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Abstract

This paper introduces a relation to determine the span ratio between exterior and interior spans, which is required in the pre-

liminary design stage of bridges constructed by balanced cantilever method. On the basis of the numerical results obtained by

rigorous time-dependent analyses and by the simple equations introduced in the companion paper, the moment distribution along

the spans and its variation with the construction sequence are reviewed, and a recommendation for a rational design is suggested.

First, a relation for the initial tendon force is derived on the basis of an assumption that no vertical drift occurs at the far end of a

cantilever beam due to the balanced condition between the self-weight and the cantilever tendons. In advance, the determination of

an effective span ratio is followed with an assumption that the magnitude of maximum negative moment must be the same as that of

the maximum positive moment along all of the spans. Finally, many rigorous time-dependent analyses are conducted to establish the

validity of the introduced relations, and this paper shows that an effective span length ratio of the exterior span to the interior span

ranges between 0.75 and 0.8.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Balanced cantilever construction simply cantilevers

segments from a pier in a balanced fashion on each
side until the midspan is reached and a closure is made

with a previous half-span cantilever from the preceding

pier. The same erection process is repeated until the

structure is completed. As mentioned in the companion

paper, balanced cantilever segmental construction has

long been recognized as one of the most efficient

methods of building bridges as it does not require

falsework. This method has great advantages over
other forms of construction in urban areas where

temporary shoring would disrupt traffic and services
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below, and over waterways where falsework would not

only be expensive but also a hazard.

Cantilever construction was first introduced in Eu-

rope in the early 1950s, and it has since been broadly
used in the design and construction of several hundred

bridges. Unlike several large bridges built in Germany

using cast-in-place segments, cantilever construction in

France took a different direction, emphasizing the use

of precast segments. Comparing cast-in-place segmen-

tal construction with precast segmental construction,

the following features come to mind: cast-in-place

segmental construction is a relatively slow construction
method. The work is performed in situ, i.e., exposed to

weather conditions. The time-dependent deformations

of concrete become very important as a result of early

loading of the young concrete [8–11]. On the other

hand, precast segmental construction is a relatively fast

construction method determined by the time required

for the erection. The major part of the work is

performed in the precasting yard, where it can be
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protected against inclement weather. Precasting can

start simultaneously with the foundation work. The

time-dependent deformations of the concrete become

less important, as the concrete may have reached a

higher age by the time the segments are placed in the
structure. From 1960s, the construction method has

undergone refinements, and many variations of the

basic concept have been developed to adopt the

method to specific conditions of a project and to

achieve more effective bridge construction [1,2].

In parallel with the improvement in construction

method, many efforts to reach to an optimum design

have been undertaken [3,15]. In the transverse direc-
tion, classical optimization approaches on the basis

of mathematical programming methods, which have

an object function of the total weight and constraint

equations of stress and deflection limits, have been

performed [12,14], and limit dimensions for each part

in a cross section have been introduced even though

the dimensions of each part largely depend on

structural considerations as well as on practical fac-
tors related to the production and handling of the

segments.

In selecting the span arrangement for a segmental

bridge constructed by the balanced cantilever method,

it is also necessary to consider the construction se-

quence along the span length in the longitudinal di-

rection. If the end span is selected as 65–70% of the

interior span, only a small portion of the superstruc-
ture adjacent to the abutment will require use of

falsework or some other erection procedure different

from balanced cantilever construction. However, to

determine an optimum span length ratio between the

end span and the interior span, more rigorous nu-

merical analyses that consider the construction se-

quence and the time-dependent behavior of the

structure must be conducted [4,6–8,11].
When laying out spans for bridges, an equal span

system is often used in medium to short-span bridges

because it provides a maximum standardization of el-

ements. However, the application of unequal span

construction is also possible and in certain cases more

favorable. Many parametric studies for the span length

ratio and the depth-length ratio have been conducted

to reach to an optimum design for a few bridge types
[3,15]. Within long-span bridges, in particular, the end

span length must be shorter than that of the interior

spans. Since relatively larger bending moments are

generally occur at the end span in a multi-span con-

tinuous bridge because of the boundary condition, the

end span length needs to be reduced to decrease the

positive and negative bending moments at the end

span, which are proportional to a square of the span
length, so that the moment difference between the end

span and the adjacent interior span decreases and more

rational design can be induced. Specifically, the deter-
mination of an effective span length ratio between the

end span and the interior span may be one approach

that could result in an optimum design.

