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Abstract

In this paper, a simple design formula to predict the resisting capacity of slender reinforced concrete (RC) columns is introduced.

Using the proposed numerical model in the companion paper, nonlinear time-dependent analyses of slender RC columns that con-

sider the creep deformation of concrete and the P–D effect are conducted to determine their ultimate resisting capacity according to

the variation of design variables. On the basis of the numerical analysis results obtained, the resisting capacity reduction factors,

which represent the reduction rates of the resisting capacity in a long column corresponding to a short column on a P–M interaction

diagram, are determined. In addition, the relationships between the resisting capacity reduction factors and design variables are

established from regression and used to determine the ultimate resisting capacity of slender RC columns without any rigorous

numerical analysis. The ultimate resisting capacities calculated from the regression formula are compared with those constructed

from rigorous nonlinear time-dependent analyses and from the ACI formula with the objective of establishing the relative efficiencies

of the proposed formula.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Short RC columns, when overloaded, experience

material failure prior to reaching a buckling mode of

failure. Furthermore, the lateral deflections of short

compression members subjected to bending moments

are small and, thus, contribute little secondary bending
moment by the P–D effect. Therefore, the ultimate resist-

ing capacity of short reinforced concrete (RC) columns

is generally determined on the basis of the assumption

that the effects of buckling and lateral deflection on

strength are negligibly small. Unlike a short RC column

whose ultimate resisting capacity can be uniquely repre-
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sented from a P–M interaction diagram for a typical sec-

tion, however, a slender RC column has a considerable

reduction in strength because of a secondary bending

moment caused by the lateral deflection, and its strength

is dominantly affected by the slenderness ratio. Conse-

quently, the development of a correct P–M interaction

diagram for a slender RC column would require an elab-
orate numerical analysis taking into account the time-

dependent and cracking effects on deformation.

To permit the greatest flexibility in structural design,

specifications must also provide for adequate determina-

tion of column strength with any slenderness ratio.

Thus, most design codes [1,3] take into account the

length effect on the resisting capacity of long columns

by increasing the applied primary moment. In advance,
the increase is based on the moment magnification fac-

tor derived from elastic stability theory. However, the
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principal difficulty in using the moment magnification

factor is that it requires an exact estimation of the bend-

ing stiffness (EI). Since cracking, time-dependent effects,

and the nonlinearity of the concrete stress–strain curve

cause decreases in EI as the applied load increases, a

more exact strength prediction of slender RC columns
fully depends on the precise calculation of EI according

to the loading history. Nevertheless, most design codes

propose simple expressions for the calculation of EI

without any further consideration of the steel ratio

and eccentricity. Consequently, the application of cur-

rent design codes [1,3] may result in underestimation

of the resisting capacity, and this may accelerate as the

slenderness ratio increases. Hence, the construction of
a correct P–M interaction diagram for RC columns with

large slenderness ratios would require a rigorous analy-

sis considering material and geometric nonlinearities due

to concrete cracking and time-dependent deformation of

concrete. However, rigorous analysis is time consuming,

and its use in design practice requires much experience.

To solve this problem in practice and to consider all

the nonlinear effects in design effectively, a simplified de-
sign method for slender RC columns is proposed in this

paper. Many parameter studies for slender RC columns

are conducted using the proposed numerical model in

the companion paper, and more refined comparisons of

numerical results follow. Moreover, the ultimate resist-

ing capacity reduction factors, which represent the reduc-

tion rates of P–M interaction diagrams in slender RC

columns to short RC columns, are proposed from regres-
sion. These can be used effectively in the preliminary de-

sign stage. Based on the proposed reduction factors, the

required P–M interaction diagram of a slender RC col-

umn can be easily constructed without conducting addi-

tional sophisticated creep buckling analyses for a slender

RC column. The ultimate resisting capacities calculated

from the proposed design formula are compared with

those calculated from rigorous nonlinear time-dependent
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Fig. 1. Resisting capacity reductions in accordance with the co
analyses and from the ACI method with the objective of

establishing the relative efficiencies of the method involv-

ing the proposed formula.
2. Behavior of slender RC columns

In the companion paper, it was shown that the

numerical results for the short-term and long-term

behavior of slender RC columns compared well with

the experimental and analytical results. In advance, it

was found that the strength of slender RC columns de-

pends on many design variables and shows a consider-

able reduction as the slenderness ratio increases,
especially in slender RC columns with a relatively high

compressive strength of concrete and steel ratio. In this

paper, more refined comparisons for the structural

behavior according to the change in each design variable

are made on the basis of the proposed numerical model

in the companion paper.

