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Abstract— Failure resiliency is one of major concerns in design-
ing peer-to-peer systems for continuous multimedia streaming
since peers can leave or fail without notices. Building resilient
multicast networks based on parent multiplicity is an approach to
combat network failures and improve stream continuity. In this
paper, we model the problem of generating resilient multicast
graphs with parent multiplicity, called Dual Parent Multicast
Graph (DPMG), as two sub-problems: constructing a regular
graph on a set of labeled vertices; and labeling edges of that
graph. Our proposed algorithms to solve the two sub-problems
produce a DPMG with good resiliency property especially for
locally and burstly occurred failures in peer-to-peer networks.

I. INTRODUCTION

Multimedia streaming is an important service in the current
Internet. For the purpose of media multicasting, the peer-to-
peer approach appears to be promising with ease of deploy-
ment, flexibility and scalability [2]–[4]. Peer-to-peer streaming
systems, by nature, are dynamic since peers can freely leave or
fail without notice. Guaranteeing continuous media streams to
receiving peers in such a dynamically changing environment
is, thus, a non-trivial task.

For continuous peer-to-peer data dissemination, the tradi-
tional multicast tree is insufficient. Although tree topology is
the minimum connected graph implying lowest maintenance
cost, multicast tree is very vulnerable to failures. Leave or
failure of only one peer disconnects all its descendants from
the source. This causes service interruption on a large number
of peers.

To solve the vulnerability problem of multicast distribution
tree, several works based on parent multiplicity have been
proposed [5], [11], [16]. The idea of parent multiplicity is that
peers select several parent peers instead of only one parent like
in the tree configuration. This provides peers backup paths to
download data streams when the active path is failed. It also
allows peers to utilize path diversity for improving throughput
and combating network loss.

In those researches, parents are randomly selected from
either the whole set of peers or from a local peer set, such
as uncle peer set, cousin peer set or grandparent peer set
[5]. On one hand, although selecting parents randomly from
the whole peer set guarantees good resiliency, it is, in fact,
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costly and hard to implement. Such global parent multiplicity
strategy requires global knowledge of all peers or a random
walk mechanism to sample the network [13], [15]. Global
knowledge, e.g. a server tracking status of all peers, does
not scale to large systems and is the single point of failure.
Network sampling mechanisms based on random walks require
relatively long time before returning the sample peer set. Also,
with global parent multiplicity, alternative overlay paths to the
source can greatly differ in length. This increases the switching
time from active path to a backup path and magnifies buffering
space at clients. Selecting parents from local peer sets, or local
parent multiplicity, on the other hand, is easier to implement
and can provide competitive resiliency when failures are
uniformly distributed among all peers [5]. However, choosing
parent peers locally can be sensitive to failures that happen
locally on the peer-to-peer multicast network.

In this paper, we aim at systematically constructing resilient
multicast graph with local parent multiplicity, called DPMG
(Dual Parent Multicast Graph). We model the problem of
generating DPMGs for multimedia streaming applications as
two sub-problems: constructing a regular triangle-free graph
on a set of labeled vertices; and labeling edges of that graph.
The proposed method we apply to solve the two sub-problems
systematically generates DPMGs that are robust to failures
occurred locally on the topology of the peer-to-peer multicast
network. The proposed DPMG can be directly applied to
active-backup streaming applications like PRM [16] and can
be extended to Multiple Parent Multicast Graph (MPMG) to
integrate with path diversity and advanced coding techniques
like FEC [9] or MDC [12].

This paper is organized as follows. In the next section,
we discuss related works and relate them with the work in
this paper. For recursively building DPMG, in section III, we
define and solve the problem of constructing a regular triangle-
free graph on labeled vertices and the problem of labeling all
edges of that triangle-free graph. Section IV is for resiliency
evaluation of DPMG. Finally, we conclude our paper in section
V.

II. RELATED WORK

Failure resiliency has been an active research area for over-
lay multicast. Essentially, failures can be solved with network
redundancy. Narada [2] follows mesh-first approach. It forms
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a random mesh to obtain reliable communication among peers
before constructing a good distribution tree on the mesh. Peers
periodically probe each other to establish better links and drop
low quality links. BitTorrent [15], Bullet [8], [17] and SCAMP
[13] construct random meshes by connecting to a random
subset of peers. BitTorrent uses a centralized server, called
”tracker”, to store a list of participating peers. It returned
a random subset from the list to a peer requesting to have
neighbors. Bullet uses a broadcasting scheme on an overlay
tree to collect and distribute random subsets. In SCAMP, peers
acquaint lists of neighbors, or views, via gossiping. Multiple
copies of a join request originated from a peer independently
walk on the network of existing peers before ending up at a
set of neighbors for the joining node.

