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ABSTRACT
A hybrid system consists of continuous systems and discrete event systems, which interact with each other. In such
configuration, a continuous system can't directly communicate with a discrete event system. Therefore, a form of
interface between two systems is required for possible communication. An interface from a continuous system to a
discrete event system requires abstraction of a continuous system as a discrete event system. This paper proposes a
methodology for abstraction of a continuous system as a discrete event system using neural network. A continuous
system is first represented by a timed state transition model and then the model is mapped into a neural network
by learning capability of the network. With a simple example, this paper describes the abstraction process in detail
and discusses application methods of the neural network model. Finally, an application of such abstraction in design
of intelligent control is discussed.

Keywords: Models Abstraction, Discrete Event Model, Neural Network

1. INTRODUCTION
Recently, intelligent control schemes for discrete event systems have been extensively researched.'4 In such control
schemes, a discrete event system is at the heart of an autonomous control system.58 To control a continuous
system using the intelligent control schemes, the continuous system should be first abstracted to an higher level
system. Especially when a system is a complex hybrid one, composed of continuous and discrete event systems, the
continuous system should be abstracted to a discrete event system for possible communication between the controller
and the continuous systems. This is because direct communication between them is impossible due to the different
level of information for each system. An interface from a continuous system to a discrete event system requires
abstraction of a continuous system as a discrete event system.

This paper proposes a methodology for abstraction of a continuous system as a discrete event system using neural
network. Within the methodology, a discrete event system is represented by a timed state transition model. Thus,
abstraction is to find state transition rules along with delay times between states after defining a finite state set
for the continuous system. Discrete elements of a timed state transition model can be obtained from operational
objectives of a continuous system through three steps —output partitioning, input sampling, and measuring of delay
time . This timed state transition model is mapped to a neural network using a learning algorithm. More specifically,
we first define a finite state set for the continuous system to be abstracted. Next, a neural network is trained by using
a set of state transitions and associated delay times between states. In this paper, we present the model abstraction
process for a continuous system represented in a set of differential equations.

This paper is organized as follows. Section 2describes the brief review of a discrete event system specification and
neural network. In section .the abstraction process from a continuous system to a discrete event system is explained
with an example system. Application of the neural network model to intelligent control is discussed in section 4.

Section 5concludes this paper.
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2. BRIEF REVIEW OF BASIC METHODOLOGIES
2.1. Discrete event system specification formalism
A discrete event system can be modeled by a discrete event system specification (DEVS) formalism proposed by
Zeigler.9"° The DEVS formalism is as follows.

M = < X, 5, Y, öint, öext , A, ta > (1)

where

. x is the input events set

. S is the sequential state set

. Y is the output events set

. 6int : S — S is the internal transition function

. 6ext : Q x X — S is the external transition function where Q = {(s, e) I s E 5, 0 e ta(s))

. A : S - Y is the output function

. ta : S -÷ R, is the time advanced function

The input/output event set describes all inputs/outputs of a system, and the state set includes all possible states of
the system. The state transition when external events are received is appeared on the external transition function.
The state transition, when the time specified by the time advanced function is elapsed, is presented by the internal
transition function. When the internal transition is occurred, the output which is expressed by the output function
is also generated. More detailed informations about the formalism are available in.9'0 Based on this formalism, we
will introduce a timed state transition formalism for abstracted continuous systems in section 3.

2.2. Artificial neural network
Artificiai Neural Networks (ANN) consist of highly interconnected simple processing elements called neurons. Each
neuron consists of a summing junction, which adds together the weighted inputs from the other neurons, and an
activation function, which generates the neuron output from the summing junction output. The output fans out
to serve as an input to other neurons. Neurons transmit signals to each other via weighted links, whicli attenuate
or amplify the transmitted signal depending on the weight value. The advantages of neural networks are twofold:
learning capability and versatile mapping capabilities from inputs to outputs. Learning is a mechanism for storing
knowledge about the external world, and for acquiring skills and knowledge of how to act.

A back-propagation neural network (BPNN) as a kind of artificial neural network is formalized by McClelland
and Rummelliart.'1 The structure of BPNN is a fully interconnection between the neighboring layers, no feedback
connections between layers and no interconnections among neurons in the same layer. There is a typical standard
back-propagation algorithm for training the back-propagation neural network. The operation of the algorithm consists
of two phases: propagate and adapt phases. In propagate phase, errors for input data are computed, then the weight
values of the network are updated by a gradient descent method in the adapt phase. The total sum square error
(TSSE) for all output neurons is reduced by the updating weights of the neural network. The learning (or training)
process minimizes the total sum square error given as;

E=EP=(t_ofl2 (2)
p=1 p=1 i=1

where R is the number of data in the training set, K is the number of output neuron, and E is the error value for
pattern p. t' and o are the target and actual output of pattern p in output neuron i, respectively.