A h = 50-cm square concrete column section rein-

forced symmetrically by steel at 0.1h distance from each
of the two critical faces is used. By changing the variables

from f 0c ¼ 250 kgf=cm2 to f 0c ¼ 500 kgf=cm2 for the com-

pressive strength of concrete, from qs = 0.02 to qs = 0.08

for the steel ratio, and from L/r = 10 to L/r = 70 for the

slenderness ratio, nonlinear analyses are conducted.

Creep deformation of concrete is also taken into account

on the basis of bd = PD/(PD + PL) = 1 because the most

strength reduction appears at this upper limit condition
in spite of a relatively small difference for bd (see Fig. 9

in the companion paper), and the ultimate creep coeffi-

cient in the ACI model is assumed to be changed from

cu = 1.0 to cu = 3.0. In advance, the following material

properties generally used in design of RC columns are as-

sumed: Es = 2.1 · 106 kgf/cm2 and fy = 4000 kgf/cm2, and

the slenderness ratio is defined by L/r (L = pin-ended col-

umn height and r ¼ radius of gyration ¼ h=
ffiffiffiffiffi
12
p

).
0.06s =

) 0.06s =

ncrete compressive strength: (a) qs = 0.02; (b) qs = 0.06.
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The effect of the compressive strength of concrete on

the resisting capacity is shown in detail in Fig. 1. The

numerical results are for the case of RC columns sub-
' 2250 /cf kgf cm
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s
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Fig. 2. Resisting capacity reductions in accordance with the
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Fig. 3. Resisting capacity reduction in accordance with the creep deformat

(c) f 0c ¼ 250 kgf=cm2, qs = 0.06; (d) f 0c ¼ 500 kgf=cm2, qs = 0.06.
jected to axial forces with a minimum eccentricity of

emin = 1.524 + 0.076h (cm) [6]. The ultimate axial force

ratios of Pou/Pu are plotted as the slenderness ratio
' 2500 /cf kgf cm

s

s

s

s

b)
' 2500 /cf kgf cm

steel ratio: (a) f 0c ¼ 250 kgf=cm2; (b) f 0c ¼ 500 kgf=cm2.
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ion: (a) f 0c ¼ 250 kgf=cm2, qs = 0.02; (b) f 0c ¼ 500 kgf=cm2, qs = 0.02;



H.-G. Kwak, J.-K. Kim / Construction and Building Materials 20 (2006) 538–553 541
changes from L/r = 20 to L/r = 70, where Pu and Pou are

the short-term ultimate axial forces at a section and at a

member, respectively.

As shown in Fig. 1, the strength of RC columns de-

pends significantly on the compressive strength of con-

crete and steel ratio. The strength of slender RC
columns decreases with an increase of the slenderness

ratio, and this phenomenon is more significant in col-

umns with relatively high compressive strengths of

concrete. In the case of qs = 0.02, the resisting capacity

reduction for the ultimate axial force reaches 23% for

f 0c ¼ 250 kgf=cm2 and 36% for f 0c ¼ 500 kgf=cm2 when

the slenderness ratio L/r = 70, because of the P–D ef-

fect. On the other hand, these reduction ratios are
slightly reduced as the steel ratio increases. This result

seems to be caused by two factors; First of all, the

maximum axial force capacity in a short column is di-

rectly proportional to the compressive strength of con-

crete [1], while the critical axial force in a long column,

represented by the bending stiffness EI, is almost inde-
(a)

(c)

Fig. 4. Resisting capacity reductions in accordance with the eccentricity

(c) f 0c ¼ 250 kgf=cm2, qs = 0.06; (d) f 0c ¼ 500 kgf=cm2, qs = 0.06.
pendent of the compressive strength of concrete. This

implies that a more remarkable strength reduction

rate according to the slenderness ratio may occur in

a column with relatively high concrete compressive

strength. Secondly, since a long column accompanies

relatively large lateral deflection and a secondary mo-
ment due to the P–D effect, the column collapses when

the moment resisting capacity corresponding to the ap-

plied axial force is insufficient. A slender RC column

with lower steel ratio will represent a larger bending

curvature at the fully cracked stage before the section

failure. Hence, the more the steel ratio decreases, the

more the strength reduction rate increases because of

the increasing P–D effect. These trends seem to be
maintained over the entire eccentricity range as shown

in Figs. 10 and 11 in the companion paper, and it can

be concluded that the resisting capacity reduction be-

comes larger in an RC column with a relatively high

concrete compressive strength and small steel ratio as

the slenderness ratio increases.
(b)

(d)

: (a) f 0c ¼ 250 kgf=cm2, qs = 0.02; (b) f 0c ¼ 500 kgf=cm2, qs = 0.02;



Fig. 5. Definition of strength reduction coefficient F.
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The numerical results obtained for the same example

structure are rearranged with respect to the steel ratio.

