FHAZE Z2AA A EHolE e S T
Attributed AND-OR L=

21
=]

M

o

1* .

|EF >
[

/|

Attributed AND-OR Graph for Synthesis

of Superscalar Processor Simulator

Jun Kyoung Kim - Tag Gon Kim

Abstract

ARMY model.

This paper proposes the simulator synthesis scheme which is based on the exploration of the total design
space in attributed AND-OR graph. Attributed AND-OR graph is a systematic design space representation
formalism which enables to represent all the design space by decomposition rule and specialization rule. In
addition, attributes attached to the design entity provides flexible modeling. Based on this design space
representation scheme, a pruning algorithm which can transform the total design space into sub-design space
that satisfies the user requirements is given. We have shown the effectiveness of our framework by (i)
constructing the design space of superscalar processor in attributed AND-OR graph, (ii) pruning it to obtain
the ARMY processor architecture, (iii) modeling the components of the architecture and (iv) simulating the

I . Introduction

The progress of silicon technology enables us
to implement more functionalities on a given
chip area. This development of silicon technology
has well been addressed by Moore's law[1].
Moore’s law says that the amount of device
integrated on a given silicon area doubles every
year. This law has held until the late 1970s, but
the doubling period has increased to eighteen
month since late 1970s or early 1980s. As a

result, current silicon technology can integrate

il o i S P iR e e i B s

tens of millions of gates on a single die, with
manufacturing process around zero point one
micrometer,

Designing such a complex system requires
complex design space and rigorous verification
of the candidate designs. This paper suggests
the design space representation scheme by (i)
representing the full design space of superscalar
processor, (ii) providing a means to specify the
design constraints or user constraints, (iii)
pruning a total design space based on a set of
constraints.

First, the design space of processors represented
will be given in the attributed AND-OR graph.

— 73 _

Policy
Design Space
<4 L
User _ High-level
Requirement Pruning

-

Architecture Template C/C++
(Control-path fixed) database
< : Datapath
Design Space S -
HDL model
Low-level d
Pruning atabase
<L S —
Simulator . . Model Integration C/C++ model
Library :>&mulator Synthesis j<\’:|
Evaluation j

Fig. 1 Proposed Framework

Attributed AND-OR graph provides a useful
tool to represent a design space, specify a set of
constraints and show the pruned design entry.
We will show how to specify the user constraints
in terms of system parameters. By translating
the user requirements and giving them as
inputs to our framework, we can obtain a set of
valid processor architectures. By considering
and reflecting the knowledge base and user
constraints can we choose satisfiable designs
from the valid processor architectures. As a last

step, simulator synthesis is performed.

II. Overall Framework

Fig. 1 shows the overall architecture of our
framework, We propose a hierarchical framework
for processor simulator synthesis. First, we can
obtain the architecture template model by
For decided

operational model in

deciding the wvarious policies.
architecture template,
C/C++ can be integrated to synthesize the

simulation model. After that, one can determine
the data-path architecture which is related
with the number and the types of execution
units used. The operational model for the
data-path execution unit can exist in the
C/C++ model base, or even in the HDL model
base, One can synthesize the complete simulation
model by integrating these models. In the case
that the models have different form, integration
after translation is inevitable.[2]

The important ones to be considered in
designing a design space representation scheme
is as follows.

- Guaranteeing correctness of the design space

- The completeness of representing a design

space

- The easiness of representing a design space

- The easiness of extending the design space

- The easiness of reflecting one's own, but

very valuable knowledge base obtained at
the practical processor design

Based on the above requirements, we have
decided the attributed AND-OR graph is one of

74 —

42t TZMAM AIS8|0|E{Q] M

=

£ %St Attributed AND-OR 1=

the best formalism to represent the processor
architecture. The additional
attributed AND-OR graph is the easiness of

construction and intuitive access to the design

advantage of

space because this formalism depicts the design
space with two simple rules, AND-rule and
OR-rule.

. Formalism for Design Space

1. Attributed AND-OR Graph(AAOG)

Attributed AND-OR graph expresses the
design space of any object in the world by
alternating the AND-rule and OR-rule. An
AND-rule
between design entities. An OR-rule defines
the
entities.

The attributed AND-OR graph is formalized
as follows.

