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The two-equation porous medium model has been widely employed for modeling the flow-through
monolithic catalytic converter. In this model, the interfacial heat and mass transfer coefficients have been
usually obtained using the asymptotic Nusselt and Sherwood numbers with some suitable assumptions.
However, previously it seemed that there existed some misunderstanding in adopting these Nusselt and
Sherwood numbers. Up to now, the Nusselt number based on the fluid bulk mean temperature has been
used for determining the interfacial heat and mass transfer coefficients. However, the mass and energy
balance formulations in the two-equation model indicate that the Nusselt number should be evaluated
based on the fluid mean temperature instead of the fluid bulk mean temperature. Therefore, in this study,
to correctly model the heat and mass transfer coefficients, the Nusselt number based on the fluid mean
temperature was newly obtained for the square and circular cross-sections under two different thermal
boundary conditions (i.e., constant heat flux and constant temperature at the wall). In order to do that,
the present study employed the numerical as well as analytical method.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

As a part of efforts to reduce exhaust emissions from vehicles, the
use of flow-through type monolithic catalytic converters has been
substantially increased during the past several decades. As world-
wide automobile emission legislations become tighter, its technol-
ogy is also developing so fast. In order to reduce developing cost
in experiments, the numerical modeling is in high demand for the
analysis and design.

In modeling the catalytic converter, the porous medium approach
has been widely adopted while considering the trade-offs between
cost and accuracy. Most of previous works have employed the two-
equation model, in which gas phase (i.e., exhaust flow) and solid
phase (i.e., catalyst/washcoat and substrate) are, respectively, viewed
as individually continuous medium. Thereby, the phase-averaged
solution is obtained for each phase (Kaviany, 1995; Quintard and
Whitaker, 2000).

In the two-equation porous medium model, interfacial heat and
mass transfer coefficients are crucial factors which describe linkages
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between gas and solid phases. These coefficients have been mostly
obtained using asymptotic Nusselt and Sherwood numbers with
some proper assumptions. Several Nusselt numbers employed in the
literatures are summarized in Table 1. Note that it is enough to uti-
lize only the Nusselt number for obtaining both transfer coefficients
because Sherwood number is assumed to be the same as Nusselt
number from the heat and mass transfer analogy, which implies that
if the bulk flow configuration is the same in both problems and if
the wall boundary condition is the same, the mass transfer result
can be obtained directly from the heat transfer result (Bejan, 1995).

The values listed in Table 1 were originated from the following
earlier works. For a square channel, Clark and Kays (1953) presented
fully developed Nusselt numbers for different boundary conditions
using the finite difference method. The reported value is 3.63 under
the axially constant heat transfer rate per unit length with constant
peripheral wall temperature (H1 boundary condition), while 2.89
under the uniform wall temperature peripherally as well as axially
(T boundary condition). More refined finite difference solutions are
given in Shah and London (1978) such that 3.60795 for H1 and 2.976
for T. For a round channel, there exists an analytic solution of 48/11
for H1 (Incropera and DeWitt, 2002; Shah and London, 1978), while
an infinite series solution of 3.6567935 is reported for T (Shah and
London, 1978).

http://www.sciencedirect.com/science/journal/ces
http://www.elsevier.com/locate/ces
mailto:cakecandle@kaist.ac.kr
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Table 1
Asymptotic Nusselt and Sherwood numbers generally employed in the literatures
to determine the interfacial heat and mass transfer coefficients

References Asymptotic Nusselt and
Sherwood number

Siemund et al. (1996), Jeong and Kim (2000) 2.89
Chen and Cole (1989) 2.982
Taylor (1999) 2.97
Keren and Sheintuch (2000) 3.66

However, it seemed that there were previously some mistakes
in applying the Nusselt numbers to obtain interfacial heat and mass
transfer coefficients. Until now, all the asymptotic Nusselt numbers
adopted in the earlier works have been based on the fluid bulk mean
temperature. However, according to the two-equation model for-
mulation in those works, the Nusselt numbers should be based on
the fluid mean temperature, not on the fluid bulk mean tempera-
ture. In order to correct this error, the current study first provides
some discussions on the formulation of the two-equation model to-
gether with appropriate Nusselt numbers, and then newly derives
the Nusselt numbers based on the fluid mean temperature using the
numerical as well as the analytical method for circular and square
cross-sections under H1 and T boundary conditions. Particularly re-
garding the solution method, the present work employs the non-
dimensional technique as in Clark and Kays (1953).