As shown in Fig. 2, the resisting capacity reduction for

the ultimate axial force becomes larger as the steel ratio

decreases, and a more remarkable reduction appears

according to an increase of the concrete compressive
strength, as mentioned above. Since the effect of the steel

ratio on the resisting capacity of RC columns is gradu-

ally increased in proportion to the concrete compressive

strength, the P–D effect dominantly appears in high

strength concrete columns with relatively low steel ra-

tios. In advance, from a comparison of Figs. 1 and 2,

it can be inferred that the compressive strength of con-

crete has a more dominant influence on the resisting
capacity of RC columns than the steel ratio.

In order to consider the effect of creep deformation,

time-dependent analyses are conducted for the same

example structure when the ultimate creep coefficients

are 1.0, 2.0 and 3.0, respectively. The obtained numeri-

cal results are shown in Fig. 3.

As shown in Fig. 3, the creep deformation reduces the

resisting capacity of slender RC columns and the most
remarkable reduction of the resisting capacity appears

in an RC column with relatively high concrete compres-

sive strength and low steel ratio, as in the short-term load-

ing case (see Figs. 1 and 2). This seems to arise from the

fact that this column causes a relatively large P–D effect

as mentioned above and accompanies larger creep defor-

mation in proportion to the mechanical deformation.

Nevertheless, it is almost impossible to find any relation-
ship between the P-effect and the additional creep defor-

mation because the creep deformation is influenced by

aging effects. In advance, the failure of a slender RC col-

umn subjected to long-term loading may be caused by

structural instability (see Fig. 1 in the companion paper).

As shown in Figs. 10–13 in the companion paper,

which represent P–M interaction diagrams according

to changes in the slenderness ratio, the resisting capacity
of a slender RC column with a typical slenderness ratio

does not maintain a uniform reduction at each eccentric-

ity. Fig. 4 shows the strength reduction ratios of slender

RC columns at four typical eccentricities. A column

with a relatively low steel ratio demonstrates the most

remarkable strength reduction at the balanced eccentric-

ity eb. Fig. 4 also shows that the eccentricity that exhib-

its the maximum strength reduction decreases with an
increase in the steel ratio (e = 0.5eb when qs = 0.06). This

result seems to be originated from the characteristics in

the resisting capacity of RC columns. An increase of

steel ratio causes a larger increase of the moment resist-

ing capacity than the axial force resisting capacity and

leads to an increase of the balanced eccentricity. It

means that the critical eccentricity corresponding to an

applied axial force decreases. Therefore, it seems to be
almost impossible to find any relationship between the

eccentricity and the other design variables.
3. Proposed formula

3.1. Determination of strength reduction coefficient

Since the ultimate resisting capacity of RC columns is

governed by many design variables and is gradually re-
duced as the slenderness ratio increases because of the

P–D effect and accompanying creep deformation of con-

crete, it is absolutely necessary to conduct a sophisti-

cated time-dependent nonlinear analysis considering

material and geometric nonlinearities to exactly predict

the ultimate resisting capacity of slender RC columns.

However, nonlinear analyses is time consuming and

costly. To circumvent these limitations and to estimate
the ultimate resisting capacity of RC columns effectively

in practice, a strength reduction coefficient for slender

RC columns is introduced in this paper. If a rigorous

nonlinear analysis is conducted at the final design stage

after selecting the section in the preliminary design stage

with the proposed formula below, then efficiency in de-

sign can be expected.

When the dimensions of the concrete section and the
material properties of concrete and steel are determined,

the P–M interaction diagram of a section representing

the ultimate resisting capacity of a column is uniquely

defined through a section analysis on the basis of the

force equilibrium and compatibility condition. How-

ever, as a slender RC column accompanies P–D effect

and creep deformation of concrete, the P–M interaction

diagram cannot be easily determined. If a strength
reduction coefficient F is defined as the ratio of the ulti-

mate resisting capacity (Pn, Mn) in RC sections to that in

a slender column, point A and point B in Fig. 5, at the

same eccentricity, then the ultimate resisting capacity of

a slender RC column can be easily determined from

(Pn(1 � F), Mn(1 � F)) without conducting additional

sophisticated numerical analyses.
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To introduce a design formula for the strength reduc-

tion coefficient F, however, the following difficulties

must be overcome: (1) The P–M interaction diagrams

must be determined for a column section (equivalent

to a short column) and for long columns with the same

design variables; (2) the calculated strength reduction
coefficient F does not maintain a constant value but

changes according to the design variables such as the

eccentricity, the slenderness ratio, the compressive

strength of concrete, and the ultimate creep coefficients;

and (3) unlike structural steel members, RC columns do

not use the commercially available standard sections.

