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SUMMARY

Recent studies on T follicular helper (Tfh) cells have
significantly advanced our understanding of T cell-
dependent B cell responses. However, little is known
about the early stage of Tfh cell commitment by den-
dritic cells (DCs), particularly by the conventional
CD8a+ and CD8a� DC subsets. We show that
CD8a� DCs localized at the interfollicular zone play
a pivotal role in the induction of antigen-specific
Tfh cells by upregulating the expression of Icosl
and Ox40l through the non-canonical NF-kB
signaling pathway. Tfh cells induced by CD8a� DCs
function as true B cell helpers, resulting in signifi-
cantly increased humoral immune responses against
various human pathogenic antigens, including Yersi-
nia pestis LcrV, HIV Gag, and hepatitis B surface
antigen. Our findings uncover a mechanistic role of
CD8a� DCs in the initiation of Tfh cell differentiation
and thereby provide a rationale for investigating
CD8a� DCs in enhancing antigen-specific humoral
immune responses for improving vaccines and
therapeutics.

INTRODUCTION

T follicular helper (Tfh) cells have been identified as a CD4+ T

helper cell subset that functions as a true B cell helper (Crotty,

2011; Ma et al., 2012). Tfh cells highly express a B cell homing

chemokine receptor, CXCR5, which facilitates their migration

to germinal centers (GCs) in a CXCL13-dependent manner.

There, they help cognate B cells to become antibody-secreting

cells (ASCs) or memory B cells, leading to efficient humoral im-

munity with long-term memory (Goodnow et al., 2010; Tangye

and Tarlinton, 2009). Since the term Tfh cells was first intro-

duced (Breitfeld et al., 2000; Schaerli et al., 2000), various

research has provided valuable data on distinct features of Tfh

cells, such as high expression of CXCR5, ICOS, PD1, and

SAP, key cytokines such as IL-21 and recently IL-4 (Reinhardt

et al., 2009), and the major transcription factors Bcl6 and

c-Maf, to be distinguished from other CD4+ T helper cell line-

ages (Crotty, 2011; Ma et al., 2012). Given the fact that efficient

Tfh cell-dependent long-term humoral immunity is an essential

defensive arm of the vertebrate immune system, it is not surpris-

ing that aberrant Tfh cell development or activity has been

known to be closely associated with various human diseases

such as autoimmunity, humoral immunodeficiency, and T cell

lymphomas (Tangye et al., 2013). Thus, an understanding of

the initiation and the regulation of these specialized CD4+ T

helper cells is critical to improve vaccine efficacy as well as to

design novel therapies.

The role of cognate B cells regarding the differentiation of Tfh

cells has been initially validated by several studies. Deficiency of

not only B cells but also various B cell functional molecules,

CD19, CD40, major histocompatibility complex (MHC) class II,

and ICOSL, results in the decreased number of Tfh cells (Akiba

et al., 2005; Deenick et al., 2010; Haynes et al., 2007; Johnston

et al., 2009). In addition, the interaction between activated

CD4+ T cells and cognate B cells via SAP, a cytoplasmic adaptor

protein of the SLAM family, was shown to be critical in Tfh cell

generation (Cannons et al., 2010). In contrast, another study

has shown that continuous antigen presentation was sufficient

to induce Tfh cell differentiation in B cell-deficient mice (Deenick

et al., 2010), suggesting that other antigen-presenting cells

(APCs) are essential in Tfh cell differentiation. Moreover, a num-

ber of recent independent studies demonstrated that Tfh cells

could arise soon after priming by dendritic cells (DCs) (Baumjo-

hann et al., 2011; Choi et al., 2011; Goenka et al., 2011; Vinuesa

and Cyster, 2011), and thus, it seems that cognate B cells are

generally required for maintaining functional Tfh cells, while

DCs are necessary to prime Tfh cells, especially at the early

stage of Bcl6 upregulation.
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Although some key molecules of DCs have been reported to

