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Abstract— This work presents an efficient algorithm for
an observation targeting problem that is complicated by the
combinatorial number of targeting choices. The approach
explicitly incorporates an ensemble forecast to ensure that the
measurements are chosen based on their expected improvement
in the forecast at a separate verification time and location.
The primary improvements in the efficiency are obtained by
computing the impact of each possible measurement on the
uncertainty reduction over this verification site backwards. In
particular, the approach determines the impact of a series of
fictitious observations taken at the verification site back on the
search space (and time), which provides all of the information
needed to optimize the set of measurements to take and signif-
icantly reduces the number of times that the computationally
expensive ensemble updates must be performed. A computation
time analysis and numerical performance simulations using
the two-dimensional Lorenz-95 chaos model are presented to
validate the computational advantage of the proposed algorithm
over conventional search strategies.

I. INTRODUCTION

One key aspect of a sensor network is determining when,

where, and which type of sensors should be deployed in order

to achieve the best information, which can be the uncertainty

reduction of a region of interest [1]–[3], coverage area of the

sensors, localization of a specified target [4]–[7], and com-

munication cost savings [3,4]. This type of decision making

addresses two technical issues: an effective way to define

and compute the information reward, and a logical way to

determine the best choice. These two are often conflicting

each other in practice. Expensive reward computation may

lead to settling for a simple selection strategy; conversely,

the need for a sophisticated strategy might necessitate the

use of approximate reward computation. This is caused by

the combinatorial aspect of the selection problem as well as

by the limited time and computational resources.

Many studies have been devoted to effectively evaluating

the reward value. Zhao et al. [4] introduced the Mahalanobis

distance characterized by the location and modality of a sen-

sor in a dynamic query network to avoid complicated entropy

computation. Ertin et al. [5] pointed out the equivalence

of minimization of the conditional entropy to maximization

of the mutual information in Bayesian filtering framework.

Wang et al. [7] presented an entropy-based heuristics to

approximate the computationally expensive mutual informa-

tion in the target tracking task, while Guestrin et al. [1]

proposed an approximation algorithm based on local kernels
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for maximizing mutual information in Gaussian processes,

and extended it to a randomized algorithm for a graphical

model [3]. With respect to the selection strategy, however,

they all adopted a greedy strategy with sacrificing opti-

mality, since the reward calculations are too complicated

to consider more sophisticated selection strategies in prac-

tice. Williams et al. [6] proposed an approximate dynamic

programming approach to find the receding-horizon optimal

sensor scheduling solution for best information gain with

communication power being restricted. However, they just

considered a single moving target with linear dynamics.

This paper addresses a large-scale dynamic sensor network

design within the context of a weather prediction problem.

Complex characteristics of the weather dynamics such as

being chaotic, uncertain, and of multiple time- and length-

scales, leads to the necessity of a large sensor network.

Expansion of the static observation network is limited by

geographic aspects; thus, an adaptive sensor network incor-

porating mobile sensor platforms (e.g. UAVs) has become

an attractive solution to construct effectively large networks.

Palmer et al. [9] and Daescu et al. [10] located the potential

error-growing sites based on the sensitivity information in-

herited in the dyanamics; meanwhile, Majumdar et al. [11]

and Leutbecher [12] quantified the future forecast covariance

change within the framework of approximation of extended

Kalman filter. However, due to the enormous size of the

system – millions of state variables and thousands of adaptive

measurements [11], the selection strategy was very simple –

for the most, two flight paths was greedily selected out of

49 predetermined paths in Ref. [11].

This work provides a much more efficient way to per-

form the targeting of a sensor network in a large space

when the goal is to reduce the uncertainty in a speci-

fied verification space/time. The dynamic sensor targeting

problem is formulated as a static sensor selection problem

associated with the ensemble-based filtering [13,14]. Mu-

tual information is introduced as a measure of uncertainty

reduction, and computed under the Gaussian assumption.