TMesh [1] and PRM [16] obtain network redundancy by
constructing an overlay tree then adding backup links to the
tree. Besides forwarding data to their children, peers in PRM
forward data probabilistically to random selected peers. Thus,
each peer can has multiple parents sending data to it, a tree
parent and a random parent. This operation mode can be
categorized as active-backup operation. If the tree parent fails,
a peer can temporarily use the random parent while recovering
the failed connection or finding another one.

SplitStream [7] and CoopNet [10] utilize path-diversity for
guaranteeing continuity of multimedia streaming. While Coop-
Net employs a central server to manage overlay network topol-
ogy, SplitStream distributedly build the streaming network
atop DHT-based overlays like Pastry [14]. Both SplitStream
and CoopNet construct disjoint trees and stream MDC-coded
media streams on those trees independently. K-DAGs [11]
applies parent multiplicity for construction of multiple paths.
Media streams after being coded with FEC or MDC [12], are
sent over the multi-path structure of k-DAGs to each peer for
improving stream quality and combating network loss. The
idea of DPMG presented in this paper is in fact similar to
k-DAGs. However, we specify which peers are preferred to
be parents for improving resiliency. Thus it can be applied to
k-DAGs to find parents.

The work presented in [5] analyses resiliency of augmented
overlay trees when failures are independent and uniformly
distributed. The tree augmentation strategies considered in
that paper is identical to parent multiplicity scheme. Thus,
the analysis of [5] is applicable to DPMG under the uniform
and independent failure model. This paper considers failure
resiliency of DPMG in another model where failures occurs
locally on the logical structure of overlay multicast graph.
This failure model is reasonable for dependent failure models,
for example, where peers leave the streaming session mainly
because of services interruption cause by a small numbers of
other peers.

III. DUAL PARENT MULTICAST GRAPH

Since our target application is continuous multimedia
streaming in a failure-prone environment, we expect the
DPMG to have the following properties:
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Fig. 1. Two adjacent level of DPMG and the corresponding genGraph
representation
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ALGORITHM TriangleFreeGenGraph  
INPUT:  

- n vertices {0,1,2, ..., n – 1} 
- Integer k, 0 < k  n/4 

OUTPUT: 2k-regular triangle-free graph G 
BEGIN 
 G := empty graph 
 for j:=0 to k – 1 
  for i:= 0 to n – 1 
   Add edge (i, i + 2j + 1 mod n) to G 
  endfor 
 endfor 
END 

Fig. 2. Algorithm for construction of triangle-free genGraphs and an example
output genGraph

- Parent multiplicity: Each peer that does not directly
connect to the source can download the stream provided
by the source via m different parent peers. In this paper,
we only consider the case that m equals 2. Similar
approach can be applied for arbitrary m.

- Symmetry: Overlay paths from a peer to the source via
different parents are of the same length. This property
is expected for continuous media streaming applications
in both streaming systems with active-backup configu-
ration and systems with path-diversity. In active-backup
streaming systems, symmetric parent multiplicity implies
smallest recovery time when failures occur at the active
path and the stream is switched to the backup path.
In streaming systems with path diversity, concurrently
downloading coded video data via paths of the same
length mitigates buffer space requirement and eases the
synchronization mechanism.

- Bounded load: Peers should not be overloaded by too
many children

The above desired properties imply a graph with multiple
levels. At the top of the graph, level 0, is the streaming source.
Peers that are j-hop away from the source form level j. Each
peer at level j+1, j > 0, takes 2 peers at level j as its parents.
We call the ratio between the number of peers at level j + 1
and level j expansion factor k. Expansion factor k is a fixed
parameter of a DPMG except for several (2 or 3) initial levels.
For simplicity, we assume that peers at the same level are
homogenous. That is they have the same computational power
and forwarding capability. Since each peer can be represented
by a vertex in the graph model, we use the terms ”peer” and
”vertex” interchangeably.

A. GenGraph Representation

DPMGs described above can be constructed level by level.
Consider two successive levels i and i+1. Since each peer in
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Fig. 3. (a) Peer a has 4 grandparents (expected configuration); (b) Peer a
has 3 grandparents and is less reliable than (a)

level i+1 has m parents that are at level i, a peer at level i+1
can be represented by a set of peers in level i. In other words,
all peers at level i+1 can be represented by a hypergraph Gi

spanning all level-i peers. For the case that m equals 2, Gi

becomes a graph and each edge of Gi is correspondent to a
peer in the next level. For the ease of exposition, we term that
graph Gi generating graph or genGraph. The reason for the
name is that given a genGraph Gi of level i, we can generate
the level i+1 from Gi. Figure 1 shows an example genGraph
Gi and corresponding levels i and i + i.