be involved in the induction of Tfh cells (Choi et al., 2011; Cucak

et al., 2009; Fillatreau and Gray, 2003), how DCs mechanistically

drive naive CD4+ T cells into Tfh cells differently from various

CD4+ effector T cell subsets still remains unclear. Particularly,

the roles of two distinct splenic CD8a+ and CD8a� DC subsets

in inducing Tfh cells are largely unexplored. Among various DC

subsets characterized (Shortman and Liu, 2002), two major

myeloid DC subsets in the spleen are well defined based on

the expression of CD8a and its anatomical location. CD8a+

DCs express the endocytic receptor, DEC-205, and are located

in the T cell zone within the lymphoid organs. They are special-

ized in uptaking dying cells (Iyoda et al., 2002) and cross-presen-

tation of non-replicating antigens, leading to cytotoxic T cell

priming (den Haan et al., 2000). In contrast, CD8a� DCs, known

to specialize in MHC class II presentation (Dudziak et al., 2007),

express a distinct uptake receptor, DCIR2, and they are enriched

in the bridging regions of the marginal zone (Iyoda et al., 2002).

A DC targeting strategy by harnessing monoclonal antibodies

(mAbs) (Nussenzweig et al., 1982; Swiggard et al., 1995) against

Figure 1. CD8a� DCs induce Tfh Cell-

Dependent Antibody-Secreting Cells

(A and B) Naive C57BL6 (B6) (A) or BALB/c (BC) (B)

mice were immunized intraperitoneally (i.p.)

with PBS, aCD40 monoclonal antibody (mAb) +

poly(I:C) (adjuvant only), aDEC:V (CD8a+ DC tar-

geting), or aDCIR2:V (CD8a� DC targeting) con-

jugated mAbs in the presence of aCD40 mAb and

poly(I:C). At each indicated time point, spleen or

bone marrow cells were prepared and anti-V IgG

antibody-secreting cells (ASCs) were analyzed.

(C and D) CXCR5-KO, SAP-KO, IL-21R-KO (C), IL-

12p40-KO, IL-4R-KO (D), or naive B6 or BC mice

were immunized i.p. with either aDEC:V (CD8a+

DC targeting) or aDCIR2:V (CD8a� DC targeting)

conjugated mAbs in the presence of aCD40 mAb

and poly(I:C). Two weeks after the immunization,

spleen cells were prepared and anti-V IgG ASCs

were analyzed.

***p < 0.001. All data represent mean ± SD of three

or more independent experiments (A�D); n = 3 per

group.

various endocytic receptors expressed

on DC subsets enriched our understand-

ing of the roles of these DC subsets

in vivo. Moreover, conjugating such tar-

geting antibodies with a wide range of

pathogenic antigens has been validated

in various disease models to improve

vaccine efficacy and develop novel thera-

peutic approaches (Do et al., 2010;

Trumpfheller et al., 2012).

In this study, we utilized both DC-sub-

set targeting and DC-subset sorting stra-

tegies to study how these two distinct DC

subsets differently influence Tfh cell dif-

ferentiation by unveiling their underlying

mechanisms and signaling pathways.

Our data demonstrate that functional Tfh cells are efficiently

induced by the CD8a� DC subset in vivo via the enhanced

expression of ICOSL and OX40L through the non-canonical

NF-kB pathway, leading to efficient humoral immunity against

various human pathogenic antigens.

RESULTS

CD8a� DCs Enhance the Generation of Tfh Cell-
Dependent ASCs
In order to examine whether the two DC subsets have different

roles in the generation of Tfh cell-dependent antigen-specific

ASCs in vivo and in situ, we utilized distinct DC subsets targeting

mAbs conjugated with LcrV (V) protein from Yersinia pestis: anti-

DEC-205:V- (for CD8a+ DCs) and anti-DCIR2:V-conjugated (for

CD8a� DCs) antibodies. Only CD8a� DC targeting induced sig-

nificant numbers of anti-V ASCs in the spleen and the bone

marrow, while no ASCs were observed following CD8a+ DC tar-

geting (Figure 1A). The total number of ASCs in the spleen was

decreased after 28 days while those in the bone marrow
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increased, confirming the previously known fact that long-

lived ASCs reside in the bone marrow (Slifka et al., 1995).

Similar observations were made in a different mouse strain

(Figure 1B), suggesting that the increased total number of

ASCs by CD8a� DC targeting is not limited to a particular

MHC haplotype.