Taking these characteristic into account, a relation

to determine an effective span length ratio in a bridge
constructed by the balanced cantilever method is in-

troduced in this paper, on the basis of the deflection

condition at the end of the cantilevered span during

construction and the moment equality at the end span

and the adjacent interior span. Several numerical ex-

amples are given to investigate the validity of the in-

troduced relation, and a recommendation for the

determination of an effective span length ratio for a
rational design is also suggested.
2. Moment variation during construction

To verify the effectiveness of the relations intro-

duced in the companion paper, the internal moment

variations by the dead load and cantilever tendons

calculated for FCM 1, FCM 2, and FCM 3 bridges

(see Fig. 1 in the companion paper), which were ob-

tained through rigorous time-dependent analyses that

considered the construction sequence [4,6–8,11], are
compared with those obtained by the superposition of

Eqs. (5) and (6) introduced in the companion paper.

All the material properties used in the numerical

analyses are the same with those mentioned in Tables

1 and 2 in the companion paper. Figs. 1–3, repre-

senting the obtained results at t ¼ 1 year, t ¼ 10 years,

and t ¼ 100 years after completion of construction for

each bridge, show that the superposition of two rela-
tions representing the dead load moment (Eq. (5) in

the companion paper) and the cantilever tendon mo-

ment (Eq. (6) in the companion paper) effectively

simulates the internal moment variation with time

regardless of the construction sequence.

In advance, as in the dead load moment alone, the

superposition of two equations for the dead load and

cantilever tendon moments also gives slightly larger
positive moments than those obtained by rigorous

analysis along the spans (see Figs. 1–3). On the other

hand, the exactness for the negative moment values at

the internal supports, where the maximum negative

moments occur, depends on the accuracy of the rela-

tion for the cantilever tendon moment as well as that

for the dead load moment. Since Eqs. (5) and (6) in

the companion paper effectively simulate the dead
load and cantilever tendon moments along the span,

respectively, the moment distribution by the superpo-

sition of both two equations also gives the negative

moment distributions which represent less differences

than those caused in the case of the dead load mo-

ment alone. Nevertheless, the maximum negative de-
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Fig. 1. Moment variations of FCM 1 bridge: (a) after 1 year; (b) after

10 years; (c) after 100 years.
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sign moment which must be taken in the preliminary

design stage can be determined as a constant value of

M ¼ MD þMT ¼ wD � l2=8þ Pi � e � n � v
¼ �1160t � mþ 117t � 1:3m� 5EA � 0:82

¼ �536:4t � m;
where n is the number of cantilever tendons and v is the

aging coefficient of concrete, on the basis of the

cantilevered state because this maximum value gradually

decreases with an increase of the positive moment at the

midspan according to the continuity of each span.
Figs. 1–3 show that the maximum positive and neg-

ative moments generally occur at the end spans due to

the boundary conditions at both ends, which represent

no rigidity for the moment resistance. Accordingly, to

move towards a more rational design, a reduction of

positive and negative moments at the end spans, which

represent the largest values, and an increase of positive

moments at the internal spans, which show relatively
small values, need to be sought. On these aspects, this

paper introduces a relation to determine the span ratio

between exterior and interior spans, by which the mo-

ment differences can be minimized and more rational

section dimensions can be determined along the spans.
3. A Proposed design recommendation

3.1. Determination of cantilever tendon force

The cantilevers in FCM bridges are usually con-

structed by sequential connection of 3–6 m long seg-

ments with cantilever tendons. If each cantilever is

composed of m-segments of the length l1 as shown in

Fig. 4, the total length of cantilever beam L1 can be
calculated by L1 ¼ ðnþ 0:5Þ � l1. Because of the charac-

teristic in the construction sequence, the downward de-

flection dA by the dead load w and the upward deflection

dB by the cantilever tendon force P occur at the end of

the cantilever (see Fig. 5(a) and (b)). In advance, the

deck portion of the end spans adjoining the abutment

cannot be erected in a balanced cantilever but is gener-

ally completed by the full staging method. This requires
that the vertical deflections dA and dB be the same so that

the end spans can be closed without application of any

additional force to integrate two parts.