2. General formulations on the catalytic converter

According to the literatures employing the two-equation porous
medium approach to model the cylindrical automobile catalytic
converters such as Chen et al. (1988), Guojiang and Song (2005),
Keren and Sheintuch (2000), Koltsakis and Stamatelos (1997), Oh
and Cavendish (1982), and Zygourakis (1989), typical differential
equations describing the mass and energy transport between two
phases can be expressed in two-dimensional axisymmetric domain
as follows:

Gas phase mass balance equation for species i:

�
�Cg,i

�t
= −�ug

�Cg,i

�x
− km,iasf (Cg,i − Cs,i). (1)

Solid phase mass balance equation for species i:

(1 − �)
�Cs,i

�t
= km,iasf (Cg,i − Cs,i) − ac

∑
Ri. (2)

Gas phase energy balance equation:

��gcp,g
�Tg

�t
= −��gcp,gug

�Tg

�x
+ hsf asf (Ts − Tg). (3)

Solid phase energy balance equation:

(1 − �)�scp,s
�Ts

�t
= (1 − �)ks,x

�2Ts

�x2
+ (1 − �)ks,r

1
r

�

�r

(
r
�Ts

�r

)

− hsf asf (Ts − Tg) + ac
∑

(−�Hi)Ri. (4)

The above formulation set of Eqs. (1)--(4) resulted from the in-
trinsic phase-averaging for the general form of conservation equa-
tions. Each primitive variable (i.e., Cg , Cs, Tg , and Ts) and ug represent
the intrinsic phase-averaged quantities defined as (Nield and Bejan,
1992; Quintard and Whitaker, 2000)

�� ≡ 1
V�

∫
V�

�dV , (5)

where � means the phase (i.e., gas or solid).

In order to describe the channel flow configuration, the Darcy
flow model or the fully developed laminar flow model has been usu-
ally employed. The Darcy flow model (Bejan, 1995; Kaviany, 1995;
Nield and Bejan, 1992) assumes that the flow has a uniform veloc-
ity profile over the channel cross-section so that no slip condition
does not hold at the wall. Here, since the axial velocity can be eas-
ily obtained from the Darcy law; uD = K/�(−dP/dx), the momentum
equation is not required to be solved. Note in this model that the
Nusselt numbers presented in Table 1 cannot be used because they
are obtained under the fully developed laminar flow assumption. Ac-
tually, the Nusselt numbers for the Darcy flow are larger than those
for the fully developed laminar flow. Refer to the values produced by
Asako et al. (1988) for the slug flow (i.e., longitudinally uniform over
the cross-section) in several cross-sections. For a physical viewpoint,
the fully developed laminar flow model is more realistic one. In this
model, local velocities are known for several simple cross-section ge-
ometries so that the phase-averaged velocity present in Eqs. (1) and
(3) can be obtained from their integration. In actual problems, it is
easily estimated using the simple relation, ug =Q /Ap with the known
intake volumetric flow rate. Therefore, as for the Darcy flow model,
it is not necessary to solve the momentum equation here. Note that,
although Eqs. (1) and (3) are expressed as an one-dimensional form,
they are not physically one-dimensional.

There are possibly two options depending on the region of the
intrinsic phase-averaging. First, the averaging is carried out over the
entiremonolith cross-section, which yields one-dimensional velocity
and concentrations all over the monolith. Second, the averaging is
performed for each channel and then Eqs. (1)--(3) are solved line
by line along radial direction. This gives multi-dimensional velocity
and concentrations over the monolith. Note that, for both cases, the
solid temperature can be obtained multi-dimensionally.

3. Proposing new Nusselt number

In the formulation set from Eqs. (1) to (4), one of the most im-
portant tasks is how to obtain the interfacial transfer coefficients for
heat, hsf and mass of ith species, km,i. Meanwhile, these two coeffi-
cients have been usually determined through the following way.