B. GenGraph Construction

Using the concept of genGraphs, we can view the problem
of building level i + 1 as the generation of a genGraph
Gi. With regard to robustness against failures, the question
is how to generate a genGraph Gi so that the number of
disconnected peers at the next level (level i + 1) caused by
failures in the current level (level i) is minimized. This kind
of inter-level effect, in fact, depends on couples of parameters
of the genGraph. Before presenting the relationship between
characteristics of genGraphs and the effect at the lower level
caused by failures at a higher level, we review the definitions
of subgraphs and induced subgraphs in graph theory.

Definition 1 (Subgraphs): A graph G′(V ′, E′) is a sub-
graph of graph G(V,E) iff V ′ ⊆ V and E′ ⊆ E.

Definition 2 (Induced subgraphs): G′(V ′, E′) is induced
subgraph of G(V,E) iff G′ is a subgraph of G and E′ are
all those edges in G for which both endpoints are in V ′. The
induced subgraph G′(V ′, E′) of G(V,E) can be denoted by
G[V ′]

GenGraph is actually a useful representation for understand-
ing the effect of failures at the current level to the next level.
The relationship between failures in two successive levels can
be modeled by induced subgraph relation as follows:

Theorem 1: Given a level i with peer set Pi, genGraph Gi

spanning Pi , and a set Fi of offline peers (leaved, failed or
disconnected peers), Fi ⊆ Pi. The peers at level i + 1 that
become disconnected because of Fi are corresponding to edge
set of the induced subgraph Gi[Fi] of Gi.

For high failure resiliency of DPMG, as stated in the above
theorem, a desired genGraph should contain induced sub-
graphs with as few edges as possible. For overall performance
of DPMG, however, the genGraph of a level should have as
many edges as possible to highly utilize forwarding capacity of

peers and to shorten path lengths from peers to the source. That
conflict can be compromised by constructing regular graphs
with maximum number of edges while guaranteeing graph
properties for good resiliency, such as large girth, small clique
number and small number of cliques. That graph construction
problem is non-trivial for some properties. For a practical
algorithm, we just attempt to construct genGraphs that are
triangle-free. In term of practicality, triangle-free property is
possible in relatively many graphs and guarantees reasonably
high expanding factor k, k = |Pi+1|

|Pi| . In terms of resiliency,
triangle-free graphs have no cliques of size greater than or
equal to 3 and thus, subgraphs induced any f vertices contain
less than f(f−1)

2 edges.
Figure 2 presents an algorithm that generate a triangle-

free genGraph with expanding factor k on n vertices and an
example output graph of the algorithm for n = 8 and k = 2.
The algorithm simply constructs a ring lattice as follows. All n
vertices are continuously labeled with integers from 0 to n−1
and arranged them in order on a circular axis. Between any
two vertices whose labels locate 2j − 1 units apart from each
other on the label scale, for all integer j from 1 to k, there is
an edge connecting them. Note that the algorithm is applicable
only when 4k ≤ n. At some initial levels where the number
of peers n is still less than 4k, we relax the requirement of
triangle-freedom or accept a smaller expansion factor k when
constructing the DPMG.

C. Labeling Edges of GenGraphs

From a genGraph Gi, we need to generate the next level
of DPMG by assigning a labeled vertex to each edges of Gi.
The output vertex set of those assignments will be used as
input for generating the next levels genGraph. Assigning each
edge of Gi to a labeled vertex is equivalent to the problem
of labeling edges of Gi. The importance of edge-labeling in
a genGraph is illustrated in figure 3. Since peer a has four
grandparents in figure 3(a) and three in figure 3(b), figure 3(a)
shows better resiliency than 3(b). Note that peers in a level are
corresponding to edges in genGraph of the upper level. The
conditions for ”3-grandpa peers” like peer a in figure 3(b) to
occur is that 2 endpoints of an edge (peer b and c) in genGraph
Gi+1 are two edges that share a common endpoint (peer d)
in genGraph Gi. With a carefully designed labeling scheme
for genGraph Gi we can minimized the number of 3-grandpa
peers in level i + 2. Our labeling scheme for genGraph on
n vertices with expansion factor k is defined as a function
fn,k(i, j) mapping a pair of vertex labels to an edge label as
follows.