To address the computational challenge resulting from the

expense of determining the impact of each measurement

choice on the uncertainty reduction in the verification site,

the commutativity of mutual information is exploited. This

enables the contribution of each measurement choice to be

computed by propagating information backwards from the

verification space/time to the search space/time. This sig-

nificantly reduces the required number of ensemble updates

that is computationally intensive. Analytic estimates of the

computation time for the proposed approach are given in

comparison to a conventional forward approach. Numerical
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simulations are also presented to validate the computation

advantage of the suggested approach.

II. PRELIMINARIES

A. Ensemble Square Root Filter

Ensemble-based forecast represents the nonlinear features

of the weather system better, and mitigates the computational

burden of linearizing the nonlinear dynamics and keeping

track of a large covariance matrix [13,14]. In the ensemble

square root filter (EnSRF), the state estimate and the estima-

tion error covariance are represented by the ensemble mean

and perturbation ensemble variance, respectively. The pertur-

bation ensemble being defined as X̃ ≡ η
(
X − x̄ × 1T

)
∈

R
LS×LE , the error covariance is approximated as P =

X̃X̃T /(LE − 1), where X is the ensemble matrix, x̄ is the

ensemble mean vector, LS and LE denote the number of

state and the ensemble members, and η is the inflation factor

to avoid underestimation of the covariance. The propagation

step for the EnSRF corresponds to the integration

Xf (t + ∆t) =
∫ t+∆t

t
Ẋdt (1)

with the initial condition X(t) = Xa(t), superscripts ‘f’

and ‘a’ denote the forecast and the analysis, respectively.

The measurement update step for the EnSRF consists of the

mean update and the perturbation update as:

x̄a = x̄f + K(y − Hx̄f ), X̃a = (I − KH)X̃f (2)

where y and H are the measurement vector and the observa-

tion matrix, while K represents the Kalman gain determined

by a nonlinear matrix equation of X [13]. In the sequential

framework devised for efficient implementation, the ensem-

ble update by the m-th observation is written as

X̃m+1 = X̃m − αmβmpm
i ξ̃m

i (3)

with αm = (1+
√

βmRi )−1, βm = (Pm
ii +Ri)

−1, when i-th
state is measured. pm

i , ξ̃m
i , and Pm

ii are the i-th column, the

i-th row, and (i, i) element of the prior perturbation matrix

Pm, respectively. αm is the factor for compensating the

mismatch between the serial update and the batch update,

while βmpm
l is equivalent to the Kalman gain.

B. Entropy and Mutual Information

Entropy represents the amount of information hidden

in a random variable (A), and is defined as h(A) =
−E [ log (pA(a))] [15]. This definition can be easily ex-

tended to the case of a random vector. The joint entropy

h(A1, A2) and the conditional entropy h(A2|A1) is related

as h(A1, A2) = h(A1)+h(A2|A1). The mutual information

– also called information gain – that will be employed as

a metric of the uncertainty reduction of the forecast by the

measurement is defined as:

I(A1; A2) ≡ h(A1) − h(A1|A2). (4)

Note that the mutual information is commutative [15]:

I(A1;A2) ≡ I(A2; A1) = h(A2) − h(A2|A1). In case a

random vector A is jointly Gaussian, its entropy is expressed
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Fig. 1. Multiple targeting as a sensor placement problem

as h(A) = 1
2 log

[
(2πe)k|Cov(A)|

]
. This work computes the

mutual information between the verification and measure-

ment variables by exploiting the commutativity under the

Gaussian assumption.

III. PROBLEM FORMULATION

A. Sensor Selection Problem

Figure 1 illustrates the sensor targeting problem in the

spatial-temporal gridspace. The objective of sensor targeting

is to deploy n sensors in the search space/time (yellow

region) in order to reduce the uncertainty in the verification

region (purple region) at the verification time tV . Without

loss of generality, it assumed that each grid point is as-

sociated with a single state variable that can be directly

measured. Denote the state variable at location i as Xi,

and the measurement of Xi as Zi, both of which are

random variables. Also, define Z ≡ {Z1, Z2, · · · , ZN} and

X ≡ {X1,X2, · · · ,XN} the sets of all corresponding

random variables over the entire search space of size N .