First, hsf is calculated from the definition of Nusselt number as

Nu ≡ hsf dh

kg
, (6)

where the Nusselt number is usually assumed to be a constant.
Its theoretical background is that, for a circular or square channel
whose cross-section shape does not change axially, the Nusselt num-
ber approaches an asymptotic value as the flow becomes thermally
fully developed under H1 or T boundary condition. Here, the flow is
assumed to be already hydrodynamically fully developed, which is
reasonable because the Prandtl number of exhaust gases from ve-
hicles has a near unity and thereby the hydrodynamic and thermal
entrance lengths are in the same order of magnitude. In addition, for
real-world vehicle operating conditions, the hydrodynamic entrance
length is very short. For example, if an air at 600K passes through
a monolith of 400/6.5 (cell density [cells/in2]/wall thickness [m in])
configuration with 0.11m outer-diameter at 20 l/s volumetric flow
rate, the single channel Reynolds number based on the fluid mean
velocity becomes approximately 43.9. Referring to Wiginton and
Dalton (1970) in which the dimensionless length defined by
Lhy/(dh Re) is reported to 0.09, the hydrodynamic entrance length is
calculated to about 4.3mm.

Second, km,i is obtained from the definition of Sherwood number
as

Sh ≡ km,idh

Di
, (7)
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where the Sherwood number is assumed to be the same as the Nus-
selt number using the heat and mass transfer analogy.

So far, the asymptotic Nusselt numbers adopted in the literatures
have been evaluated based on the fluid bulk mean temperature as
follows:

Nub ≡ dhq′′
kg(Ts − Tm)

. (8)

In Eq. (8), the fluid bulk mean temperature is defined as

Tm ≡ 1
umAp

∫
Ap

uT dA, (9)

where the fluid mean axial velocity is defined as

um ≡ 1
Ap

∫
Ap

udA. (10)

The above Eq. (8) implies that the heat transfer between gas and
solid phases is derived by the difference in the solid wall temperature
and the fluid bulk mean temperature as follows:

q′′ = h(Ts − Tm). (11)

However, the fluid temperature, Tg present in Eqs. (3) and (4) does
not indicate the fluid bulk mean temperature, instead it represents
the fluid mean temperature (i.e., intrinsic phase-averaged tempera-
ture). That is, in the two-equation porous medium model, the heat
transfer between phases should be described by the difference of the
solid wall temperature and the fluid mean temperature as

q′′ = hsf (Ts − Tg), (12)

where the fluid mean temperature is defined by

Tg ≡ 1
Ap

∫
Ap

T dA. (13)

Consequently, Eq. (12) suggests that the Nusselt number used for
determining the interfacial heat transfer coefficient should be eval-
uated based on the fluid mean temperature as follows:

Nu ≡ dhq′′
kg(Ts − Tg)

. (14)

4. Obtaining the Nusselt number based on the fluid mean
temperature

This section provides a detailed procedure to calculate the Nus-
selt numbers for the simplified cross-section shapes (i.e., circular and
square) with the idealized thermal boundary conditions (i.e., H1 and
T). A sample picture of an actual channel cross-section of a com-
mercial monolithic catalytic converter is displayed in Fig. 1, which
shows that the shape of the pore is not exactly a square or circle.
However, for simplicity, most of the modeling works have regarded
the pore as a square, while Keren and Sheintuch (2000) considered
it as a circle. Inspection of the values listed in Table 1 reveals that
the literatures mostly refer to the Nusselt and Sherwood numbers
obtained for T. Nevertheless, for extension, this study accounts for
both H1 and T. For a heat exchanger with highly conductive ma-
terials (i.e., copper and aluminum), the H1 may apply. However, it
may be difficult to achieve this boundary condition for non-circular
ducts. The T boundary condition is realized in many practical appli-
cations such as condensers, evaporators, and automotive radiators
having high liquid flow rates (Shah and London, 1974, 1978).

In order to obtain the velocity and temperature fields yield-
ing the asymptotic Nusselt number, the current study derives the

Fig. 1. High-magnification microscope photograph of the substrate and catalyst layer
in a commercial diesel oxidation catalyst (×150). The cell density is 400 cells/in2

and the substrate wall thickness is 6.5m in.

partial differential form of momentum and energy equations with
the following assumptions.

