝜇

2
, 𝜎
2

2
) ,

(3)

where

𝜇
1
≤ 𝜇
2
,

𝜎
1
≤ 𝜎
2
,

𝑝 (V
𝑖
| 𝑁) =

1

√2𝜋𝜎
1

𝑒
−1/2((V𝑖−𝜇1)/𝜎1)2

,

𝑝 (V
𝑖
| 𝑀) =

1

√2𝜋𝜎
2

𝑒
−1/2((V𝑖−𝜇2)/𝜎2)2

.

(4)

In this condition, error results from the overlap between
the two states are given by the following equation and are
depicted by the dark region in Figure 4:

𝑝 (error) = ∫

Th𝑖

−∞

𝑝 (V
𝑖
| 𝑀) 𝑑V

𝑖
+ ∫

∞

Th𝑖
𝑝 (V
𝑖
| 𝑁) 𝑑V

𝑖
, (5)

where a threshold Th
𝑖
is found by satisfying 𝑝(Th

𝑖
| 𝑁) =

𝑝(Th
𝑖
| 𝑀). Consider

1

√2𝜋𝜎
1

𝑒
−1/2((Th𝑖−𝜇1)/𝜎1)2

=

1

√2𝜋𝜎
2

𝑒
−1/2((Th𝑖−𝜇2)/𝜎2)2 (6)

(𝜎
2

1
− 𝜎
2

2
)Th
𝑖

2
− 2 (𝜇

2
𝜎
2

1
− 𝜇
1
𝜎
2

2
)Th
𝑖
+ (𝜎
2

1
𝜇
2

2
− 𝜎
2

2
𝜇
2

1
)

+ 2𝜎
2

1
𝜎
2

2
ln 𝜎
1

𝜎
2

= 0.

(7)

Let the coefficient of each term in (7) be 𝐴, 𝐵, and 𝐶,
respectively,

Th
𝑖
= max{−𝐵 ± √𝐵

2
− 4𝐴𝐶

2𝐴

} . (8)

Since V is multivariate, for example, V = {V
1
, V
2
}, (5) is

rewritten as

TM = ∫

ThV

−∞

𝑝 (V
1
, V
2
| 𝑀) 𝑑V + ∫

∞

ThV
𝑝 (V
1
, V
2
| 𝑁) 𝑑V

= ∫

Th2

−∞

∫

Th1

−∞

𝑝 (V
1
, V
2
| 𝑀) 𝑑V

1
𝑑V
2
+ ∫

∞

Th2
∫

∞

Th1
𝑝 (V
1
, V
𝑛
| 𝑁) 𝑑V

1
𝑑V
2

≅

𝑛 ({V = ⟨V
1
, V
2
⟩ | V
1
≤ Th
1
, V
2
≤ Th
2
,V ∈ 𝑀}) + 𝑛 ({V = ⟨V

1
, V
2
⟩ | V
1
> Th
1
, V
2
> Th
2
,V ∈ 𝑁})

𝑛 (𝑀 ∪ 𝑁)

.

(9)

Therefore, the approximate error, which is estimated
by the likelihood of both states, can be counted to the
summation of the number of samples that belong to motion
state depicted by the bright grey area and samples that
belong to nonmotion state depicted by the dark grey area
in Figure 5. The actual boundary is located in the line
orthogonal to the connecting line between mean vectors at
both states, because the state membership of each sample is
determined byMahalanobis distances from eachmean vector
of two Gaussian distributions. Accordingly error should be
also estimated by this linear boundary, but we simplify it
in the way of (9) due to computation convenience, which
indicates minimum error with highly probable occurrence
only.

3.4. Feature Subset Selection: Filter Approaches. Traditional
feature subset selection process includes two steps of subset
generation and subset evaluation. Since∑𝑛

𝑘=1 𝑛𝐶𝑘
subset can-

didates can be producedwith respect to 𝑛 variable candidates,
various greedy search strategies are generally used to reduce
computation. In our study, the subset candidates are fixed so
that search strategy is not considered.We concentrate only on
how to evaluate each subset.