Attributed AND-OR Graph is a directed
graph G = (V. Eanp, Eor . ATTR, va) where

- V a verfex set

- Eanp © a set of AND-edge

- Eor © a set of OR-edge

- ATTR : a set of attributes

- va : attribute mapping function

implies a decomposition relation

selection relationship between design

with the constrains
8V, EAND, EOR , ATTR : finite sets:
#Eup S V. X V ! edge for AND-
relationship
mLop € V X V ! edge for OR-relationship
' —24TR - 4 function which maps a
vertex to zero or more attributes.
One can specify the constraint relationship
for a vertex, or a combination of vertices. There

are two types of constraint, local constraint and

global constraint.
® Jocal constraint is defined for AAOG as
mjocal: Vx24TTR
care }
with the constraints for (vi, v2)EEOR,
®Jocal(v2, va(v2)) = true : the v2 entity
should always be selected as a choice of

— {true, false, do__not__

the vl entity
®Jocal(v2, va(v2)) = false : the v2 entity
should not be selected as a choice of the
vl entity
® Jocal(v2, va(v2)) = do__not__care : there
Is no constraint for this entity vZ2
The local constraint is used to reflect the
designer's intention to use an entity. The
second type of constraint, global constraint,
the
vertices as follows.
® global constraint is defined for AAOG as
mgobal: VxVx24TEx TR, (e, false,

specifies similar relationship between

do__not _care }
o global(vl,v2, va(vl), va(v2)) = true :
If one decided to use the design entity
vl, v2 should always be selected
® global(v1,v2, va(vl), va(vZ)) = false :
If one decided to use the design entity
vl, v2 should not be selected
® global(v1,v2, va(vl), va(v2)) = do__not
__care ‘ there is no constraint for these
entities vl and vZ2
With these two types of constraints, one can
specify the physically possible combination of

processor architecture,

2. Pruning Algorithm

Based on the formal definition of attributed
AND-OR graph, we have constructed the

— 75—

prune algorithm. This algorithm transforms the
original, total design space into the sub design
space by considering the local and global
constraints, The user requirements are reflected

as a form of user constraints.

Algorithm Prune
Input * Gin = (Vin, ERAND. EnOR, ATTRin, vain)

Output = Gout (Vout, EoutAND, EoutOR, ATTRout, vaout)
functions®

localfx, y) : local constramt function

global(x, y) : global constraint function

global (x, y) : newly generated global constraint function for Gout

begin prune
reset(Gout):
x = roof of Gin
Insert(Vout, x)// step 1 * Jocal constraint reflection
while x) null
for y of (x, y) in EinOR begin
ifllocal(y,vain(y)) = true) begin
insert(Vout, y):
insert(EoutOR, (x, y)):
end if
else if(local(y, vain(y)) = fake) begin
remove(Gin, y):
end if
else begin
insert(Vout, y):
insert(EoutOR, (x, y)):
end if
end for
for y of (x y) in EnAND begin
insert(Vout, y):
Insert(FoutAND, (x, y)):
end for
retrieve(x. Vin)
end for
for every x in Vout
if(global(x, y) = trie y is in Veout)
global'(x, y) := te:
else iflglobal(x. y) = false y 5 in Vout)
global'(x, y) := false:
end for
end Prune

IV. Example

Fig.2 shows the design space exemplified by
superscalar processor architecture[3]. For example,

a processor architecture can be decomposed to
the fetch unit(fetch__unit), decode unit (decode__
unit), registers and rename unit(register__
rename), execution unit and shelving buffer in
front of it(shelve_ EU), and reorder buffer
(ROB). There are two candidates for the
fetch__unit, predecoded_ f etch and only__
fetching. In case of superscalar processor, it
takes much time to decode an instruction and
check the dependency between instructions,
Therefore there can be a predecoder between
instruction cache and instruction buffer to
reduce the burden of the decoding block. As in
the figure, the (fetch__unit, predecoded__fetch)
and (fetch__unit, only fetching) is connected
with OR edge. That is, one can select one of
the two candidates. We can observe the global
constraints in the figure between (predecoded__
fetch, 1_leve decode) and (only_ fetching,
2_lev_decode). They are always true
relationship. That is, when the predecoded__
fetch is selected for the fetch_ unit scheme, the
2__lev__decode should always be chosen for the
decode__unit. To synthesize a processor simulator,
the coupling relations are required, and they are
specified at the AND-edge of the figure. The
Fig.3 shows the pruned design space. By
specifying the user constraints, and reflecting it
to the total design space shown in Fig.2, we
could obtain the pruned design space shown in
Fig.3. We wrote down the user requirement in
the way that the pruned architecture is ARM9
processor. Fig.4 shows the resulting architecture
of the simulation model. The operational model
for each entity is assumed to be stored at the

model database.