• The shape of the channel cross-section does not change axially.
• Flow is laminar and is fully developed thermally as well as hydro-

dynamically.
• Thermo-physical fluid properties such as density, specific heat,

dynamic viscosity, and thermal conductivity are constant.
• Heat conduction in the direction of flow is negligible.
• Conversion of mechanical to thermal energy due to friction is neg-

ligible relative to the heat transfer.
• Natural convection effect is negligible.

Justifications of the above assumptions can be reviewed in several
heat transfer text books (Bejan, 1995; Kays and Crawford, 1993).

4.1. Square channel

Using the previous assumptions, the governing momentum and
energy equations for the square channel can be written as follows:

�2u

�y2
+ �2u

�z2
= 1

�

dP

dx
, (15)

�2T

�y2
+ �2T

�z2
= u

�

�T

�x
. (16)

For the square cross-section, an analytic solution for the momen-
tum equation is available in the form of an infinite series (Shah and
London, 1978), while there is no analytic solution for the energy
equation. Nevertheless, the current study numerically solves both
equations because the analytic solution involves considerable com-
putational complexities. In addition, since two equations are in the
same type (i.e., Poisson's equation) as well as in the same order, al-
most no additional cost arises. The solution of the energy equation
is dependent on the thermal boundary condition, whereas the mo-
mentum equation is independent of it. Thus, the momentum equa-
tion is solved first. The solutions of Eqs. (15) and (16) are obtained
only for a quarter of the cross-section. Then, from symmetry, all the
fields can be known. A schematic representation of the computa-
tional domain is illustrated in Fig. 2.
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Fig. 2. Schematic view of a computational domain of square channel.

As the first step to get the velocity field, Eq. (15) is discretized
using the second-order central difference scheme as follows:

ui+1,j − 2ui,j + ui−1,j

(�z)2
+ ui,j+1 − 2ui,j + ui,j−1

(�y)2
= 1

�

dP

dx
.

(17)

Here, the computational domain is divided into N × N grid system
and the grid interval in each direction is set to be equal such that
�y=�z=a/N. At this point, a non-dimensional velocity is introduced
as

u∗ = u

a2
�

(
−dP

dx

) . (18)

Then, Eq. (17) can be rearranged non-dimensionally as follows:

u∗
i−1,j + u∗

i,j−1 − 4u∗
i,j + u∗

i+1,j + u∗
i,j+1 = − 1

N2
. (19)

On each grid point, Eq. (19) was solved with no slip condition at the
wall. The grid system used was 400×400. The strongly implicit pro-
cedure (SIP) proposed by Stone (1968) was adopted as the solution
algorithm.

Fig. 3 shows the calculated non-dimensional axial velocity field
within a quarter of the square channel. For verifying the result, the
f Re factor is calculated as

f Re =
2a2
�

(
−dP

dx

)
um

= 2
u∗

m
, (20)

where the non-dimensional fluid mean velocity is defined by

u∗
m ≡ 1

Ap

∫
Ap

u∗ dA. (21)

The currently obtained f Re is 14.22715, which shows a good agree-
ment with 14.22708 reported by Shah and London (1978).

4.1.1. H1 boundary condition
For this boundary condition, the axial temperature gradient term

on the right hand side of Eq. (16) becomes (Bejan, 1995; Clark and
Kays, 1953, Kays and Crawford, 1993)

�T

�x
= dTs

dx
= dTm

dx
= constant. (22)

Fig. 3. Non-dimensional axial velocity contour within a quarter of square
cross-section.

Discretizing Eq. (16) yields

Ti+1,j − 2Ti,j + Ti−1,j

(�z)2
+ Ti,j+1 − 2Ti,j + Ti,j−1

(�y)2
= ui,j

�

dTm

dx
. (23)

By introducing such non-dimensional temperature as

T∗ = T

a4
��

(
−dP

dx

) (
dTm
dx

) . (24)

Eq. (23) can be rearranged non-dimensionally as follows:

T∗
i−1,j + T∗

i,j−1 − 4T∗
i,j + T∗

i+1,j + T∗
i,j+1 =

u∗
i,j

N2
. (25)

Then, the following boundary condition is implemented.