Typical objective functions in filter approaches are based
on distance measures, dependence measures, and informa-
tion measures [18, 20]. Fisher Discriminant Ratio (FDR) or
Fisher criterion is exemplary in distance measures and is
defined by the ratio of the between-class scatter S

𝐵
to the

within-class scatter S
𝑊
, where there is a total of 𝑁 instances
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Figure 5: Error approximation of multivariate data distribution.

and 𝑛
𝑖
(𝑖 = 1, 2, . . . , 𝐶) in𝐶 classes, as shown in the following

equations:

FDR =

tr (S
𝐵
)

tr (S
𝑊
)

, (10)

where

S
𝑊

=

𝐶

∑

𝑖=1

𝑛
𝑖

𝑁

𝑛𝑖

∑

𝑗=1

1

𝑛
𝑖

(x
𝑗
−m
𝑖
) (x
𝑗
−m
𝑖
)

𝑇

, (11)

S
𝐵
=

𝐶

∑

𝑖=1

𝑛
𝑖

𝑁

(m
𝑖
−M) (m

𝑖
−M)
𝑇

, (12)

where

m
𝑖
=

1

𝑛
𝑖

𝑛𝑖

∑

𝑗=1

x
𝑗
, (13)

M =

𝐶

∑

𝑖=1

𝑛
𝑖

𝑁

m
𝑖
. (14)

A multiple correlation coefficient is a multivariate exten-
sion of a traditional correlation coefficient, which is a typical
statistical technique to measure linear dependence between
variables [18–20]. In statistics, the multiple correlation coef-
ficient measures how well a given variable can be predicted
by a set of other variables using the ratio of the correlation
between variable vectors x

𝑖
and target values y

𝑖
and the

correlation between each variable in (15)–(18). As a result, the
process of multiple correlation is equivalent to the rationale
that a good feature subset is one that contains features highly
correlated with the class, yet uncorrelated with each other:

MCC = C𝑇R−1
𝑥𝑥
C, (15)

where

C =

(1/𝑁)∑
𝑁

𝑖=1
(x
𝑖
−mx) (y𝑖 −my)

𝜎x𝜎y
, (16)

Rxx =

(1/𝑁)∑
𝑁

𝑖=1
(x
𝑖
−mx) (x𝑖 −mx)

𝑇

𝜎x𝜎
𝑇

x
, (17)

where

𝜎x = √
1

𝑁

𝑁

∑

𝑖=1

(x
𝑖
−mx)

2

. (18)

Correlation is capable of measuring linear dependence
only. A more powerful method, which measures nonlinear
dependence, is the mutual information 𝐼(𝑉

𝑘
; 𝜔
𝐶
) in (19)

under the condition that 𝑘 subset candidatesV
𝑘
and𝐶 classes

𝜔
𝐶
are given [18–20]:

MI = 𝐼 (V
𝑘
; 𝜔
𝐶
) = 𝐻 (𝜔

𝐶
) − 𝐻 (𝜔

𝐶
| V
𝑘
)

=

𝐶

∑

𝑖=1

∫

V𝑘
𝑝 (V
𝑘
, 𝜔
𝑖
) log

𝑝 (V
𝑘
, 𝜔
𝑖
)

𝑝 (V
𝑘
) 𝑝 (𝜔

𝑖
)

𝑑V
𝑘
,

(19)

where 𝐻() is the entropy function. Intuitively, the mutual
information method measures the information that V

𝑘
and

𝜔
𝐶
share: it measures the amount by which the uncertainty in

the class𝐻(𝜔
𝐶
), prior uncertainty, is decreased by knowledge

of the subset𝐻(𝜔
𝐶
| V
𝑘
), expected posterior uncertainty. For

the high order density estimation from limited data, we apply
a mixture of three Gaussian distributions.

3.5. Feature Subset Selection: Wrapper Approaches. Of the
numerous classification algorithms available, Bayes Classi-
fiers (BCs) and 𝑘-nearest neighbor classifiers (KNNs) have
been chosen because both of them, proposed relatively
early, have small numbers of parameters for performance
optimization, and their competence has been generally
accepted enough to regard them as one of filters based
on recognition rates [13]. In addition, since these statistical
classification algorithms have their own statistical models
quite different from one another, each of their results helps us
to comprehend the characteristics of high-dimensional data
distribution. Note that their parameters are tuned with the
validation set after training, and the error rates are finally
counted in the test set.