Likewise, V ≡ {V1, V2, · · · , VM} denotes the set of random

variables representing states in the verification region at tV ,

with M being the size of verification space. With slight

abuse of notation, this paper does not distinguish a set of

random variables from the random vector constituted by the

corresponding random variables. Measurement is subject to

Gaussian noise that is uncorrelated with any of the state

variables as follows.

Zi = Xi + Ni; Ni ∼ N (0, Ri), ∀ i ∈ Z+ ∩ [1, N ], (5)

Cov(Ni, Yj) = 0, ∀ Yj ∈ X ∪ V. (6)

This work addresses the general selection problem of

selecting n grid points from the search space that will give

the greatest reduction in the uncertainty of V , which is

written as:

General Selection Problem

i⋆ = arg max
i

I(V ;Zi) = h(V ) − h(V |Zi) (7)

where ψX∪V (x1, · · · , xN , v1, · · · , vM ) = given. (8)

i , {i1, i2, · · · , in} ∈ Sn ⊆ Z
n
+ ∩ [1, N ], and Zi ,

(Zi1 , Zi2 , · · · , Zin
) where Sn is the set of n distinct grid

points whose cardinality is
(
N
n

)
; ψX∪V (·) denotes the suffi-

cient statistics to compute the entropy of any set Y ⊂ X∪V .

The condition (8) might be a very stringent requirement

in general, since only some of the first and the second

moments of the required distribution are usually available

in practice. In this work, the statistical ensembles of each

random variable are given in advance; thus, one possible way
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is empirically generating the approximate joint distribution

out of ensembles, which, however, takes a great deal of

computational resources.

In case all the random variables are jointly Gaussian one

another, the entropy of the set can be evaluated from the

covariance information. Then, the selection problem can be

written as:

Forward Selection for Gaussian (FSG)

i⋆F = arg max
i

1

2
ln

{ |Cov(V )|
|Cov(V |Zi)|

}

(9)

where Cov(Yl, Ym) = given, ∀ Yl, Ym ∈ X ∪ V, (10)

It is noted that the covariance of each pair of random

variables can be easily estimated from the ensemble of each

random variable. Although every quantity appearing in (9)

can be computed from the given covariance information and

measurement model, finding i⋆F typically requires a brute

force search over the entire candidate space Sn; the selection

process is subject to combinatorial explosion, when N and/or

n are large. N is usually very large for the observation

targeting problem for improving weather prediction. More-

over, computing the conditional covariance Cov(V |Zi) and

its determinant requires nontrivial computation time. In other

words, combinatorial number of computations, each of which

takes significant amount of time, are required to find the

optimal solution for FSG formulation.

Given these computational issues, this paper proposes the

following formulation of the selection problem:

Backward Selection for Gaussian (BSG)

i⋆B = arg max
i

I(Zi; V ) = h(Zi) − h(Zi|V ) (11)

= arg max
i

1

2
ln

{ |Cov(Xi) + Ri|
|Cov(Xi|V ) + Ri|

}

(12)

where Cov(Yl, Ym) = given, ∀ Yl, Ym ∈ X ∪ V. (13)

Note that this formulation gives the same solution as FSG

under the jointly Gaussian assumption, since the mutual

information is commutative.

Proposition 1 i⋆F ≡ i⋆B , since I(V ;Zi) ≡ I(Zi; V ),∀i ∈ Sn.

BSG still determines i⋆B relying on the brute force search;

it is also subject to combinatorial explosion. Nevertheless,

it has some preferable features compared with FSG: One

thing is Cov(Zi|·) can be expressed as simply Cov(Xi|·) +
Ri, the first term of which is already embedded in the prior

covariance structure. This type of simple relation does not

exist for Cov(·|Zi) and Cov(·|Xi), which appear in FSG.

This simplicity was utilized in [6] for better formulation and

efficient implementation.