T∗|wall = 1.0. (26)

Eq. (25) was solved with substituting the previously obtained veloc-
ity field into its source term. The calculated non-dimensional tem-
perature field is illustrated in Fig. 4. Also, the non-dimensional mean
temperatures are introduced as follows:

T∗
m ≡ 1

u∗
mAp

∫
Ap

u∗T∗ dA, (27)

T∗
g ≡ 1

Ap

∫
Ap

T∗ dA. (28)

From Eqs. (27) and (28), T∗
m is calculated to 0.961037, while T∗

g is
0.972760.

By applying the energy conservation to an axially infinitesimal
volume, the Nusselt number based on the fluid bulk mean temper-
ature is evaluated as (Shah, 1975)

Nub = dh(q′/Lp)

kg(Ts − Tm)
= dh

Lp

Ap

�

dTm

dx

um

Ts − Tm
= u∗

m

T∗
s − T∗

m
. (29)

Eq. (29) yields Nub to 3.607947, which is almost the same value as
3.60795 reported by Shah and London (1978). On the other hand, the
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Fig. 4. Non-dimensional temperature contour within a quarter of square cross-section
for the H1 boundary condition.

Nusselt number based on the fluid mean temperature is obtained
from

Nu = dh(q′/Lp)

kg(Ts − Tg)
= dh

Lp

Ap

�

dTm

dx

um

Ts − Tg
= u∗

m

T∗
s − T∗

g
. (30)

Eq. (30) yields Nu to 5.160639, which is absolutely different from
the above Nub. Consequently, this newly obtained Nu is proposed
to be used for determining the interfacial heat and mass transfer
coefficients in the forthcoming two-equation porous medium model
of catalytic converters having square channels under H1.

4.1.2. T boundary condition
With this boundary condition, the axial temperature gradient

term of Eq. (16) becomes (Bejan, 1995; Clark and Kays, 1953; Kays
and Crawford, 1993)

�T

�x
= Ts − T

Ts − Tm

dTm

dx
. (31)

Substituting Eq. (31) into Eq. (16) and discretizing it yields

Ti+1,j − 2Ti,j + Ti−1,j

(�z)2
+ Ti,j+1 − 2Ti,j + Ti,j−1

(�y)2

= ui,j

�

Ts − Ti,j

Ts − Tm

dTm

dx
, (32)

which can be represented in a non-dimensional form as follows:

T∗
i−1,j + T∗

i,j−1 − 4T∗
i,j + T∗

i+1,j + T∗
i,j+1

=
u∗

i,j

N2

T∗
s − (T∗

i,j
)p

T∗
s − T∗

m
. (33)

The same boundary condition as given in Eq. (26) is applied here
for convenience in comparing the result with that of the previous
H1. In order to solve Eq. (33) numerically, an iterative technique in
which guessing and improving steps are continued until the solu-
tion converges is required since the dependent variables (i.e., non-
dimensional local and bulk mean temperature) are in the source
term. Note that, although the temperature at node (i, j) on the right

Fig. 5. Non-dimensional temperature contour within a quarter of square cross-section
for the T boundary condition.

Fig. 6. Comparison of the generalized temperature profiles along the centerline of
the square cross-section for the H1 and T boundary conditions.

hand side of Eq. (33) could be implicitly treated (i.e., transposing it
into the left hand side), this induced a poor convergence. Therefore,
the term was evaluated from the value at previous iteration step as
denoted by the superscript, p. Here, the temperature field previously
obtained for H1 was used as the first estimation. By doing so, only
several steps from this start were required to meet the following
convergence criterion.∣∣∣∣ current Tm − previous Tm

current Tm

∣∣∣∣<1.0 × 10−10. (34)

Fig. 5 shows the obtained non-dimensional temperature field for
T. And, Fig. 6 illustrates a comparison of the generalized tempera-



T. J. Wang et al. / Chemical Engineering Science 63 (2008) 3152 -- 3159 3157

ture profiles along the cross-section centerline for H1 and T, which
indicates that the profile for H1 is more uniform than that of T as
described in Kays and Crawford (1993). Also, from Eqs. (27) and (28),
T∗
m is calculated to 0.952787 and T∗

g is 0.967912. Note that these two
values are lower than those for H1 counterparts. In addition, Nub is
calculated to 2.977507, which differs only about 0.05% from 2.976
reported by Shah and London (1978). On the other hand, Nu is cal-
culated to 4.380965, which is newly recommended to be used for
the case of T.