A BC is a statistically parametric classifier based on apply-
ing Bayes’ theorem, such as the naı̈ve Bayes classification
given in the reference data section. Due to the assumption
of strong independence between feature variables, its per-
formance can be improved by removing redundant features.
The identical conditions and data distributions given in
Section 3.3 are applied except for the consideration of data
dimension usingmean vectorm

𝑖
given in (13) and covariance

matrixΣ
𝑖
by the inside summation term in (11). Given 𝑖 classes

with 𝑛 dimensional data, each Gaussian multivariate density
𝑓
𝑖
(x) is given in (20), and its second-order discrimination
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function𝑔
𝑖
(x) is given by taking the natural logarithm of each

side of (20) and simplifying it for classification in (21):

𝑓
𝑖
(x)

=

1

(2𝜋)
𝑛/2 󵄨󵄨

󵄨
󵄨
Σ
𝑖

󵄨
󵄨
󵄨
󵄨

1/2
exp [−

1

2

(x −m
𝑖
)
𝑇

Σ
−1

𝑖
(x −m

𝑖
)] ,

(20)

𝑔
𝑖
(x) = −

1

2

(x −m
𝑖
)
𝑇

Σ
−1

𝑖
(x −m

𝑖
) −

1

2

ln (
󵄨
󵄨
󵄨
󵄨
Σ
𝑖

󵄨
󵄨
󵄨
󵄨
) . (21)

AKNN is a representative of nonparametricmethods and
is a type of instance-based learning used in classification and
regression [13]. In both cases, the input instance is classified
by a majority vote of its 𝑘 closest training samples, neighbors,
in the feature space, with the instance being assigned to the
most common class among its 𝑘 nearest neighbors. If 𝑘 = 1,
the instance is simply assigned to the class of the single nearest
neighbor. The density function is locally approximated, and
all computation is deferred until classification. A KNN is
likely to be overfit so that 𝑘 is chosen with an extra validation
set (Figure 6).

4. Result and Analysis

4.1. Experiment 1

4.1.1. Descriptive Statistics. With respect to 63 possible sub-
sets out of LIM1, LIM2, LIM3, LIM4, LIM5, and LIM6, we
apply three filters of FDR, MCC, and MI and two wrappers
of KNN and BC in addition to the theoretical measure,
TM. Figure 7 presents the descriptive statistics of the object
function scores estimated by each method by showing the
average (top) and standard deviation (bottom) of 6 groups
which are categorized according to the dimension of subsets.
Except for KNN and BC, since all measures are linearly
adjusted to bring all of them into proportionwith one another
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Figure 7: Estimated measure averages and standard deviations.

for the normalization, note that it is meaningless to compare
the scores estimated by different strategies in Figure 7.

It appears that every filter shows similar estimates to
two wrappers with respect to 63 individual subsets by the
statistical analysis. Of the filters, MCC is evidently correlated
with two wrappers of KNN and BC with the general trend
that the closer to six the subset dimension gets, the greater
the average estimates are and the smaller their variances
get excluding the mean of FDR and the standard deviation
of MI. Despite the dissimilar tendency of FDR and MI in
Figure 7, the correlations between the methods give another
insight with respect to 63 individual subsets in Table 3. The
significant correlations between MI and two wrappers imply
that MI has just ill-fitting scales but tends to bring about
analogous scores. Likewise FDRmight be explained to record
similar scores to two wrappers with respect to the individual
subsets considering the correlation with MCC, which is
significantly correlated with two wrappers and TM.

However it turns out that the poorer scores FDR tends
to underestimate the higher dimensions the subsets have
because the distributions of the variables from LIM1 to LIM6
has much narrower mean differences compared to variances
in (11). As the subset dimension consequently increases, this
asymmetric proportion gets worse by summing the diagonal
components of the covariance matrix. Even though MCC
uses a similar covariance matrix to that of FDR in (17), the
covariance matrix for MCC is normalized by the product
of standard deviations and all of elements are included to
calculate the influence of each variable.