Back-propagation neural networks have been used in many application areas such as associative mapping, clas-
sification problem, system identification, and so on. The associative mapping is to describe the relation of mapping
among data, and the classification is to categorize input data for some classes. In system identification, features of
a system are extracted according to various objectives.
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3. ABSTRACTION METHODOLOGY
This section describes the abstraction process, and an abstraction example with a simple continuous system.

3.1. Abstraction process
Figure 1 shows the abstraction processes. The abstraction processes are as follows. When a continuous system is

Output
Partitioning

Figure 1. Abstraction Process of Continuous System

given a system designer must first decide the operational objectives of the continuous system. The operational
objectives can be derived from functional requirements and constraints of the system. To get the discrete inputs
and outputs of the continuous system, the designer must perform output partitioning followed by input sampling.
The output partitioning is to divide the outputs of the continuous system into several mutually exclusive blocks to
quantize the output levels considering operational objectives of the system. The input sampling is to select some
inputs for state transitions specified by the operational objectives. Third, delay times for the state transitions under
given inputs must be measured using a real continuous system or a model such as a set of differential equations.
With these informations, we can construct a timed state transition model for the continuous system.

Based on the DEVS formalism in section 2.1,. we can specify a timed state transition formalism for continuous
systems with a 6-tuple as follows.
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. x is the input events set obtained from input sampling

. Y is the output events set obtained from output partitioning

0 S is the states set

. Td : S x X x S -5 R is the time delay function

. A : S —3 Y is the output function

. so is the initial state in S

In this formalism, the state set is the same as the output events and an output event always generates the state
information of the continuous system. Note that the time delay function implicitly includes the state transition
function. Those abstracted informations such as states and state transition times can be managed by many methods.
A table model that represents such informations as a tabular form can be a method. However, the management of
the table model is very tedious and difficult when operational objectives are dynamically changed. To dynamically
manage the abstracted informations, we used the learning capability of back-propagation neural network. For
mapping a timed state transition model to a neural network, the inputs and outputs of the neural network should be
defined. The input and output events sets in equation 3 cannot be assigned for outputs of the neural network. This
is because the neural network will generate outputs different from those of the training data owing to incomplete
training. This makes it impossible to decide which event of the input and output events set are matched to the
outputs of the neural networks. However, the delay time of state transitions can be assigned for the output of
the neural network because the time is able to have any real values in Rj as shown in equation 3. From this
observation, we decide the inputs and outputs of neural network. The inputs of neural network are composed of a
current state (in other words, a current output) value, a target state (in other words, a target output) value, and
an input value. With these three inputs, the neural network generates the delay time for the state transition, i.e.,
from a current state to a target state as shown in figure 1 . Of course, all values must be in predefined each set as
elements .

3.2. An abstraction example
With a simple water-tank example, we illustrate the abstraction process. Figure 2 shows a water-tank continuous
system. Let the constraints of the water tank system and operational objectives of this example be given as follows,
respectively.

. Constraints

— The water tank must be able to supply the water to another device with two rates (not zeros).
— The water can be supplied from another device with two rates (not zeros)

. Operational Objectives

— The water level must be kept in the vicinity of the middle of the water-tank not to go over the top of the
water-tank and not to go under the bottom of the water-tank.

— Time to rise the water level from the bottom level to the middle level must not be over 2 minutes.
— Time to fall the water level from the top level to the middle level must not be over 3 minutes.

From the first operational objective, we can first do output partitioning with three levels, i.e., High —Mark, Midd —

Mark,Low — Mark. Of course, three threshold sensors for detecting the three levels must be equipped to the
water-tank for real control. Using the second and third operational objectives and two constraints, we can next do
input sampling. For simplicity, four values are selected for the input valve and output valve, High — Input, Low —
Input,High — Output,Low — Output. Of course, those symbolic elements for each set is assigned for real value, for
example, High — Mark = 3m, High — Input = lOlb/min and so on. Finally, delay times for state transitions under
given inputs should be measured using a real continuous system or a differential equations model.
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Figure 2. Water Tank Continuous System

The water-tank operation is simply modeled using a first-order differential equation as follows.

C4a1
= qj—qo (4)

where C is the capacity of water-tank, h is the height of water-tank, q2 is the input flow rate of water, and q0 is the
output flow rate of water. The height of water-tank is obtained by solving the equation 4.

h(t) = h0 + qj
(5)

From this differential equation, the delay time can be calculated by following equation.

Td = hh0
(6)

where Td is delay time, h is a target state, and ho is a current state. Of course, the elements of h, h0, qj, q0irnist
be in the predefined set.