4.2. Circular channel

For the circular channel, the governing momentum and energy
equations are expressed as

1
r

�

�r

(
r
�u

�r

)
= 1

�

dP

dx
, (35)

1
r

�

�r

(
r
�T

�r

)
= u

�

�T

�x
. (36)

As can be seen from many heat transfer literatures, the well known
Hagen--Poiseuille solution for Eq. (35) gives (Bejan, 1995; Incropera
and DeWitt, 2002; Kays and Crawford, 1993)

u = 2um

[
1 −

(
r

ro

)2]
, (37)

um = r2o
8�

(
−dP

dx

)
, (38)

where ro denotes the radius of a circular tube.

4.2.1. H1 boundary condition
For this boundary condition, Nub is analytically calculated to

48/11 (Bejan, 1995; Incropera and DeWitt, 2002; Kays and Crawford,
1993; Shah and London, 1978). Then, Nu can be obtained from

Nu = Nub
Ts − Tm

Ts − Tg
. (39)

The analytic solution for Eq. (36) gives (Incropera and DeWitt, 2002)

T = Ts − 2umr2o
�

(
dTm

dx

)[
3
16

− 1
4

(
r

ro

)2
+ 1

16

(
r

ro

)4]
(40)

Tm = Ts − 11
48

(
umr2o

�

)(
dTm

dx

)
(41)

Eqs. (13) and (40) lead to

Tg = 1

�r2o

∫ ro

0
T2�r dr = Ts − 1

6

(
umr2o

�

)(
dTm

dx

)
. (42)

Inserting Eqs. (41) and (42) into Eq. (39) yields Nu to 6, which is
proposed for the circular channel under H1. This result can be also
obtained numerically. To verify the accuracy of the current numerical
solution, the Nu is calculated again here. First, a non-dimensional
velocity is introduced and rearranged using Eqs. (37) and (38) as

u+ = u

r2o
8�

(
−dP

dx

) = 2

[
1 −

(
r

ro

)2]
. (43)

Then, a non-dimensionalized fluid mean velocity becomes

u+
m = um

r2o
8�

(
−dP

dx

) = 1. (44)

Also, a non-dimensional temperature is introduced and rearranged
using Eq. (40) as

T+ = T

r4o
8��

(
−dP

dx

) (
dTm
dx

)

= T+
s − 2

[
3
16

− 1
4

(
r

ro

)2
+ 1

16

(
r

ro

)4]
. (45)

In this case, referring Eq. (29), the non-dimensional expression of
Nub becomes

Nub = 1
T+
s − T+

m

, (46)

where

T+
m ≡ 1

u+
mAp

∫
Ap

u+T+ dA. (47)

Integrating Eq. (47) numerically and substituting it into Eq. (46)
yields Nub to 4.363636357, which is almost the same as the analytic
solution of 48/11. Here, for the computation, the radius of circular
cross-section was divided into 40000 grid points (i.e., �r = ro/N =
ro/40000).

Also, referring Eq. (30), the non-dimensional expression of Nu
becomes

Nu = 1
T+
s − T+

g

, (48)

where

T+
g ≡ 1

Ap

∫
Ap

T+ dA. (49)

Integrating Eq. (49) numerically and substituting it into Eq. (48)
yields Nu to 6.000000001, which shows almost no error in compar-
ison with the exact solution of 6.

4.2.2. T boundary condition
Unlike the H1 case, there is no analytic solution of the energy

equation for T so that the numerical method is the only way to get
the Nusselt number. By substituting Eqs. (31) and (37) into Eq. (36),
the following form of the energy equation is solved for T.