Fig. 4 shows that the first cantilever tendon is in-

stalled after concreting the second segment , and this

causes the cantilever tendon moment calculated by P � e
to the segments and connected previously. The same

erection procedure is repeated until midspan is reached.
Fig. 5(c) represents the moment distributions by the

cantilever tendons representing the terraced distribution

((B) in Fig. 5(c)) and by the uniformly distributed dead

load ((A) in Fig. 5(c)). On the basis of the compatibility

condition of dA ¼ dB, each deflection component may be

calculated by the conjugate beam method and can be

expressed as:

dA ¼ wL4
1

8
� 1

EI
; ð1Þ
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Table 2

Comparison of bending moments in both Approaches II

Moments (2L1 þ 0:3Þm ¼ 30m (2L1 þ 0:3Þm ¼ 60m

Proposed equation (ton/m) Mþmax
ext: (7) 427.5 1494.3

M�max
int: (8) )427.3 )1494.5

M�max
int: (9) 275.3 884.5

jM�max=Mþmax
ext: j 1.00 1.00

Rigorous analysis (ton/m) Mþmax
ext: 456 1581

M�max )458 )1595
Mþmax

int: 320 998

jM�max=Mþmax
ext: j 1.00 1.01

Table 1

Comparison of bending moments in both Approaches I

Moments (2L1 þ 0:3Þm ¼ 30m (2L1 þ 0:3Þm ¼ 60m

Proposed equation (ton/m) Mþmax
ext: (7) 427.5 1494.3

M�max (8) )427.3 )1494.5
M�max

int: (9) 275.3 884.5

jM�max=Mþmax
ext: j 1.00 1.00

Rigorous analysis (ton/m) Mþmax
ext: 407 1399

M�max )538 )1939
Mþmax

int: 249 770

jM�max=Mþmax
ext: j 1.32 1.39
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dB ¼
EI

1
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� L1
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þ Pe � L1
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� 2 � L1
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�
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� L1
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��
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nþ 0:5

� �

� ðn
�

� 1Þ � L1

nþ 0:5
þ 1

2
L1

�
� ðn� 1Þ � L1

nþ 0:5

���

¼ PeL2
1

2EI
�
Xn
i¼1

1

�
� ði� 1Þ
nþ 0:5

�
1

�
þ ði� 1Þ
nþ 0:5

�
: ð2Þ

From the equality of these two relations, the canti-

lever tendon force P can be finally expressed by

P ¼ wL2
1

4e �
Pn

i¼1 1� ði�1Þ
nþ0:5

� �
1þ ði�1Þ

nþ0:5

� � ; ð3Þ

where e is the eccentricity of the cantilever tendon with

respect to the centroid of a section, n is the number of

cantilever tendons arranged, and w is the uniformly
distributed dead load.
3.2. Determination of effective span length ratio

The span arrangement for a bridge depends on the

method of construction. When cantilever construction is

used, the segments are erected in balanced cantilever

starting from a pier and placing segments on either side

in a symmetrical operation. This method of erection
results in typical superstructure components consisting

of one-half of the main span length cantilevered from

the piers as shown in Fig. 4. In advance, since the end

span length must be selected as more than fifty percent

of the interior span length to remove the uplift of the

superstructure at the end support, regardless of the

method of construction, the portion exceeding 50% of

the superstructure adjacent to the abutment will require
use of falsework or some other erection procedure.

In spite of a relatively short span length, the end span

represents the maximum positive and negative moments

because of the simply-supported boundary condition at

both far ends (see Figs. 1–3). Therefore, for the design to

become more rational, a decrease of these maximum

moments with an increase of relatively small moments

occurred at the interior spans must be achieved so that a
multi-span continuous bridge represents the uniformly

distributed moment variation along the entire spans.

That is to say, more attention must be given to the

moment variation at the end spans. Since the section

design is conducted on the basis of the maximum mo-
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Fig. 2. Moment variations of FCM 2 bridge: (a) after 1 year; (b) after

10 years; (c) after 100 years.
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Fig. 3. Moment variations of FCM 3 bridge: (a) after 1 year; (b) after

10 years; (c) after 100 years.
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ment envelope, fewer differences moment variations
between the internal spans and in the end spans mean

that no exceptional considerations for the end spans are

required in the design procedure and the same bridge

sections can be used along the entire spans regardless of

the span location and arrangement. On these back-

grounds, this paper introduces a simple relation for an
effective span length ratio that derives the uniform mo-

ment variation along the entire span.