Remark 1 In the conventional Kalman filter framework

written in Joseph form [16], the conditional covariances in

(9), and (12) are computed using

PXi∪V |Zi
= (I − [KFi

0])PXi∪V (I − [KFi
0])

T

+ KFi
RiK

T
Fi

(14)

PXi∪V |V = (I − [0 KBi
])PXi∪V (I − [0 KBi

])
T

(15)

where KFi
= PV Xi

[PXi
+ Ri]

−1
, and KBi

= PXiV P−1
V .

The brute force searches for finding i⋆F and i⋆B will perform

the above update equations
(
N
n

)
times. Note, however, that

PXi|V can be evaluated from the following update equation

of a bigger size covariance matrix:

PX∪V |V =
(
I −

[
0 KB

])
PX∪V

(
I −

[
0 KB

])T
(16)

where KB = PXV P−1
V . Then, computing PXi|V amounts

to extracting the corresponding submatrix from PX|V . Since

the number of submatrices to extract is
(
N
n

)
, this process

is also combinatorial. However, computing the determinant

of this submatrix usually takes less time than updating the

covariance as (14). Thus, it can be conjectured that BSG

search will be computationally less expensive than FSG

search. Detailed analytic comparisons of the computation

time in the EnSRF framework are in section IV.

BSG search becomes more preferable in case n is smaller

than M , since it computes the matrix determinant of a

smaller matrix than the FSG has to compute. This is usually

the case for the UAV targeting problem in the context of

numerical weather prediction. The size of verification region

could be very large, while limited resources of UAV might

keep us from selecting too many places to take measurement.

B. EnSRF-Based Targeting Problem

The sensor targeting problem concerns improving the

weather forecast for the future time tV broadcasted at another

future time tK (< tV ), by deploying additional observation

networks from t1 through tK , where the known routine sen-

sor networks are assumed to take measurement periodically

(every 6 hours in practice) and the analysis ensemble at the

current time t0 is given. Since the actual value of the future

measurement that affects the forecast error is not available

at the decision time t0, ensemble-based targeting considers

the forecast uncertainty reduction in the statistical sense that

can be quantified by prior covariance and the sensing noise

variance. Also, to avoid computing the effect of the fixed

observations repeatedly, the impact of the routine networks

is processed in advance; the outcome of this process will be

the prior information for the selection process.

To incorporate the effect of temporally-distributed obser-

vation, this work considers the noncausal covariance up-

date described by the augmented forecast ensemble: X f ≡
[
X

f
t1

; · · · ;Xf
tK

;Xf
tV

]
∈ R

(K+1)LS×LE where X
f
tk

is the

forecast ensemble at tk propagated from Xa(t0). With an

appropriate observation matrix H and Kalman gain K, the

ensemble update is written as X̃ a = (I − KH)X̃ f without

ensemble mean update that depends on the actual value of the

measurement. Note also that after incorporating all the fixed

networks, only the submatrix of the perturbation ensemble

associated with X and V is involved in the selection process.

IV. COMPUTATION TIME ANALYSIS

As described in Remark 1, the backward search can be

faster than the forward search, if the covariance update is

computationally expensive. This section details the compu-

tation time of both search schemes in the EnSRF-based
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targeting framework. The estimated computation time of

each scheme will be presented, with pointing out which

part of computation makes the difference between the speed

of FSG and BSG. The selection process is related to the

four computation elements: 1) perturbation ensemble update,

2) covariance matrix computation from the ensemble, 3)

determinant calculation of the covariance matrix, and 4)

selection of the best candidate from the reward list. This

section describes these four by introducing the following four

atomic time units: δLE
, σLE

, τk, and θk.

δLE
represents the time for updating LE ensemble mem-

bers associated one state variable by one observation. In

the sequential update framework, it will take approximately

pqδLE
to update p states with q observations. Also, δLE

itself

is proportional to LE . σLE
is the time for computing inner

product of two vectors with size LE . Then, the multiplication

of p × LE matrix and its transpose on its right will take

approximately p2σLE
. τp denotes the time for calculating

the determinant of p × p symmetric matrix; θp denotes the

time for selecting the greatest element out of the list with

length k. τp ∝ p3 for large p, while θp ∝ p.