Theoretically, an infinite number of RC column sections

can be designed for the applied forces.
Hence, in determining P–M interaction diagrams of

RC columns, all the variables need to be ranged and/

or assumed on the basis of practical limitations and

the design code requirements. The yielding stress of

steel is fy = 4350 kgf/cm2 (Grade 60 steel) which is
(a) (

Fig. 6. Strength reduction coefficient F in accordance with the compressiv

(a) (

Fig. 7. Strength reduction coefficient F in accordance with the slenderness r
the generally used value in column design. In addition,

the steel ratio ranges from qs = 0.02 to qs = 0.08, the

compressive strength of concrete from f 0c ¼ 250

kgf=cm2 to f 0c ¼ 500 kgf=cm2, the slenderness ratio

from L/r = 20 to L/r = 70, and four different ultimate

creep coefficients of 0.0, 1.0, 2.0 and 3.0, and seven dif-
ferent eccentricities of emin, 0.25 eb, 0.5eb, 0.75 eb, eb,

1.2eb and 1.5eb are selected for the numerical analyses

conducted in this paper for developing the strength

reduction coefficient F.

Six typical results of the strength reduction coeffi-

cients F calculated, when the ultimate creep coefficient

Cu is 0.0, are represented with dots in Figs. 6–8. These

figures show that the strength reduction coefficients F in-
crease in proportion to the slenderness ratio L/r and be-

come larger as the steel ratio decreases. The increase of

coefficients F indicates a reduction of the ultimate resist-

ing capacity. Since it may be very difficult to find a reg-

ulation formula for the eccentricity as shown in Fig. 4, it
b)

e strength of concrete: (a) qs = 0.02, L/r = 30; (b) qs = 0.02, L/r = 70.

b)

atio: (a) f 0c ¼ 250 kgf=cm2, qs = 0.02; (b) f 0c ¼ 500 kgf=cm2, qs = 0.02.



(a) (b)

Fig. 8. Strength reduction coefficient F in accordance with the steel ratio: (a) f 0c ¼ 250 kgf=cm2, L/r = 30; (b) f 0c ¼ 500 kgf=cm2, L/r = 70.
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is almost impossible to consider the variation of eccen-

tricity in the regression formula.

Even though the strength reduction coefficients

have a somewhat scattered distribution caused by

the absence of regulation in the eccentricity, regulation

can be found in the other design variables. To deter-
mine a reasonable regression formula, an overall re-

view of the effect of each design variable was

conducted (see Figs. 1–4). Consequently, it was found

that the variation of steel ratio qs, compressive

strength of concrete f 0c and slenderness ratio L/r of

all the design variables had the greatest effects on

the strength reduction coefficient F of slender RC col-

umns (see Figs. 6–8). Since the strength reduction
coefficients are gradually increased or decreased

according to change in each design variable and repre-

sent a nonlinear characteristic (see Figs. 6–8), a second

order polynomial is assumed for each design variable.

On the basis of the strength reduction coefficients F

calculated according to the change in each design var-

iable, the regression formula represented in Eq. (1) is

finally chosen, and the regression results obtained at
each eccentricity are listed in Tables 1–4. In particular,
Table 1

Regression constants of strength reduction coefficient F (cu = 0.0)

Eccentricity emin 0.25eb 0.5eb

a1 �0.024 �0.045 �0.059

a2 0.007 0.007 0.009

a3 0.261 0.576 0.494

a4 �0.115 0.050 0.017

a5 �0.001 �0.001 �0.002

a6 �0.112 �0.060 �0.089

a7 3.815 �0.837 3.560

a8 0.063 0.055 0.007

a9 �1.807 �1.379 �0.351

a10 0.547 0.443 0.004

R2 1.00 1.00 1.00
the correlation coefficient R2 representing the values

close to 1.0 in these Tables implies that the proposed

regression formula can simulate the strength reduction

coefficients effectively.

F ¼ a1þ a2ðf 0c=100Þ þ a3qs þ a4ðL=100rÞ

þ a5 f 0c=100
� �2 þ a6qsðf 0c=100Þ þ a7 qsð Þ

2

þ a8ðL=100rÞðf 0c=100Þ þ a9ðL=100rÞqs

þ a10ðL=100rÞ2; ð1Þ

where f 0c is the compressive strength of concrete ðkgf=
cm2Þ, qs is the steel ratio (Ast/Ac), and L/r is the slender-

ness ratio.