4.1.2. Network Analysis. General feature selection employs
various heuristic greedy search strategies to find an opti-
mal subset, but we conduct an exhaustive full search to
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Table 3: Correlations between each method.

𝑁 Mean SD Correlations
1 2 3 4 5 6

1 TM 63 83.5513 9.9085 1
2 FDR 63 31.9509 26.0949 0.2034 1
3 MCC 63 66.4364 29.5854 0.7352

†
0.5946

† 1
4 MI 63 9.3350 14.1683 0.2756

∗
−0.0711 0.2443 1

5 KNN 63 88.2365 5.2062 0.6654
†

−0.0633 0.3898
†

0.2984
∗ 1

6 BC 63 86.1483 5.4823 0.6985
†

−0.0293 0.4362
†

0.2967
∗

0.9926
† 1

df = 61, ∗𝑝 < 0.05, †𝑝 < 0.01.

Table 4: Variable evaluation by objective functions.

Strongly relevant Weakly relevant Irrelevant Subset
KNN LIM1, LIM3, LIM4 LIM2, LIM5 LIM48 = {LIM1, LIM3, LIM4, LIM5}
MI LIM1, LIM2, LIM4 LIM3, LIM5, LIM6 LIM61 = {LIM1, LIM3, LIM4, LIM5, LIM6}
FDR LIM2, LIM4 LIM6 LIM5 LIM36 = {LIM2, LIM4, LIM6}
BC LIM1, LIM3, LIM4 LIM2, LIM5 LIM57 = {LIM1, LIM2, LIM3, LIM4, LIM5}
MCC LIM2, LIM4 LIM1, LIM3, LIM5, LIM6 LIM42 = {LIM1, LIM2, LIM3, LIM4}
TM LIM2, LIM4, LIM6 LIM3 LIM46 = {LIM1, LIM2, LIM4, LIM6}

understand the attributes of each objective function. Instead
of omitting this procedure, we analyze the interrelation
between six variables of LIM1∼LIM6 with a social network
analysis technique based on the same data used for statistical
analysis. As a result, this analysis reveals the underlying
attributes of each measure.

We regard the variables and the subset as keywords and
a link, respectively, for network visualization. To begin with,
we identify the affirmative influences of each variable on the
discriminality estimation. After the subsets are ranked in
order of scores, we choose 10% of total subsets with highest
scores and split variables from the subsets. Its influence
is then counted by a vote because the stronger influence
the variable has, the more frequently it appears in the
above selection. After the negative influences are identically
identified in another selection of 10% of total subsets with
lowest scores, we subtract two votes in each variable and
normalize their scales into the range between −1 and 1.
With two selections, the network influences are analyzed by
counting links between variables again and the links with
votes below average are finally removed for clarity. Figure 8
shows the network analysis visualization of KNN, MI, FDR,
BC, MCC, and TM.

First similarity among them is that every measure does
not specify irrelevant variables because all of variables record
nonnegative scores except for FDR. It is interpreted that each
variable is strongly or weakly relevant given that the scores of
twowrappers tend to be proportional to the subset dimension
in the above statistical analysis. Another analogy comes
from the network connections between variables which the
linearity of each measure causes. It is observed that KNN
has a resemblance to MI, and BC does to MCC with few
differences in the network topology and this similarity is
prominent by classifying respective variables into strongly
relevant, weakly relevant, and irrelevant variables based on
the network analysis visualization (Table 4).

Such a topological analogy also explains why MI records
higher correlation with KNN than with BC and MCC vice
versa in Table 3. In addition, although FDR is poor at
estimating subsets with different dimensions, it appears that
the significant correlation with MCC is achieved by the fact
that FDR and MCC share the common strongly relevant
variables of LIM2 and LIM4. Note that the subsets in Table 4
are just transformed from each network topology with links
and nodes into the description of subsets and variables.