In FSG search, for every candidate consisting of n grid

points, the ensemble members associated with n + M vari-

ables − the candidate points themselves and the verification

variables − are updated by n observations. Also, every

ensemble update is followed by the covariance matrix con-

struction and the determinant computation of that matrix,

which take (n+M)2σLE
, and τM , respectively. After all the

mutual information has been computed, the best candidate is

selected; which takes θ(N

n). So the estimated time for FSG

to compute the solution is

T̂F =
(
N
n

)[

n(n + M)δLE
︸ ︷︷ ︸

ensemble update

+(n + M)2σLE
︸ ︷︷ ︸

covariance comp.

+ τM
︸︷︷︸

det.

]

+ θ(N

n)

For BSG, for each candidate measurement choice, its

conditioned and unconditioned covariances are extracted

from the overall covariance matrices corresponding to the

entire search space. The ensemble update by V on all X and

V takes M(N + M)δLE
, while construction of two overall

covariance matrices takes 2(N + M)2σLE
. Determinants of

two n × n matrices are evaluated for each candidate. It is

assumed that matrix extraction takes negligible time. Then,

the estimated formula for the computation time of BSG is

T̂B = M(N + M)δLE
︸ ︷︷ ︸

ensemble update

+2 (N + M)2σLE
︸ ︷︷ ︸

covariance comp.

+2
(
N
n

)
τn

︸ ︷︷ ︸

det.

+θ(N

n)

Note that T̂B does not contain the combinatorial feature

in the ensemble update and the covariance computation in

contrast to T̂F . Even the combinatorial term in T̂B is likely

to be smaller than its counterpart in T̂F , since M is usually

bigger than n. Thus, for a reasonable size of problem, BSG

may find the optimal solution within acceptable time, while

FSG cannot. However, increase of n will accelerate the

explosion of T̂B , seeing that
(
N
n

)
is exponential in n and

τn is cubic in n.

V. GREEDY STRATEGIES

A. Algorithms

Computation time for the two full search methodologies

given in section III exponentially grows with respect to the

number of targeting points. One typical algorithm to avoid

this exponential growth is the greedy algorithm that selects

the best point one by one [17]. The greedy algorithm based

on the forward selection formulation is stated as follows.

Forward Greedy Selection for Gaussian (FGSG)

iF⋆
k = arg max

i

h(V |ZiF ⋆

k−1

) − h(V |ZiZiF ⋆

k−1

)

= arg max
i

1

2
ln

{ |Cov(V |ZiF ⋆

k−1

)|
|Cov(V |ZiZiF ⋆

k−1

)|

}

, ∀k ≥ 1
(17)

where ZiF ⋆

k

≡ (Zi⋆

1
, · · · , ZiF ⋆

k

), and ZiF ⋆

0

= ∅. For every

selection step, the decision of picking a single grid point

is made conditioned on all the previous decisions. Since

Cov(V |ZiF∗

k

) is known for the k-th step, the required com-

putation per selection step comprises N times of ensemble

update followed by the determinant calculation of the up-

dated covariance of V . Thus, the computation time increases

as O(nN), which could be still big in case of large N . This

work suggests a backward greedy selection algorithm that

can be faster than FGSG.

Backward Greedy Selection for Gaussian (BGSG)

iB⋆
k = arg max

i
h(Zi|ZiB⋆

k−1

) − h(Zi|V ZiB⋆

k−1

)

= arg max
i

1

2
ln

{
Var(Xi|ZiB⋆

k−1

) + Ri

Var(Xi|V ZiB⋆

k−1

) + Ri

}
(18)

∀k ≥ 1, where ZiB⋆

k

is defined likewise. BGSG selects the

site where the difference between the entropy conditioned

on previous selections and that conditioned on the previous

selections and V . Two aspects that characterize the computa-

tional benefits of this algorithm are: 1) BGSG is not involved

in computation of the determinant of a large matrix, and

2) only two ensemble updates by ZiB⋆

k−1

is needed for the

k-th selection step, since Var(·|ZiB⋆

k−2

) and Var(·|V ZiB⋆

k−2

)
are evaluated in advance. Note that BGSG gives the same

solution as FGSG: iF⋆
k = iB⋆

k , ∀ 1 ≤ k ≤ n.