As shown in Tables 1–4, independent regression for-

mula are defined at each eccentricity because of the dif-

ficulty in finding regulation formulas for the eccentricity
and ultimate creep coefficient. Hence, determination of

the strength reduction coefficients for a slender RC col-

umn subjected to an axial force with an arbitrary eccen-

tricity can be achieved through a linear interpolation of

the strength reduction coefficients calculated on the ba-

sis of Tables 1–4.
0.75eb eb 1.2eb 1.5eb

�0.049 �0.042 �0.070 �0.070

0.008 0.007 0.023 0.022

�0.111 �0.318 �0.206 0.333

0.210 0.203 0.188 0.085

�0.001 �0.001 �0.003 �0.002

�0.142 �0.181 �0.261 �0.274

11.817 17.080 16.998 11.058

0.080 0.085 0.084 0.083

�4.711 �5.968 �5.798 �4.630

0.334 0.367 0.342 0.301

1.00 0.99 0.99 0.99



Table 2

Regression constants of strength reduction coefficient F (cu = 1.0)

Eccentricity emin 0.25eb 0.5eb 0.75eb eb 1.2eb 1.5 eb

a1 �0.011 0.010 0.010 0.065 0.058 �0.012 0.000

a2 0.015 �0.015 �0.015 �0.035 �0.032 �0.007 �0.005

a3 0.421 0.961 0.494 �0.809 �0.551 0.414 0.451

a4 �0.258 0.021 0.181 0.398 0.492 0.453 0.291

a5 �0.003 0.001 0.001 0.003 0.004 0.003 0.003

a6 �0.145 �0.149 �0.196 �0.095 �0.241 �0.442 �0.441

a7 4.688 1.183 8.728 16.027 16.696 14.710 16.138

a8 0.101 0.088 0.089 0.097 0.102 0.097 0.083

a9 �2.060 �2.746 �4.492 �5.098 �5.482 �5.633 �5.325

a10 0.766 0.559 0.435 0.136 �0.050 �0.026 0.115

R2 0.99 0.99 0.99 0.99 0.99 0.99 0.98

Table 3

Regression constants of strength reduction coefficient F (cu = 2.0)

Eccentricity emin 0.25eb 0.5eb 0.75eb eb 1.2eb 1.5eb

a1 �0.121 �0.063 �0.035 �0.012 0.116 �0.080 �0.084

a2 0.033 0.008 0.005 �0.004 �0.032 0.045 0.049

a3 0.963 0.678 0.082 �1.048 �0.551 �0.921 �0.356

a4 0.328 0.341 0.350 0.591 0.492 0.681 0.433

a5 �0.004 �0.001 0.000 0.000 0.004 �0.003 �0.003

a6 �0.189 �0.164 �0.293 �0.200 �0.241 �0.401 �0.397

a7 5.379 6.116 15.692 21.094 16.696 21.540 17.344

a8 0.089 0.097 0.111 0.108 0.102 0.098 0.089

a9 �3.675 �4.245 �5.309 �5.761 �5.482 �5.561 �4.964

a10 0.370 0.348 0.284 �0.027 �0.050 �0.272 �0.084

R2 0.99 0.99 0.99 0.99 0.98 0.98 0.97

Table 4

Regression constants of strength reduction coefficient F (cu = 3.0)

Eccentricity emin 0.25eb 0.5eb 0.75eb eb 1.2eb 1.5eb

a1 �0.176 �0.116 �0.090 �0.054 �0.040 �0.081 �0.083

a2 0.040 0.025 0.021 0.014 0.024 0.051 0.051

a3 1.046 0.125 �0.467 �1.433 �1.940 �1.510 �1.510

a4 0.764 0.638 0.621 0.832 0.887 0.799 0.799

a5 �0.004 �0.003 �0.002 �0.001 �0.001 �0.004 �0.004

a6 �0.196 �0.139 �0.298 �0.235 �0.293 �0.358 �0.358

a7 6.004 9.598 20.580 23.929 27.433 24.621 24.621

a8 0.079 0.094 0.109 0.105 0.098 0.095 0.095

a9 �4.762 �4.808 �5.848 �5.895 �5.936 �5.774 �5.774

a10 �0.017 0.084 0.052 �0.267 �0.394 �0.369 �0.369

R2 0.99 0.99 0.99 0.99 0.99 0.98 0.98
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3.2. Application of the proposed formula

The related details in design steps are described in

Fig. 9 to show the difference in long column design using

the proposed formula in this paper as opposed to the

ACI formula [1]. As shown in this figure, the ACI for-

mula requires an increase in the applied ultimate mo-

ment M0
u by multiplying a magnification factor

d ¼ 1=ð1� P 0
u=/kP crÞP 1:0ðMu ¼ dM0

uÞ, where Pcr a

critical load of a slender RC column and uk is the stiff-
ness reduction factor designed to consider the inevitable
random variability of the materials. Then, a column sec-

tion is designed to ensure that the modified ultimate
loads of P u ¼ P 0

u and Mu exist inside the P–M interac-

tion diagram in which the nominal strength of a column

section is reduced by the strength reduction factor / (see

Figs. 9 and 10(a)). Conversely, the proposed method

does not magnify the applied ultimate loads, while the

reduction of the P–M interaction diagram itself is taken

into consideration according to the proposed formula

(see Figs. 9 and 10(b)). As an example, the ultimate
resisting capacity of a short RC column corresponding
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to point A in Fig. 5 moves to point B in Fig. 5 as the

slenderness ratio increases while maintaining the eccen-

tricity by the primary bending moment M0
u ¼ P 0

ue. How-

ever, the design steps proceeding from the application of

the strength reduction factor / for column members to

the consideration of design code requirements are the
same as those mentioned in the ACI formula.