For even k, 0 < k < n/4:

fn,k(i, j) = fn,k(j, i) =




nλ+2i if j=(i+2λ+1) mod n,

λ is even,0≤λ<k

n(λ−1)+

((2i+n−(n mod 2)) mod 2n)

if j=(i+2λ+1) mod n,

λ is odd,0≤λ<k

undefined otherwise
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Fig. 4. Edge-labeling for example genGraphs: (a) n = 12, k = 2; (b) n = 12, k = 3

For odd k, 0 < k < n/4:

fn,k(i, j) = fn,k(j, i) =




nλ+2i if j=(i+2λ+1) mod n,

λ is even,0≤λ<k−1

n(λ−1)+

((2i+n−(n mod 2)) mod 2n)

if j=(i+2λ+1) mod n,

λ is odd,0≤λ<k−1

nλ+2i if j=(i+2λ+1) mod n,

λ=k−1,0≤i≤�n
2 �−1

2kn−1−(nλ+2i) if j=(i+2λ+1) mod n,

λ=k−1,�n
2 �≤i≤n−1

undefined otherwise

For ease of explanation, we term the distance between two
endpoints of an edge on the circular label scale the length of
the edge. For example, edges (0, 3), (5, 8) and (11, 2) have
length 3 in a genGraph Gi on 12 vertices. Note that with our
genGraph construction algorithm described in section III.B,
every edge has odd length. Our labeling scheme labels all
edges of length 2λ + 1 with even integers from nλ to n(λ +
2) − 1 if λ is even, and with odd integers from n(λ − 1) + 1
to n(λ + 1)− 1 if λ is odd. For the case that λ is even, even
integers from nλ to n(λ + 2)− 1 are sequentially assigned to
edges (i, i+2λ+1) starting from i = 0. A similar assignment
starting from i = �n

2 � is applied when λ is odd.
The above rule is for all possible λ except for λ = k − 1

and k is odd. In this case, we have n remaining unlabeled
edges with n unassigned integers from n(k−1) to nk−1. All
even integers among those unassigned numbers are assigned
sequentially to the first edges. Remaining integers are assigned
to remaining edges in decreasing order.

For illustration, we apply our labeling scheme to two
example genGraphs: n = 12, k = 2 and n = 12, k = 3.
Adjacent matrices of those graphs are shown in figure 4(a)
and 4(b). In those matrices, column and row indices are vertex
labels, and entries corresponding to edges of the genGraph are

filled with edge labels. Entries that represent no edges are set
to null and depicted by stars in the figures. Arrows depict the
order of labeling.

IV. EVALUATION OF FAILURE RESILIENCY

Investigating the robustness of DPMGs against peer failures
that occur locally, we assume α percent of random peers at
a particular level i0 leaves and evaluate the fraction D of
disconnected peers in all lower levels. DPMGs constructed
deterministically with our genGraph construction algorithm
and edge-labeling algorithm are compared to random DPMGs
in terms of resiliency. Random DPMGs are built by uniformly
selecting from the upper level two parents for each peer. For
fair comparisons, a deterministic DPMG is compared with a
random DPMG that has the same general structure. That is
the two DPMGs have the same expansion factor k and have
the same number of peers at the top level i0. The expansion
factor k in our simulations, is set to 3, there are 12 peers at
the top level and the depth of DPMGs are 5. Those setups
form a network with more than 4000 nodes.

Comparing deterministic and random DPMGs, figure 5(a)
and 5(b) show fraction of disconnected peers as a function
of fraction of leaved peers at the top level i0 for the average
case and the 90-percentile case respectively. When there are
just few peers failed at a level (α is small), on average, both
random and deterministic DPMGs cause similar fractions of
disconnected peers. When α increases, deterministic DPMG
has better resiliency than random ones. And when all peers at a
level fail, the whole network is corrupted for both random and
deterministic DPMGs. However, as long as α is less than 1,
deterministic DPMGs are always better than random DPMGs.

Deterministic DPMGs also provide statistically good re-
siliency. Figure 6(a) and 6(b) show cumulative probability
functions of the number of disconnected peers for small α
(α = 0.25) and for large α (α=0.75). The cdf in the case
of deterministic DPMGs always increases sharply. It reveals
that with the deterministic method the number of disconnected
peers caused by locally-occurred failures is densely distributed
around the expectation. Thus, it guarantees the worst case
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Fig. 5. Average value (a) and 90-percentile (b) of the fraction of disconnected peers D as a function of leaved peers fraction α
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Fig. 6. Cdf of the number of disconnected peers

where a plenty of peers are disconnected due to just few peer
failures never happens.

V. CONCLUSION

We have presented DPMG, a method for selecting multiple
parents per peer in a resilient peer-to-peer system. This method
can be used to construct overlay multicast networks for contin-
uous streaming applications. The approach used in DPMG is
a deterministic construction of multicast graphs level by level.
We have shown that our approach improves resiliency when
network failures are locally occurred on the logical structure
of the peer-to-peer network.
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