B. Computation Time

Computation time for the greedy algorithms can also be

expressed using the atomic time units defined in section IV.

In addition to time for computing the information of gain

of each candidate point, FGSG needs additional ensemble

update for computing the effect of the selected observation

onto the rest of the search space. Thus, the estimated

computation time is

T̂FG =nN(1 + M)δLE
+ (n − 1)(N + M)δLE

+ nN(1 + M)2σLE
+ nNτM + nθN .

(19)

Note that most terms are proportional to nN . In BGSG,

the amount of computation needed for picking the rest of

the points is smaller than that for picking the first point,

since the impact of V is calculated only at the first selection
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step. BGSG only computes the diagonal elements of the

covariance matrix of X ∪ V , which will take (N + M)σLE
.

Then, the estimated computation time is

T̂BG =M(N + M)δLE
+ 2(n − 1)(N + M)δLE

+ 2n(N + M)σLE
+ nθN .

(20)

Recalling that O(1) ≤ n ≤ M ≪ N for many problems,

it is pointed out that T̂BG becomes smaller than T̂FG as

n becomes larger. The δLE
term grows in O(nMN) for

FGSG but O((M + 2n)N) for BGSG; the σLE
terms grow

in O(nNM2) and O(2nN), respectively. Also, if M is very

large, the τM in T̂FG can be very big, since it increases in

O(M3). Therefore, BGSG will be much more beneficial than

FGSG for large problems such as weather applications.

VI. NUMERICAL SIMULATIONS

A. Lorenz-95 Model

The Lorenz-95 model [8] is an idealized chaotic model in

which key aspects of weather dynamics are included, such

as energy dissipation, advection, and external forcing. As

such, it has been successfully implemented for the initial

verification of the numerical weather prediction algorithms.

[12] In this paper, the original one-dimensional model is

extended to two-dimensions representing the mid-latitude

region of the northern hemisphere. The system equations are

ẏij =(yi+1,j − yi−2,j) yi−1,j + µ (yi,j+1 − yi,j−2) yi,j−1

− yij + F, (i = 1, . . . , Lon, j = 1, . . . , Lat). (21)

where the subscript i denotes the west-to-eastern grid index,

while j denotes the south-to-north grid index. The dynamics

of the (i, j)-th grid point depends on its neighbors through

the advection terms, on itself by the dissipation term, and on

the external forcing (F = 8 in this work). There are Lon =
36 longitudinal and Lat = 9 latitudinal grid points. The

dynamics in (21) are subject to cyclic boundary conditions

in longitudinal direction (yi+Lon,j = yi−Lon,j = yi,j) and to

the constant advection condition( yi,0 = yi,−1 = yi,Lat+1 =
4 in advection terms) in the latitudinal direction, to model

the mid-latitude area as an annulus. Regarding to the time

scale, 0.05 time units are are equivalent to real 6 hours.

B. Multiple Targeting

For numerical validation of the proposed backward

scheme, the following multiple targeting scenarios are con-

sidered. The routine network with size 93 is assumed to be

already deployed over the grid space (blue ‘o’ in figs. 2

and 3). The static network is dense in two portions of the

grid space called lands, while it is sparse in the other two

portions of the space called oceans. The routine network

takes measurements every 0.05 time units. The leftmost

part of the right land mass (consisting of 10 grid points

depicted with red ‘¤’) is the verification region. The goal is

to reduce the forecast uncertainty in the verification region

0.5 time units after the targeting time. The targeting time

tK = 0.05 with K = 1. The analysis ensemble at t0 with

size 1024 is obtained by running the EnSRF with routine

observations for 500 time units. All the grid points in the left

ocean are considered as a candidate point to locate additional

measurement at t1; therefore, N = 108. The measurement

noise variance is 0.22 for routines and 0.022 for additional

observations. With this setting, the targeting results, as the

number of targeting points n being increased, are obtained

by using the four algorithms: FSG/BSG/FGSG/BGSG.