The dynamics of a real water tank will not be exactly the same as those of the differential equation model. This
is caused not only by modelling errors but also by parameter changes of the real water tank and its enviromnnent.
Let the minimum and maximum parameter variation be Pmin, Pmax respectively, then the minimum and maximum
times to reach a specific height h are as follows.

he—homm —
c

— _______tmax — (7
C ,Pmtn

Consequently, we can get a time window by taking these minimum and maximum times:

C(h — h0) C(h — h0)tmjfl <twin <tmax = <twin �
(qi

— qo)Prna (qi — qo)Pmin
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Let the C, Pmin, Lfld Pmax be 12.2, 0.9037, and 1.12963 respectively, then the time window is given as:

1O.8(h — h0) 13.5(h — h0)_ttjjin_ ()
(qi — q0) (qj — q0)

This time window can be used for diagnosis when the system is controlled by event-based intelligent control or by
supervisory control as will be described in section 4. These gathered data is mapped to the neural network with a
back-propagation algorithm.

Let the output states (level of the water) and inputs (flow rates of input and output valves) be partitioned and
sampled as shown in table 1, respectively. To satisfy the first operational objective and two constraints, the high
input rate of water to fill the water tank must be greater than the high output rate not to be empty. Also, the low
input rate of water to sink the water must be lower than the low output rate not to be overflowed. We can measure

Table 1. Real Values of States and Inputs of Water Tank
I Water Mark I Two Input 1

HIGH.TANK MII1.TANK LOWTANJ< HIGHJN I LOWIN HIGILOUT LOW.OUT
22.5 15.0 3.5 12.5 2.5 8.5 4.5

the minimum and maximum times for each state transition under given inputs. Table 2 shows the gathered data
from the equation 8. In this table, the minus time means that the delay time is infinity, that is, time target state will
never be reached under given inputs.

The gathered data is mapped to a neural network with 4-20-15-2 network structure. We used 0.25 learning rate
and 10000 iterations. After learning, state trajectories under given inputs are diecked with the differential equation
model and neural network model. For the state trajectories, we assume that no parameter changes of the water tank
and environment exists. Then the simulated differential equation is the same as the equation 5. Figure 3 shows the
state trajectories. In figure 3, we selected such inputs not to make the delay times infinite for drawing. Time x-axis
means simulation time under given inputs as shown in table 3. In any current state, of course, delay time for any
target state can be retrieved from the neural network model.

4. APPLICATION TO INTELLIGENT CONTROL
This section introduces the application of a neural network model to the event-based intelligent control amid super-
visory control. A neural network model for a continuous system can be used as an internal model in event-based
intelligent control. In event-based intelligent control, the controller has an internal model whose dymmamnics is the
same as that of a controlled system at discrete event levels. With this internal model, the controller can do diagnosis
the controlled system. That is, if a state transition from a current state to a target state occurs within the time
constraints (i.e., minimum time and maximum time for the state transition), then the controller regards time current
control operation as being correct. Otherwise, an error is assumed. If continuous systems are a part of a hybrid
systems with discrete event systems, then internal neural network models for continuous systems are used as shown
in figure 4. With these neural network models, the event-based intelligent control works even if the controlled systemn
is a hybrid system. More detailed descriptions about the event-based intelligent control are available in.3'4

In supervisory control, the water tank model abstracted can be defined as a 5-tuple

M = (Q,E,ö,qo,Q) (9)

where

• Q is the state set, Q = {Empty, LOW.TANK, MIDi'ANK, HIGH..TANK, Overflow)

• E is the events set, E = {HIGHJN, LOWJN, HIGH..O UT,LOW.0 UT, L OW.. TANK..IND, MID-TA NK.JND,
HIGH.. TA NKJND )
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Table 2. Gathered Data From Differential Eciuation Model of Water Tank
Water Mark Two Input Time Window

Current State Target State Input Rate Output Rate Minimum Time Maximum Time
LOWTANK MIDTANK HIGHIN HIGILOUT 31.1 38.8
LOW.TANK MIDTANK HIGHJN LOW.OUT 15.5 19.4
LOWTANK MILLTANK LOWJN HIGILOTJT -20.7 -25.9
LOW.TANK MffLTANK LOWIN LOW.DUT -62.1 -77.6
LOWTANK HIGH..TANK HIGILIN HIGILOTJT 51.3 64.1
LOWJ2ANK HIGILTANK HIGHIN LOWOUT 25.7 32.1
LOWTANK HIGH-TANK LOWIN HIGILOUT -34.2 -42.8
LOW.TANK HIGH.TANK LOWIN LOW..OUT -102.6 -128.2
MItLTANK LOWTANK HIGHJN HIGILOUT -31.1 -38.8
MIILTANK LOW.JANK HIGHIN LOWOUT -15.5 -19.4
MI11.TANK LOWTANK LOWIN HIGILOUT 20.7 25.9
MIDTANK LOWTANK LOWIN LOW..OUT 62.1 77.6
MID..TANK HIGILTANK HIGH.JN HIGILOUT 20.2 25.3
MI11.TANK HIGHTANK HIGHIN LOWMUT 10.1 12.7
MIDTANK HIGH-TANK LOW.JN HIGILOUT -13.5 -16.9
MID..TANK HIGILTANK LOW.JN LOWOUT -40.5 -50.6