4.2. Experiment 2. Based on the previous analysis, we validate
the possibility that multivariate approaches can be a better
alternative to a conventional univariate in experiment 2. The
energy of BENBASAT.𝑛 based on the piecewise variance
tends to produce improved accuracy, as the size of sliding
window increases. For comparison, we propose four multi-
variate energy candidates combining LIM48 = {LIM1, LIM3,
LIM4, LIM5}, which are identified as the best subset in
Table 4 when using a KNN, to the idea of the time series
with 𝑛 + 1 lengths of the previous data. After using LIM3.𝑛
as a multivariate energy basis because LIM3 are identified
as the most strongly relevant variable as a result of a KNN
evaluation, it is bound with LIM1, LIM4, and LIM5 one after
another in the order of the variable influences in Figure 8(a),
only to create the multivariate energy candidates of LIM3.𝑛,
LIM9 (LIM3.𝑛) = {LIM1, LIM3.n}, LIM26 (LIM3.𝑛) = {LIM1,
LIM3.𝑛, LIM4}, and LIM48 (LIM3.𝑛) = {LIM1, LIM3.𝑛, LIM4,
LIM5}. Finally as 𝑛 increases, the changes in accuracy are
compared with BENBASAT.n, along with time delay. In
this way, we examine the potential of the energy with high
dimension and reconfirm the fidelity of network analysis in
the experiment 1 simultaneously.

Figure 9 shows the comparison between BENBASAT.𝑛
and four multivariate approaches in accuracy and time delay.
In the result of a KNN, BENBASAT.14 records the best
accuracy of 94.95% at 𝑛 = 14while LIM48 (LIM3.5) shows its
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Figure 8: Network analysis visualization.

best performance of 94.09%at 𝑛 = 5. If the comparison is only
evaluated in the aspect of accuracy, no doubt BENBASAT.14
is the best choice and the proposed multivariate energy is
purposeless; however the identical consequence can have
the contrasting significance when time delay is taken into
account. When 𝑛 = 14, time delay caused by the size of
short-term memory and group delay is counted to 150ms.
Noted that we deal with the delay caused by a pure algorithm
alone excluding all delays which result from computation
and communication. In spite of satisfying the optimal delay
condition of 150–200ms for a computer response to a user
action, it is easily concluded that the performance of 94.95%
in accuracy and 150ms in delay is not accepted to be excellent

considering motion segmentation is usually used as one
component in the entire interaction system.

On the contrary, the changes in the evaluation criteria are
led to reevaluate LIM48 (LIM3.5) with 94.09% in accuracy
and 60ms in delay. If one tries to reduce the time delay of
BENBASAT.14 as less as that of LIM48 (LIM3.5), the risk of
accuracy reduction by 4% needs to be taken, and this is one of
benefits which LIM48 (LIM3.𝑛) possesses because its changes
in accuracy is not rapid with respect to the changes in time
delays. Even considering the minimum time delay of 10ms in
LIM48 (LIM3.0) at 𝑛 = 0, its accuracy of 92.17% is remarkably
excellent compared to 78.37% in BENBASAT.0. The identical
tendency appears in the result of a BC in Figure 9 except for



10 Mathematical Problems in Engineering

1 6 11 16 21 26 31
85

87

89

91

93

95

Time delay (samples)

Ac
cu

ra
cy

 (%
)

LIM3.n
LIM9(LIM3.n)
LIM26(LIM3.n)

LIM48(LIM3.n)
BENBASAT.n

(a) KNN

1 6 11 16 21 26 31
85

87

89

91

93

95

Time delay (samples)

Ac
cu

ra
cy

 (%
)

(b) BC
Figure 9: Accuracy and time delay comparison between multivariate and univariate approaches.

accuracy differences. In addition, the fact that a nonlinear
KNN shows better estimates than a linear BC in Figure 9
implies that the estimate is so dependent on the choice of
classifiers that a new nonlinear classifier might record better
accuracy than a KNN, given that we simply employ it for
the comparison with filters only because of its simplicity in
modeling before its excellence in accuracy. For the further
investigation on the enhancement in accuracy, the cutting-
edge nonlinear classifiers will be more likely to be used,
and the details are again discussed in the conclusion. Note
that the ultimate goal of our study in this paper is not the
improvement of motion segmentation performance but the
validation of a few objective functions in filter strategies to
replace wrapper approaches with larger computations.