As shown in Figs. 1–3 in this paper and in Figs. 2–4 in

the companion paper, the difference in construction

steps does not have a great influence on the final mo-
ment distributions, but there is remarkable difference in

the final moments between the initially completed

continuous bridge (TS in Figs. 1–3) and the balanced
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cantilever bridges. On the other hand, the moments in

the balanced cantilever bridges after completion of the

construction (t ¼ 100 days) represent an immaterial

variation because the relatively large creep deformation

of concrete at early ages, up to t ¼ 100 days does not
contribute to the moment variation.

Therefore, the maximum moments experienced dur-

ing construction can be calculated on the basis of a

statically determinate structure that gives the maximum

positive or negative moment. That is, the statically de-

terminate structure shown in Fig. 6 can be taken as a

reference structural system because this system gives the

largest maximum positive and negative moments
through all of the construction steps, and the corre-

sponding maximum values represent minor variations

due to creep deformation of concrete even after change

in the structural system with a closure of the adjacent

interior midspan.
Since the interior span in the reference structural

system described in Fig. 6 still remains in an overh-

anged state, as shown in Fig. 5, the negative moment

by the dead load M�
1 and the positive moment by the

cantilever tendons Mþ
2 at the interior span (the region

bounded by two points of B and C in Fig. 6) can be

expressed by:

M�
1 ¼ � 1

2
wðL� xÞ2; ð4Þ

Mþ
2 ¼ Pen when 06 x6

3

2

L1

ðnþ 0:5Þ

¼ Pen� Pe
ðnþ 0:5Þ

L1

x
�

� 3

2

L1

ðnþ 0:5Þ

�

when
3

2

L1

ðnþ 0:5Þ 6 x6 L1; ð5Þ

where x is the distance from the interior support point B
in Fig. 6.

On the other hand, the positive and negative mo-

ments by the dead load at the exterior span of the ref-

erence structural system represents the values of

M�
max ¼ 1159t � m and Mþ

max ¼ 652t � m when L1 ¼
L2 ¼ 15 m in Fig. 6. The same section properties men-

tioned in Tables 1 and 2 in the companion paper are

used. The moment distribution obtained is shown in

Fig. 7. From the comparison of the results in Fig. 7 with

those in Figs. 2–4 in the companion paper, the following

can be inferred: (1) the moments represent almost the

same values in spite of having different structural sys-

tems, indicating that the moment variation induced by
the change in the structural system with a connection of

the adjacent interior span is negligibly small; and (2) the

moment distribution by the dead load at the exterior

span can be simulated on the basis of the reference

structural system in Fig. 6, regardless of the structural

system and time considered. Based on these aspects, the

moment distribution at the exterior span can be ex-

pressed by
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M3 ¼
wð2L1 þ L2Þ2

2ðL1 þ L2Þ
� x� w

2
ðL1 þ xÞ2; ð6Þ

where x is the distance from the interior support point B
in Fig. 6.

On the basis of the moment distributions, the mo-

ment at the exterior span can be represented by the su-

perposition of two moment components of Mþ
2 by the

cantilever tendons (see Eq. (5)) and M3 by the dead load

in the reference structural system (see Eq. (6)). Similarly,

the moment at the interior span can also be expressed

by the superposition of two moment components of M�
1

by the dead load (see Eq. (4)) and Mþ
2 by the cantilever

tendon (see Eq. (5)), and the end moment at point B can

be determined as

M�max ¼ � 1

2
wL2

1 þ Pen: ð7Þ

In other words, the positive moments at the exterior

span and at the adjacent interior span can be expressed

by Eqs. (8) and (9), respectively. In advance, their

maximum values are determined from the first deriva-

tion of the moment with respect to xðdM=dx ¼ 0Þ within
the interval of 1:5L1=ðnþ 0:5Þ6 x6 L1, and x values

determined are x ¼ ð2L1 þ L2Þ2=ð2L1 þ 2L2Þ � Peðnþ
0:5Þ=ðwL1Þ � L1 for Mþ

ext:, and x ¼ L1 � Peðnþ 0:5Þ=
ðwL1Þ for Mþ

int:.