In particular, in frame structures accompanying side-

sway, the bending moment of an RC beam connected to

a slender RC column must also be magnified by the mo-

ment magnification factor d because of the force equilib-

rium at the considering joint. However, it is not

subjected to a resisting capacity reduction due to the

P–D effect. Hence, if a slender RC column is designed
by the proposed formula in this paper, it may be neces-

sary to increase the applied moment for the design of the

RC beam. In this case, the moment magnification factor

d noted in the ACI formula can be used, or the distance

between the points B and C in Fig. 5 can be directly cal-
Fig. 9. Comparison of
culated since the P–M interaction diagrams for the short

RC column and for the corresponding slender RC col-

umn can be uniquely determined without any rigorous

nonlinear analysis.

3.3. Extension of the proposed formula to the columns

subjected to moment gradient

Unlike an ideal RC column bent in a single uniform

curvature, most RC columns used in practice will likely

be subjected to moment gradient. Many design codes

adopting the moment magnifier method (the ACI Code

[1] and the AISC Specification [2], etc.) introduce an

equivalent uniform moment diagram factor Cm to deter-
mine the equivalent uniform end moment which gives

the same maximum internal moment for a column

subjected to unequal end moments, in spite of different

locations of the maximum moment. Currently, the

ACI Code uses a simplified Austin expression [4] that
design procedure.



(a) The ACI Method

(b) The Proposed Method

Fig. 10. Difference in design procedure of both methods: (a) the ACI

method; (b) the proposed method.
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eliminates its dependency on the axial force

Cm = 0.6 � 0.4(MA/MB) P 0.4, where MA/MB is nega-

tive if the column is bent in a single curvature (see

Fig. 11).

As opposed to the moment magnifier method, in
which only an increase in the applied ultimate moment

is magnified by a magnification factor d to consider the

P–D effect without any change in the applied axial force,

the proposed formula is based on a strength reduction

coefficient F (see Fig. 5) at the same eccentricity.

Hence, no direct adoption of the same moment cor-

rection factor Cm used in the ACI Code is possible be-

cause the axial force P and end moments MA and MB

which act on the member (as shown in Fig. 11) must

be replaced by the equivalent axial force and end mo-
ments to maintain the consistency with a strength reduc-

tion coefficient F. This means that the magnitude of the

equivalent axial force and end moments are such that

the maximum moment Mmax produced by them will be

equal to that produced by the actual axial force and

end moments MA and MB.
From the equality condition for the maximum mo-

ments of the two systems in Fig. 11,

Mmax � jMBj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMA=MBÞ2 þ 2ðMA=MBÞ cos kLþ 1

sin2kL

s

� CEQ
m jMBj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos kEQLÞ

sin2kEQL

s

¼ CEQ
m jMBj sec

kEQL
2
¼ CEQ

m jMBj
1

1� CEQ
m P
P e

: ð6Þ

The equivalent uniform moment diagram factor CEQ
m

in Fig. 11(b) can be written as

1

CEQ
m

¼ P
P e
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2kL

ðMA=MBÞ2 þ 2ðMA=MBÞ cos kLþ 1

s
; ð7Þ

or approximately on the basis of the Austin expression,

1

CEQ
m

¼ P
P e

þ 1� P=P e

0:6� 0:4MA=MB
; ð8Þ

because

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMA=MBÞ2 þ 2ðMA=MBÞ cos kLþ 1

q
ffi ½0:6�

0:4ðMA=MBÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos kLÞ

p
¼ ½0:6� 0:4ðMA=MBÞ�2 sin

ðkL=2Þ, where kL ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffi
P=P cr

p
; kEQL ¼ kL

ffiffiffiffiffiffiffiffiffi
CEQ

m

q
, Pcr =

p2EI/(bL)2, EI = 0.2EcIg + EsIse, where Ig and Ise denote

the moment of inertia of a gross concrete section and

reinforcement about the centroidal axis as proposed in

the ACI Code, and bL the effective span length consid-

ering the end boundary condition [1].
In advance, the estimated ultimate resisting capacity

of a slender RC column subjected to unequal end mo-

ments of MA and MB as shown in Fig. 11(a) can finally

be represented by ð1� F Þ=CEQ
m P n; ð1� F Þ=CEQ

m Mn

� �
¼

ð1� F Þ=CEQ
m ðP n;MnÞ ¼ ð1� F Þ=CEQ

m � OA in Fig. 5 in

the case of the proposed formula because the trans-

formed equivalent forces of CEQ
m P ;CEQ

m MB

� �
in Fig.