Before finalizing the comparison, it is worthy of men-
tioning that the increment in accuracy as a variable is added
to the basis subset of LIM3.𝑛 one after another. This result
does not merely mean the dimension increments are led to
the improvement in accuracy but implies the improvement
in accuracy critically has to do with the selection of proper
variables in that Figure 9 shows the dimension increment up
to 33 in LIM3.𝑛 has the limitation of performance improve-
ment. Therefore this result clearly justifies our analysis of
experiment 1.

5. Conclusion

The goal of our study is to validate the reliability of a few
objective functions to be used in finding optimal multivariate
energy for motion segmentation in accelerometer applica-
tions. To achieve this goal, Fisher discriminent ratio, multiple
correlation, and mutual information are tested by comparing
them with a theoretical measure and two wrappers of KNNs
and BCs in two experiments. Its analysis finally enables us
to answer to three questions which have arisen during the

investigation and this study is concluded giving summarized
explanation to those questions instead of the formal conclu-
sion.

(1) Can filter approaches estimate accurately enough to
predict discriminality between motion and nonmo-
tion states?
Of three objective functions and one theoretic mea-
sure we suggest, it turns out that multiple correla-
tion, mutual information, and theoretic measure are
competent enough to replace two wrappers. With
respect to 63 subsets found in literatures, all of them
excluding FisherDiscriminant Ratio clearly show that
they are significantly correlated with the estimates
produced by two wrappers. Furthermore the network
analysis for the identification of strongly relevant
variables clarifies that each function offers similar
interpretation with respect to all possible 63 subsets
from six variables. Since each distribution of motion
and nonmotion states built by six basic variables
from acceleration has too narrow mean differences
and wide variance, Fisher Discriminant ratio tends
to underestimate their separability, as the dimension
of subsets increases. In addition, mutual informa-
tion turns out to show reliable estimates enough to
replace the wrappers, but it is so unstable that it
varies dramatically from time to time due to the
intractability of density estimation, as data dimension
increments. This phenomenon comes from the com-
putation complexity of high order density estimation
using Gaussian mixture models, and we suggest cal-
culating stable multivariate density estimation in the
way to use variable box size over the corresponding
variable space like [23, 24] instead of expectation-
maximization algorithm.
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(2) Can it be justified that multivariate energy guaran-
tees superior time delay and accuracy to univariate
energy?

In the comparison between one conventional univari-
ate and our multivariate approaches, we justified the
superiority of multivariate approach. In our exper-
iment the univariate approach just showed better
accuracy than ours by about 0.9%, but the rapid pro-
cessing in our multivariate approach outperformed
the univariate one by 100% more. It is also observed
that the risk of the serious loss in accuracy is required
to be taken for the reduction in time delay for the
univariate approach while the performance of our
multivariate approaches lies in stable ranges.

(3) Can the analysis of the above results offer the under-
standing of the underlying structure of data distribu-
tions?

Using four linear and two nonlinear measures to esti-
mate the separability betweenmotion and nonmotion
states with acceleration data, we have concluded that
data is distributed linearly and separably considering
that multiple correlation works successfully in esti-
mating the discriminality. Despite the linearity, since
two distributions are located too closely, the messy
condition in the excessively overlapped spaces hinder
linear BCs from outperforming nonlinear KNNs.
The distribution of two states varies from variables.
Since acceleration data without absolute conversion
consists of two distributions with nearly identical
means but different variances while absolutely con-
verted acceleration data is distributed relatively far
distant each other, as a result, linear measures tend
to identify variables with absolute conversion as
strongly relevant ones and nonlinear estimators vice
versa. Overall it seems that motion segmentation
using acceleration needs to be achieved by classifiers
with a nonlinear hyper boundary such as multilayer
perceptrons or support vector machines prior to
classifiers depending onMahalanobis distance kernel
such as radial basis functions or BCs, and it is because
statistically Gaussian modeling is inefficient when
data lie on or near a nonlinear manifold in the data
space. Modeling data that lie very close to the surface
of a sphere only requires a few parameters using an
appropriatemodel, but it requires a very large number
of diagonal Gaussians or a fairly large number of full-
covariance Gaussians.
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