Mþ
ext: ¼ M2 þM3

¼ Pen� Pe
ðnþ 0:5Þ

L1

x
�

� 3

2

L1

ðnþ 0:5Þ

�

þ wð2L1 þ L2Þ2

2ðL1 þ L2Þ
� x� w

2
ðL1 þ xÞ2; ð8Þ
Mþ
int: ¼ M1 þM2

¼ � 1

2
wðL1 � xÞ2 þ Pen

� Pe
nþ 0:5

L1

x
�

� 3

2

L1

ðnþ 0:5Þ

�
: ð9Þ

As shown in Eqs. (7)–(9), the maximum positive

moment at the interior span Mþmax
int: and the negative

moment at the first interior support Mþmax can be de-

termined using the tendon force P in Eq. (3), the ec-

centricity e, and the interior span length (2L1 þ 0:3m).
The positive moment at the exterior span is a function of

its span length expressed by L1 þ L2, so that the mag-
nitude of the maximum positive moment at the exterior

span depends on the length L2 as well as the length L1.
Therefore, to determine the reference positive moment

for the comparison with the negative moment at the

interior support, the relative magnitudes of both positive

moments need to be reviewed. Eq. (10) representing this

difference always has a positive value regardless of

changes in design variables because the first term (C � 2)
and the second term (0:5wL21C � BL1) have positive

values except L2 ¼ 0 at which C ¼ 2.

Mþmax
ext: �Mþmax

int: ¼ ðC � 2Þð0:5wL2
1C � BL1Þ; ð10Þ

where

0:5wL2
1C � BL1

¼ 0:5wL2
1C � ð0:5þ nÞPe ¼ wL2

1 0:5C

"
� ð0:5þ nÞ

4
Xn
i¼1

1

� ,
� ði� 1Þ
nþ 0:5

��
1þ ði� 1Þ

nþ 0:5

�!#
> 0;

ð11Þ

C ¼ ð2þ kÞ2=ð2þ 2kÞ, B ¼ ðnþ 0:5ÞPe=L1, L2 ¼ kL1,

and k the proportional constant. Since L2 must be

greater than zero, the maximum positive moment will

occur at the exterior span in the balanced cantilever
bridge. That is to say, the magnitude of the positive

moment is always governed by that of the exterior span.

As mentioned before, the bridges constructed by the

balanced cantilever method represent the internal mo-

ment redistribution which takes place over the service

life of a structure because of the time-dependent defor-

mations of concrete and changes in the structural system

repeated during construction. That is, an increase of the
positive moment as well as a decrease of the negative

moment is accompanied with time, but the absolute

difference between the negative moment and the positive

moment maintains a constant value at a span due to the

force equilibrium equation. Therefore, a rational and

economical design of the balanced cantilever bridge may

be initiated through the minimization of the moment

difference between the negative moment at the interior
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Fig. 9. Moment distribution in FCM 2 bridge with SLR¼ 0.763,
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support and the positive moment at the exterior span. In

this case, the same section can be used along the entire

span, and a greater concentration of internal moment

can be released to the exterior span.

On these aspects, the exterior span length L1 þ L2 can
be inferred from the condition of Mþmax

ext: þM�max ¼ 0,

and it gives the following relation:

A1 � A2 þ B1 � Aþ C1 ¼ 0; ð12Þ

A ¼ �B1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 � 4A1C1

p
2A1

B2
1

�
� 4A1C1 P 0

	
; ð13Þ

where A ¼ ð2L1 þ L2Þ2=ð2L1 þ 2L2Þ ¼ ð2þ kÞ2L1=ð2þ 2kÞ
¼ CL1, A1 ¼ w=2, B1 ¼ �B� L1w, and C1 ¼ 1:5Peþ
BL1 þ 2nPeþ B=ð2wÞ � wL2

1=2.
Since an expression of A ¼ ð2L1 þ L2Þ2=ð2L1 þ 2L2Þ

can be rearranged with respect to the length L2 as Eq.