_ 76 —

FTHAZE Z2MAM A|Z20]E2f

AHA

oo

£ %I8t Attributed AND-OR

ez

(fetch_unit.inst_out 2 decode_unit.inst_in)
(decode_unit.reg_ref 2 register_rename reg_ref)

processor_architecture

elve FU.inst2ROB.inst)

(register_rename read_port=shelve_FU.data_in)
(shelve_FU.data Dregister_rename.result)

: ORI SO A
f —terrtop - o (A)
(inst :in, [nst_out = out) inst_in - in g : 5 .
ex ta_in m
N soreg_ref: out 2 reg_index :in ata_
fetch_unit decode_unit 0% i register_rename "5 7 shelve_EUup(_ML, i ROB
peode - out
result : in result - out num_slot
:integer
retire_rate
cinteger
predecoded only 1_lev_ 2 _lev merged split !
e = = o register_rename.result >
_fetch fetching decode decode Sename regisierupdate
b3 (inst_out,inst) issue_lat issue_lat
% H integer integer (map_tablelreg index >
b ¢ register_fil.reg_index)
¥ 8 result_lat result_lat = upda
%N * integer intege. i
* e L rename architecture
\issue order issut order o ist
~TiFfue align jesue_align _register _register
reg_ref: in| reg inflex: in J\:
reg_index © out value': out split integ
map_table register_file i S
= = register register
number_cntry num _slot num_reg_file widih_reg_file
integer integer s integer integer

width_reg_file

width_reg_file num_port

integer s

cinteger integer

num_port il
integer num_port _s

integer

:integer

Fig. 2 Design Space of Superscalar Processor Architecture

processor_architectures

(register_rename. value ?shelve_FU.data_in)

(memory.data > shelve_FU data_in)
(shelve_FU.data Dregister_rename.result)

(fetch_unit.inst_out 2 decode_unit.inst_in)
(decode_unit.reg_ref = register_rename.reg_ref)

(decode_unit.opcode 2 shelve_FU.opcode)

(shelve_FU.inst=>ROB.inst) (shelve_FU. data Pmemory.result)

A =
(inst : m,Im‘t out : out) I inst_in . in | ’ . d — I
 reg_ref:out g reg_index : in ata_in :in
decode_unit i register_rename 5 7 shelve_EU opeade i ROB
I result.ciin daln_'ﬁfl"l/lr et num_slot
merged opcode : in :integer
£ . 3 result:out retire_rate
only indiv Cinteger
fetching 1_lev
g d_ d* (map _tablefreg index> ~ shelve opcode> FU.opcode
Eone regisier filf.reg index) ~FU.result > shelve.data_in Memory
issue_lat
integer data : out
I ope result : in
resuli_lat opcolle - out
integer
shelve FU
aligned_i s
in_order_ reg_ref:i reg_inflex: in num_slot fasue lat
blocking_issue reg_index * At valud: out =0

wail_for_resolution map_table register_file result_lat

1

number_cniry
integer

num_slot
integer
width_reg_file
integer
num_port
Cinteger

Fig. 3 Pruned Design Space

By simulating this model with the pipeline

simulator [4], we could obtain the simulation

Fateh _uniy prese

Fig. 4 Resulting Simulation Configuration

result as in Figb.

oy
A
0x

I
Jm
rk

B Token—level Simulator

Million Cycles per Second . . o

6 16.5% 68.7% §7.1%
5 improvement improvement improvement

_gT2t

~IDCT

ADPCM

Fig. 5 Simulation Results

V. Conclusion

This paper proposes the simulator synthesis
scheme which is explored from the total design
space In attributed AND-OR graph. In addition,
we have defined two types of constraints with
which a modeler can reflect his or her own
design objectives or design knowledge. We have
shown how the design space of superscalar

processors can be constructed using the formalism.

The ARMSY processor has been achieved by

exploring the design space, and simulated.

References

(1] Moore, G. “Progress in Digital Integrated
Electronics”, IEEE International Electronic
Devices Meeting, 1975

Jun Kyoung Kim, Tag Gon, Kim, "DHMIF:
DEVS-based Hardware Model Interchange

Format”, Proceedings of 13th European

[2]

Simulation Symposium, 2001
[3] Deszo Sima, Terence Fountain and Peter
Kacsuk, Advanced Computer Architectures
A Design Space Approach, 1997, Addison-
Wesley
(4] Jun Kyoung Kim, Tag Gon Kim, “Trace-
driven Rapid Pipeline Architecture Evaluation
Scheme for ASIP Design”, Proceeding of
Asia South Pacific Design Automation

Conference, 2003, ppl29-134

T8 -

	Attributed AND-OR Graph for Synthesis of Superscalar Processor Simulator
	Abstract
	Ⅰ. Introduction
	Ⅱ. Overall Framework
	Ⅲ. Formalism for Design Space
	Ⅳ. Example
	Ⅴ. Conclusion
	References