HIGHTANK LOW.TANK HIGHIN HIGH-OUT -51.3 -64.1
HIGILTANK LOW-TANK HIGHIN LOW.flUT -25.7 -32.1
HIGH.TANK LOW.TANK LOW.JN HIGH..OUT 34.2 42.8
HIGH..TANK LOW.TANK LOWIN LOWOUT 102.6 128.2
HIGHTANK MILLTANK HIGHIN HIGILOUT -20.2 -25.3
HIGH.TANK MIELTANK HIGHIN LOWOUT -10.1 -12.7
HIGH..TANK MILLTANK LOWIN HIGH-OUT 13.5 16.9
HIGILTANK MID.JANK LOWIN LOWOUT 40.5 50.6
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Table 3. Inputs for State Trajectory
X-axis State Transition Inputs

From To CS TS Input Rate Output Rate
0 35.1 LOWTANK MID.TANK HIGHJN HIGHMUT

35.2 46.5 MII1TANK HIGHTANK HIGILIN LOWOUT
46.6 162.4 HIGH-TANK LOW.JANK LOW-IN LOWOUT
162.5 220.3 LOW-TANK HIGILTANK HIGHJN HIGH-OUT
220.4 235.5 HIGILTANK MILLTANK LOWIN HIGHOUT
235.6 305.6 MIDTANK LOW.TANK LOWJN LOW-OUT
305.7 323.1 LOWTANK MIDTANK HIGHJN LOWOUT
323.2 346.5 MID..TANK LOW-TANK LOWJN HIGH-OUT
346.6 375.5 LOW-TANK HIGH.TANK HIGHJN LOW-OUT
375.6 421.3 HIGH-TANK MIILTANK LOWIN LOW.OUT
421.4 444.2 MID..TANK HIGHTANK HIGHJN HIGH-OUT
444.3 482.8 HIGH-TANK LOW-TANK LOWJN HIGH-OUT



State Trajectories of Differential Equation Model and Neural Network Model

Figure 3. State Trajectories of Differential Equation Model and Neural Network Model

• ö: Q x E x E —÷ Q is the transition functions, for examples,

- {LOWi'ANK, (HIGHJN,HIGH.DUT)} -MID.2'ANK
- {LOWTANK, (LOWJN, HIGHOUT)} —*Empty
- {HIGH..TANK, (LOWJN, HIGH.OUT)} - MID.2'ANK
- {HIGHTANK, (HIGH.JN, HIGHOUT)} -* Overflow- {HIGHTANK, (HIGH.JN,LOWOUT)} - Overflow

• q0 E Q is the initial state, q LOW.TANK

• Qm C Q is maker states, QM MID...TANK

The events, LOW.11'ANKJND, MID..TANK.JND, and HIGHi'ANK.JND, are indicative events of three
states, respectively. In this model, let the controllable events and uncontrollable events be given as:

E = EUE,
= {HIGHJN, LO WJN, HIGHOUT, LOW..OUT} U

{LOWTANK.JND, MIDTANKJND , HIGFLTANKJND}

(10)

where E and are controllable and uncontrollable events, respectively. Then, a supervisor can drive from any
states to the maker state because we select that any composition of flow rates of inputs and outputs can fill or sink
the water.

In timed supervisory control, abstracted neural network model can also be used for diagnose. For example, when a
supervisory controller enables two events, LOW_IN, HIGH_OUT and disables two events, HIGH_OUT, LOW_OUT,
for state transition from HIGH..TANK to MID_TANK, the event MID_TANKJND should occur within a time
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Figure 4. Event-based Intelligent Control of A Hybrid System

window generated from the neural network model. In all applications of abstracted neural network model, learning
capability of neural network makes it possible to dynamic modelling of controlled system by on-line learning. This
scheme is very similar to human control strategy in that human can learn more and more informations about the
controlled system as the control actions proceed.

5. CONCLUSION
This paper introduced the abstraction process of a continuous system to a discrete event system. With operational
objectives, we could first do two processes, output partitioning and input sampling. Next, a timed state transition
model for a continuous system was constructed by measuring delay time between states transition. For on-line
learning of the timed state transition model, we used a neural network. We discussed an application of the neural
network model in intelligent control. More research for incorporating a supervisory control and abstracted neural
network model for diagnosis is further work.
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