11(b) correspond to point B in Fig. 5 represented by
(1 � F)(Pn, Mn). Especially, the reduction rate

ð1� F Þ=CEQ
m must be less than or equal to unity to have

physical meaning as the inverse of a moment magnifica-

tion factor 1/d in the ACI Code.

In advance, most RC members subject to combined

axial compression and bending moment occur as parts

of rigid frames, rather than as isolated members. A cor-

rect rational analysis and design of long columns in such
frames must include the actual end restraints by adjoin-

ing members. Nevertheless, in design aspect, a column

may be considered as an isolated member removed from

the frame and replaced by an equivalent pin-end column



(a) (b)

Fig. 11. Schematic representation of equivalent forces: (a) real system; (b) equivalent system.
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whose length is equal to the effective length bL for axial

compression on the real column. The equivalent column

is then analyzed for compression plus the end moments

carried by the member.

The most commonly used procedure for obtaining the

equivalent pin-end effective length is to use the alignment

charts from the Structural Stability Research Council

Guide [5], which has also been adopted by ACI318 for
the approximate evaluation of effective length factor b.

Since the proposed regression formula of strength reduc-

tion factors F is proposed for use in determining an

initial section in the preliminary design stage, and the

effective length factor b has been introduced to replace

an end-restrained column by an equivalent pin-end col-

umn, the same procedure for calculation of b, adopted

in the ACI318 Code, can be used in this study to consider
the effective length bL. Namely, the variable L in Eq. (1)

can be replaced by bL on the basis of b calculated from

the ACI Code. In advance, more detailed analyses of pre-

liminary designed RC columns may be followed in the

final design stage on the basis of the proposed numerical

model in this paper.
4. Verification of the proposed formula

To verify the effectiveness of the proposed formula,

typical RC columns with different steel and slenderness

ratios are analyzed for short-term and long-term

loadings. For convenience of comparison, the reduced

ultimate moments of Mnd from Eq. (3) in Fig. 9 are

used in case of the ACI formula as the moment corre-
sponding to Pn, and the obtained results can be found

in Figs. 12–15. In addition, the stiffness reduction factor

uk and the strength reduction factor u are assumed to

be 1.0 for the purpose of comparison with the numerical

results.

In order to review the structural responses according to

the compressive strength of concrete and steel ratios, RC

columns with f 0c ¼ 250 kgf=cm2 and f 0c ¼ 400 kgf=cm2,
which are the generally adopted compressive design

strengths in small to medium building structures, are

analyzed and the obtained results can be found in Fig.

12. The ACI model represents very close results with

sophisticated P–D analysis in RC columns with a small

slenderness ratio, even though there is still a large differ-

ence from the rigorous nonlinear analyses results in RC
columns with large slenderness ratio. Furthermore, the

proposed formula provides a uniform safety margin,

which means the uniform difference between the results

predicted by the proposed formula and the results calcu-

lated by a rigorous analysis over an entire eccentricity,

regardless of the compressive strength of concrete and

steel ratio.

As shown in Fig. 12, the ACI formula effectively sim-
ulates the P–D effect when the slenderness ratio is rela-

tively small regardless of the compressive strength of

concrete and steel ratio. However, in columns with large

steel and slenderness ratios, the ACI formula appears to

be slightly on the unsafe side, such that the ultimate

resisting capacity of RC columns may be overestimated.

Meanwhile, the ACI formula gives very conservative re-

sults with a great difference between the ACI envelopes
and the sophisticated P–D analysis as the slenderness ra-

tio increases (L/r = 70), and the difference seems to be

larger in high strength concrete columns with relatively

small steel ratios.

In advance, Figs. 13–15 show that the ACI formula is

limited in its ability to calculate the ultimate resisting

capacity of slender RC columns subjected to long-term

loadings and may not be applicable to an RC column
with a slenderness ratio greater than 30. This means that

the time-dependent deformation of concrete cannot be

effectively considered with one parameter bd represent-

ing the ratio of dead load to total load. In fact, the term

1 + bd in the ACI formula [1] implies that a fixed value

of the ultimate creep coefficient is assumed, and an

improvement of the ACI formula may be required. As

shown in Figs. 13–15, the ACI formula gives very close
results to those obtained by the rigorous time-dependent

analysis in the case of slender RC columns with small

slenderness ratios, regardless of the ultimate creep coef-

ficient. Overall, it may be observed that the ACI formula

is conservative in most cases, and consequently it does

not achieve the objective of a uniform safety margin.

On the other hand, the proposed formula presents good

agreement with sophisticated P–D analysis through the
entire eccentricity range.