(14), the exterior span length calculated by L1 þ L2,
which leads to a rational design, can finally be deter-

mined.

L2
2 þ ð4L1 � 2AÞL2 þ 4L2

1 � 2AL1 ¼ 0; ð14Þ

L2 ¼ �ð2L1 � AÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2L1 � AÞ2 � ð4L2

1 � 2AL1Þ
q

; ð15Þ

where ð2L1 � AÞ2 � ð4L2
1 � 2AL1ÞP 0.
SPAN
4. Applications

Using Eqs. (3) and (15), the tendon force of the

cantilever tendons and the exterior span length in a
balanced cantilever bridge can be determined. Fig. 8

shows the span length ratio SLR ðSLR ¼ ðL1 þ L2Þ=
ð2L1 þ 0:3Þ, where 0.3m is the length of a key segment at

midspan) obtained by the rigorous time-dependent

analyses considering the construction sequence and ar-

ranged with respect to the cantilevered beam length L1.
As shown in this figure, the exterior span length

(L1 þ L2) must be 0.75� 0.77 times the interior span
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Fig. 8. Relation between SLR and L1.
length ð2L1 þ 0:3mÞ to be a rational and economical

design regardless of the interior span length. The opti-

mum span length ratio represents the maximum value of

0.77 when the internal span length reaches to
ð2L1 þ 0:3Þm ¼ 50:3m and converges to a value of 0.755

as the interior span length gradually increases.

In advance, Figs. 9 and 10 represent the moment

distribution by the dead load and the cantilever tendon

force determined from a rigorous time-dependent anal-

ysis, when the internal span lengths (2L1 þ 0:3m) are 30m
and 60m, respectively. FCM 2 in the companion paper is

assumed, and the time-dependent rigorous analyses are
conducted on the basis of the length L2 ¼ 8:04m and

L2 ¼ 16:23m from Eq. (15) and P ¼ 108975:9 and

P ¼ 238020:0 kg from Eq. (3), respectively. The canti-

lever tendon area AP is assumed by P=0:8fpy and the
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Fig. 10. Moment distribution in FCM 2 bridge with SLR¼ 0.768,

(2L1 þ 0:3Þm ¼ 60m, and P ¼ 238020:0 kg.
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Fig. 11. Moment distribution in FCM 2 bridge with SLR¼ 0.763,

(2L1 þ 0:3Þm ¼ 30m, and PR ¼ 128206:9 kg.
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corresponding number of segments are assumed to be

n ¼ 5 and n ¼ 10, respectively.

Table 1 also shows the comparison of the bending

moments obtained in Figs. 9 and 10 with those calcu-

lated by the proposed equations of (7)–(9) in this paper.
As shown in this table, the proposed equations give an

unit value for the absolute moment ratio at the exterior

span jM�max=Mþmax
ext: j ¼ 1:0, regardless of the internal

span length, while these ratios, determined on the basis

of the numerical results obtained by the rigorous ana-

lysis, represent slightly different values from jM�max=
Mþmax

ext: j ¼ 1:0. These differences seem to be caused by

the relaxation of cantilever tendons. Unlike the intro-
duced equations in which the relaxation effect is ex-

cluded in the derivation procedure, here the relaxation

effect is taken into account in the rigorous time-depen-

dent analysis according to the ACI model. In the case of

balanced cantilever bridges, the dead load moment

variation induced by the creep deformation of concrete

seems to be small, but the cantilever tendon moment

variation induced by the relaxation of tendon force is
expected to be relatively large. Therefore, this relaxation

effect in the cantilever tendons must be considered.

The use of an initial prestressing force instead of an

effective prestressing force, which is revised and esti-

mated by considering the relaxation of tendon force,

gives similar results in both the rigorous time-dependent

analysis and the introduced simplified equations.

Relaxation of tendon force with time is taken into
consideration based on the following equation by Ma-

gura et al. [13].

R ¼ fs
fsi

¼ 1� log t
10

fsi
fpy

�
� 0:55

�

¼ 1� log t
40

;
fsi
fpy

P 0:55; ð16Þ

where fs is the stress at time t; fsi is the initial stress

immediately after stressing; fpy is the 0.1% offset yield

stress; and t is the time in hours after stressing. Since fsi
is assumed as fsi ¼ 0:8fpy in this paper, the stress ratio R
can be simplified by R ¼ 1� log t=40.