It should be first pointed out that the backward algorithm

gives the same solution as the forward algorithm for all

the cases – not only the optimal locations but also the

objective function values. This implies that the Gaussian

assumption in computing the mutual information effectively

holds. Figure 2 illustrates the optimal sensor locations(cyan

‘⋄’) by the exhaustive search strategy, while figure 3 shows

the greedily selected sensor locations for n = 1, 3, and 5.

The shaded contour in both figures represents I(V ;Zi) for

each grid point. It is noted that the optimal solution for

n = 5 looks very different from the greedy solution, as it

does not even select two dark points that it did select in

case of n = 3. This is an exemplary case of representing

suboptimality of the greedy strategy. Table I represents the

mutual information value by different strategies for different

n. It is seen that the performance gap between strategies

becomes more distinctive as n increases; meanwhile, the

gap between the optimal and the greedy one is smaller than

that between the greedy and the naive solution that makes

decision only based on I(V ;Zi).

Tables II and III represent the actual and estimated compu-

tation time of each algorithm with respect to n. The atomic

time units for computation time estimation are determined

by the Monte Carlo simulation. Each atomic time unit has

the value of: δLE
= 58.9 µs, σLE

= 2.6 µs, τk = 0.7k0.6 µs,
and θk = 7.6 × 10−3k µs. It is found that τk grows slower

than k3 for k ≤ 50. Note in Table II that BSG is much

faster and its rate of computation time growth is slower than

FSG. Given that a real scenario is much bigger than this

example, it is clear that FSG is not practical to implement

for multiple targeting problems. The results confirm that the

backward algorithm is much faster, and should be practical

for selecting up to a few measurement locations. The supe-

riority of backward scheme extends to the greedy case as

well (Table III). Furthermore, note that the forward greedy

algorithm actually takes longer than the backward full search

algorithm when n = 2; this implies the optimal solution can

be obtained by the backward scheme without sacrificing any

computation resource at all. Finally, the estimated values of

the computation time provides sufficient accuracy with less

than 30% error, which must be small enough to indicate the

tractability of the problem.

TABLE I

I(V ; Zi⋆ ) WITH RESPECT TO THE STRATEGY

N n Optimal Greedy Naive

108 1 0.46 0.46 0.46

108 3 1.24 1.19 1.02

108 5 1.95 1.86 1.66
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Fig. 2. Multiple targeting with full search algorithms

VII. CONCLUSIONS

This paper presented a backward formulation for the

large scale sensor targeting incorporated with ensemble-

based filtering, which enhanced the computational efficiency

by reducing the number of times of ensemble updates. It was

shown that the proposed approach provides the same solution

as the conventional forward approach due to the commuta-

tivity of mutual information. Computation time analysis and

numerical simulations using an idealized chaos model both

supported the computational benefit of the proposed scheme.

Future research will apply the proposed approach to more

realistic weather models.
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TABLE II

COMPUTATION TIME FOR FULL SEARCH ALGORITHMS

N n TF (s) TB (s) T̂F (s) T̂B(s)

108 1 0.13 0.13 0.10 0.14

108 2 8.17 0.16 10.4 0.15

108 3 344.5 0.72 561.4 0.61

108 4 − 18.8 5.7 hr 14.6

108 5 − 461.3 6.5 day 349.3

108 10 − − 16000 yr 7.2 yr

TABLE III

COMPUTATION TIME FOR GREEDY SEARCH ALGORITHMS

N n TFG (s) TBG (s) T̂FG (s) T̂BG(s)

108 1 0.13 0.05 0.11 0.07

108 3 0.34 0.05 0.33 0.10

108 5 0.59 0.08 0.55 0.13

108 10 1.14 0.11 1.11 0.20
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