To verify the extensibility of the proposed formula to a

slender RC column subjected to unequal end moments,

typical slender RC columns with f 0c ¼ 250 kgf=cm2 and

f 0c ¼ 400 kgf=cm2 are analyzed, and representative

numerical results for RC columns which show a remark-

able P–D effect can be found in Figs. 16 and 17. As



(a) (b)

Fig. 13. P–M interaction diagrams (cu = 1.0): (a) f 0c ¼ 250 kgf=cm2, qs = 0.02; (b) f 0c ¼ 400 kgf=cm2, qs = 0.02.

(a) (b)

(c) (d)

Fig. 12. P–M interaction diagrams (short-term loading): (a) f 0c ¼ 250 kgf=cm2, qs = 0.02; (b) f 0c ¼ 400 kgf=cm2, qs = 0.02; (c) f 0c ¼ 250 kgf=cm2,

qs = 0.06; (d) f 0c ¼ 400 kgf=cm2, qs = 0.06.
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shown in these figures, the proposed formula can

effectively estimate the ultimate resisting capacity of

slender RC columns subjected to unequal end moments
in cooperation with the equivalent uniform moment dia-

gram factor CEQ
m in Eq. (8) and shows more improved re-

sults than the ACI method even though there is still not



(b)(a)

Fig. 14. P–M interaction diagrams (cu = 2.0); (a) f 0c ¼ 250 kgf=cm2, qs = 0.02; (b) f 0c ¼ 400 kgf=cm2, qs = 0.02.

(a) (b)

(c) (d)

Fig. 15. P–M interaction diagrams (cu = 3.0): (a) f 0c ¼ 250 kgf=cm2, qs = 0.02; (b) f 0c ¼ 400 kgf=cm2, qs = 0.02; (c) f 0c ¼ 250 kgf=cm2, qs = 0.06;

(d) f 0c ¼ 400 kgf=cm2, qs = 0.06.
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so a small difference between the numerical results

obtained by rigorous nonlinear analysis and the results

obtained using the proposed formula. The difference
seems to be a little larger in slender RC columns with

a small steel ratio in particular. These differences seem

to be caused by adopting the approximate expression



(a) (b)

(c) (d)

(e) (f)

Fig. 16. P–M interaction diagrams of RC columns subject to unequal end moments (short term behavior): (a) Ma/Mb = 0; (b) Ma/Mb = 1; (c) Ma/

Mb = 0; (d) Ma/Mb = 1; (e) Ma/Mb = 0; (f) Ma/Mb = 1.
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of CEQ
m (see Eq. (8)). Nevertheless, the proposed formula

can be effectively used in determining an initial section

of slender RC columns.

Moreover, as shown in Figs. 16 and 17, the ACI

formula gives a conservative estimation of slender

RC columns subjected to unequal end moments, and
this trend endures regardless of the ultimate creep

coefficient Cu. Specifically, an influence of the time-

dependent deformation of concrete on the resisting

capacity of slender RC columns cannot be effectively

considered with one parameter bd, as in the RC col-

umns subjected to equal end moments. On the other



(a) (b)

(c) (d)

Fig. 17. P–M interaction diagrams of RC columns subject to unequal end moments (long term behavior): (a) Ma/Mb = 0; (b) Ma/Mb = 1; (c) Ma/

Mb = 0; (d) Ma/Mb = 1.
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hand, since the proposed formula has adopted the

direct regression of the rigorous analysis results ob-

tained for each ultimate creep coefficient Cu as was

done in the short-term loading case (Cu = 0), an addi-

tional loss of accuracy in the proposed formula caused
by introducing an another parameter Cu representing

no regulation seems to be minimized.
5. Conclusions

In this paper, numerous nonlinear time-dependent

analyses are performed using the proposed numerical
model in the companion paper. Through time-depen-

dent and P–D analyses of slender RC columns, a sim-

ple and effective regression formula for the design of a

slender RC column is introduced. Based on the results

in this limited investigation, the following conclusions

are obtained: (1) The ACI formula gives good agree-

ment with the P–D analysis of RC columns subjected
to short-term loading when the compressive strength

of concrete, slenderness ratio and steel ratio are rela-

tively small; but (2) it gives very conservative results

as the slenderness ratio increases; and (3) the ACI for-

mula needs to be improved for more effective simula-
tion of the time-dependent effect; (4) a reasonable

estimation of the ultimate resisting capacity by the

ACI formula may not be expected for an RC column

with a slenderness ratio greater than 30 that is sub-

jected to long-term loading; and (5) the proposed for-

mula shows good agreement with the P–D analysis

and gives a uniform safety margin for any slender

RC column.
Although sophisticated numerical methods consider-

ing material and geometric nonlinearities and time-

dependent deformation will play an increasingly

important role and will become the standard for final

design checks, the proposed formula can be effectively

used in determining an initial section of slender RC

columns at the preliminary design stage. Moreover, to

reach a more rational approach, extensive studies for
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reliability assessment, including experimental studies,

need to be undertaken.
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