Eq. (16) is valid only for the condition in which the
strain is kept constant and fsi is the only applied stress.

Therefore, the total stress relaxation (frn) at time tn is

obtained by summing up all the relaxation (Dfrk) at each
time interval (tk � tk�1Þ, that is frn ¼

Pn
k¼1 Dfrk, ac-

cording the procedure suggested by Hernandez and

Gamble [5].

If t ¼ 100 years is assumed, then the stress ratio R has

the value of 0.85, and the modified tendon forces con-
sidering the relaxation (PR ¼ P=R), equivalent to the

initial force, represent PR ¼ 128206:9 and 280023.5 kg in

bridges with the internal span lengths of l ¼ 2L1þ
0:3m ¼ 30m and l ¼ 60m, respectively (see Eqs. (3) and

(15)). The corresponding tendon areas are also revised in
accordance with the changes in the tendon forces and

have the values of 10.9 and 23.7 cm2 from Ap ¼ PR=
0:8fpy . Numerical results by the rigorous time-dependent

analysis using the revised tendon forces and areas are

shown in Figs. 11 and 12.
Differently from Figs. 9 and 10, these figures show the

moment distributions that almost the same maximum

and minimum moments at the exterior span. Table 2

also shows that the moment ratios at the exterior span

represent jM�max=Mþmax
ext: j ffi 1:0 regardless of the dif-

ferences in the internal span length and analysis meth-

ods even though the moment values differ from each

other. Moreover, consideration of the relaxation in the
cantilever tendons gives improved moment ratios.

As mentioned before, to be a rational and economical

design, the span length ratios of SLR ¼ ðL1 þ L2Þ=
ð2L1 þ 0:3mÞ, must be 0.763 and 0.768 when the interior
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Fig. 13. Moment distribution in FCM 2 bridge with SLR¼ 1.0,
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span lengths are 30m and 60m, respectively. Accord-

ingly, additional parametric studies for different SLR

from the optimum values determined on the basis of Eq.

(15) are conducted, and typical numerical results for

SLR¼ 1.0 and 0.6 are shown in Figs. 13–16 and also

described in Table 3. From these figures and the table,
the following can be inferred: (1) as SLR values become

further from the optimum values corresponding to each

internal span length, differences between the maximum

positive and negative moments at the exterior span

gradually increase, and this unequal moment distribu-

tion may lead to an irrational and uneconomical design;

(2) the correction of SLR using Eq. (15) with the use of

revised tendon force PR considering the relaxation must
be achieved; and (3) determination of the maximum

moments by Eqs. (7)–(9) finally gives the optimum SLR

values and gives similar magnitudes for the maximum
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Fig. 14. Moment distribution in FCM 2 bridge with SLR¼ 0.6,

(2L1 þ 0:3Þm ¼ 30m, and PR ¼ 128206:9 kg.

Fig. 16. Moment distribution in FCM 2 bridge with SLR¼ 0.6,

(2L1 þ 0:3Þm ¼ 60m, and PR ¼ 280023:5 kg.
positive and negative moments at the exterior span,
leading to a more rational and economical design.

More parametric studies have been conducted for

FCM 2 bridges with different internal span lengths. Figs.

17 and 18 show the relation between the moment ratio at

the exterior span jM�max=Mþmax
ext: j and the span length

ratio SLR. In Fig. 17, the moment ratios are determined

on the basis of a rigorous time-dependent analysis, and

the revised tendon force PR is used so that the relaxation
in the cantilever tendons is taken into consideration with

time. On the other hand, the moment ratios in Fig. 18

are analytically calculated on the basis of the introduced

simple Eqs. (7)–(9) with the effective tendon force.