�2T

�r2
+ 1

r

�T

�r
= 2um

�

dTm

dx

[
1 −

(
r

ro

)2] Ts − T

Ts − Tm
. (50)

Discretizing Eq. (50) yields

Ti+1 − 2Ti + Ti−1

(�r)2
+ 1

ri

Ti+1 − Ti−1
2�r

= 2um

�

dTm

dx

[
1 −

(
ri
ro

)2] Ts − (Ti)
p

Ts − Tm
, (51)

which is rearranged non-dimensionally as(
1 − 1

2N(ri/ro)

)
T+
i−1 − 2T+

i
+
(
1 + 1

2N(ri/ro)

)
T+
i+1

= 2
N2

[
1 −

(
ri
ro

)2] T+
s − (T+

i
)p

T+
s − T+

m

. (52)

Then, the following boundary condition is implemented.

T+|wall = T+
s = 1.0. (53)

Identically to the solution procedure for the square cross-section,
the iterative technique was adopted and the well known tri-diagonal



3158 T. J. Wang et al. / Chemical Engineering Science 63 (2008) 3152 -- 3159

Fig. 7. Comparison of the generalized temperature profiles along the centerline of
the circular cross-section for the H1 and T boundary conditions.

matrix algorithm (TDMA) (for a review see Patankar, 1980) was em-
ployed as the equation solver. The computational result yields Nub
to 3.65679345, which shows little difference from the infinite series
solution of 3.6567935 (Shah and London, 1978). On the other hand,
Nu is obtained to 5.154002, which is newly recommended for the
circular channel under T. Fig. 7 shows the generalized temperature
profiles along the centerline of the circular cross-section. Similarly
to the square channel, the comparison reveals that the profile for H1
is more uniform than that of T.

5. Conclusion

In this study, it was newly proposed that the Nusselt number
based on the fluid mean temperature should be adopted for deter-
mining the interfacial heat transfer coefficient in the two-equation
porous mediummodel of the flow-through monolithic catalytic con-
verter. By employing the numerical as well as analytical method,
the Nusselt number values were obtained and proposed for practi-
cal uses in the square and circular cross-sections under the H1 and
T boundary conditions, respectively.

The currently obtained Nusselt numbers based on the fluid mean
temperature were approximately 37% to 47 % larger than those based
on the fluid bulk mean temperature. This indicates that, in previous
studies on modeling automotive catalytic converters, the interfacial
heat and mass transfer coefficients have been underestimated up to
now.

Notation

a one-side length of computational domain for square cross-
section

ac catalyst surface area per unit reactor volume, m2/m3

asf gas/solid interfacial area per unit reactor volume, m2/m3

A cross-section area, m2

Ap pore area of channel, m2

cp specific heat, J/kg/K
C molar concentration, mol/m3

dh hydraulic diameter of a single channel, m

D binary diffusion coefficient, m2/s
f friction factor
h heat transfer coefficient based on fluid bulk mean temper-

ature, W/m2/K
hsf interfacial heat transfer coefficient between gas and solid

phases, W/m2/K
−�Hi heat of reaction of species i, J/mol
k thermal conductivity, W/m/K
km interfacial mass transfer coefficient between gas and solid

phases, m/s
K permeability, m2

Lhy hydrodynamic entrance length, m
N number of grid points
Nu Nusselt number based on fluid mean temperature
Nub Nusselt number based on fluid bulk mean temperature
P pressure, Pa
q′ heat transfer rate per unit axial length, W/m
q′′ heat flux, W/m2

Q Volumetric flow rate, m3/s
r radial position, m
Ri reaction rate of species i, mol/m2/s
Re Reynolds number
Sh Sherwood number
t time, s
T temperature, K
u velocity, m/s
uD superficial velocity (Darcean velocity), m/s
V volume, m3

x axial position, m
y vertical position for square cross-section, m
z horizontal position for square cross-section, m

Greek letters

� porosity
� dynamic viscosity, N s/m2

� density, kg/m3

� general variable

Subscripts

f fluid mean property
g gas phase
i species

horizontal index for square channel (radial index for cir-
cular channel)

j vertical index for square channel
m fluid bulk mean property
r radial direction
s solid phase
x axial direction

Superscripts

p previous iteration step
∗ non-dimensional index for square channel
+ non-dimensional index for circular channel
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