As shown in these figures, the moment ratios to the

span length ratio represent similar slopes in both ap-

proaches and give the optimum SLR values that show

very few differences in spite of wide differences in the



Table 3

Rigorous analysis results with respect to the span length ratios

Moments (ton/m) SLR¼ 1 SLR¼ 0.6

(2L1 þ 0:3Þm ¼ 30m Mþmax
ext: 755 346

M�max )529 )433
Mþmax

int: 320 320

jM�max=Mþmax
ext: j 0.70 1.25

(2L1 þ 0:3Þm ¼ 60m Mþmax
ext: 2706 1094

M�max )1679 )1532
Mþmax

int: 998 998

jM�max=Mþmax
ext: j 0.62 1.40

0.5 0.6 0.7 0.8 0.9 1.0 1.1
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.95

1.05

SLR

 Time Dependent Analysis
 Eqs. (7), (9)

0.5 0.6 0.7 0.8 0.9 1.0 1.1
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.95

1.05

SLR

+
M

ax
M

–M
ax

M
ex

t.
+

M
ax

M
–M

ax
M

ex
t.

 Time Dependent Analysis
 Eqs. (7), (9)

(a)

(b)

Fig. 19. Relation between jM�max=Mþmax
ext: j and SLR by both methods:

(a) (2L1 þ 0:3Þm ¼ 30m; (b) (2L1 þ 0:3Þm ¼ 60m.

0.5 0.6 0.7 0.8 0.9 1.0 1.1
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

SLR

M
ax

+
M

–M
ax

M
ex

t.

 Internal span length =  30m
 Internal span length =  60m
 Internal span length =  90m
 Internal span length = 120m

Fig. 17. Relation between jM�max=Mþmax
ext: j and SLR obtained by rig-

orous analyses.

0.5 0.6 0.7 0.8 0.9 1.0 1.1
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

SLR

+
M

ax
M

–M
ax

M
ex

t.

 Internal span length =  30m
 Internal span length =  60m
 Internal span length =  90m
 Internal span length = 120m

Fig. 18. Relation between jM�max=Mþmax
ext: j and SLR obtained by Eqs.

(7)–(9).

H.-G. Kwak, J.-K. Son / Construction and Building Materials 18 (2004) 767–779 777
internal span lengths. Fig. 19 shows the representative

comparison of results by both approaches for the in-

ternal span lengths of (2L1 þ 0:3Þm ¼ 30m and 60m. As

this figure shows, the span length ratio SLR for a ra-

tional design of FCM bridges ranges from 0.75 to 0.8

regardless of the internal span length. Finally, the in-

troduced equations can be effectively used in deter-
mining an initial section at the preliminary design

stage.

In Figs. 20 and 21, the internal moment variations,
obtained through rigorous time-dependent analyses, are

compared with those obtained by the superposition of

both Eqs. (5) and (6) introduced in the companion pa-

per. These figures show that two simple equations in-

troduced in the companion paper effectively simulate the

moment distributions regardless of the interior span

length. If Eqs. (7)–(9) in this paper, which consider the
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Fig. 20. Moments distribution of (2L1 þ 0:3Þm ¼ 30m: (a) after 1 year;

(b) after 10 years; (c) after 100 years.
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Fig. 21. Moments distribution of (2L1 þ 0:3Þm ¼ 60m: (a) after 1 year;

(b) after 10 years; (c) after 100 years.
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relaxation of the cantilever tendons are used together

with Eqs. (5) and (6) in the companion paper, then de-

termination of initial trial section dimensions and span
length ratio for more rational and effective preliminary

design of balanced cantilever bridges may be achieved

without a lot of repeated trial processes with rigorous

time-dependent analyses.
5. Conclusions

Since concrete bridges constructed by the balanced

cantilever method (FCM) experience moment variations

due to the change in the structural system during con-

struction, determination of the design moments requires

a rigorous time-dependent analysis that considers the
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construction sequence. Most numerical analyses, how-

ever, have some limitations in wide use because of

complexities in practical applications. The design pro-

cedure also requires repeated analyses using the initial

section changed until a rational design is reached. All of
these difficulties combined make a rational and effective

design almost impossible. For this reason, simple, but

effective, relations to determine the internal moment

distributions along all of the spans by the dead load and

by the cantilever tendon force are introduced. A relation

to determine the span ratio between exterior and interior

spans is also introduced.

If an initial cross section and the span length ratio are
assumed in the preliminary design stage using the intro-

duced relations, and if a rigorous time-dependent analysis

is conducted in the final design stage, then a more im-

proved and effective design may be expected in the case of

balanced cantilever bridges. Moreover, a final design can

easily be reachedwithout any repeated calculation using a

rigorous time-dependent analysis program.
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