Then, we compared the generation of anti-V ASCs in various

Tfh cell-related knockout (KO) mice. The data showed that

anti-V ASCs induced by targeting CD8a� DCs were dramatically

decreased in CXCR5-KO (Breitfeld et al., 2000), SAP-KO (Qi

et al., 2008), and IL-21 receptor (R)-KO (Nurieva et al., 2008)

mice (Figure 1C), but this decrease was not observed in IL-

12p40-KO (Ma et al., 2009; Mosmann and Coffman, 1989) or

IL-4R-KO (Kaplan et al., 1996) mice (Figure 1D). Taken together,

these data indicated that CD8a� DCs enhance antigen-specific

ASCs in a Tfh cell-dependent manner rather than a Th1 cell- or

Th2 cell-dependent manner.

Figure 2. CD8a� DCs Efficiently Induce Tfh

Cells In Vivo

(A�G) OVA-specific DO11.10+Thy1.1+CD4+

T cells were adoptively transferred to naive

Thy1.2+ BALB/c mice at day �1 and immunized

subcutaneously (s.c.) with PBS, soluble OVA

protein (OVA protein), aDEC:OVA (CD8a+ DC tar-

geting), or aDCIR2:OVA (CD8a� DC targeting)

conjugated mAbs in the presence of poly(I:C)

(A�C) or LPS (D�F) at day 0. At each indicated

time point after immunization, lymph node cells

were prepared and Tfh cells gated from the

DO11.10+CD4+CD44+ T cells were analyzed.

(A and D) Representative flow cytometry plots of

CXCR5+PD1+, CXCR5+Bcl6+, or CXCR5+IL-21+

Tfh cells.

(B and E) Percentages (%) of Tfh cells described in

(A) and (D), respectively.

(C and F) The number (#) of Tfh cells described in

(A) and (D), respectively.

(G) The total number of DO11.10+CD4+ T cells.

Data represent mean ± SEM of three or more in-

dependent experiments (B, C, and E�G).

*p < 0.05, **p < 0.01, ***p < 0.001. n = 3-4 per

group. See also Figures S1 and S2.

CD8a� DCs Are Superior in
Inducing Antigen-Specific Tfh Cells
In Vivo
To investigate roles of the two DC sub-

sets in antigen-specific Tfh cell induction

in vivo, we utilized DC subset targeting

strategy via ovalbumin (OVA)-conjugated

antibodies and OVA transgenic mice.

Five days after immunization, higher per-

centages and numbers of CXCR5+PD1+,

CXCR5+Bcl6+, and CXCR5+IL-21+ Tfh

cells were observed in the lymph nodes

and spleen in the CD8a� DC targeted

group compared with those in the

CD8a+ DC targeted group (Figures 2A–

2C and S1B–S1D).

Next, to confirm the capacity of CD8a� DCs in inducing Tfh

cells in vivo under different maturation cues, similar experiments

were performed in the presence of LPS. We again observed

that higher percentages and numbers of CXCR5+PD1+,

CXCR5+Bcl6+, and CXCR5+IL-21+ Tfh cells were induced by

CD8a�DCs in the lymph nodes and spleen compared with those

induced by CD8a+ DCs (Figures 2D–2F and S2B–S2D). There

was no significant difference in the total number of DO11.10+

CD4+ T cells induced by both DC subsets in the lymph nodes

(Figure 2G). In the spleen, the total number of DO11.10+CD4+

T cells was higher in the CD8a� DC targeted group (Figures

S1E and S2E). When the numbers of Tfh cells were normalized

by the total number of DO11.10+CD4+ T cells, we were still

able to observe greater number of Tfh cells in the CD8a� DC tar-

geted group (Figures S1F and S2F). As previously reported (Do

et al., 2010), CD8a+ DCs were superior in inducing interferon-g

(IFN-g)-secreting CD4+ T cells regardless of total number of
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DO11.10+CD4+ T cells (Figure S2G), whereas CD8a� DCs

induced interleukin-4 (IL-4)-secreting CD4+ T cells (Figure S2H).

Taken together, our data clearly showed that CD8a� DCs

specialize in priming antigen-specific Tfh cells in vivo.

CD8a� DCs Specialize in Inducing Tfh Cells In Vitro
To validate that our observation of Tfh cells generated in vivo is

due to intrinsic differences between CD8a+ DCs and CD8a�

DCs and not to DC subset receptor-specific responses via the

DC targeting strategy, the two DC subsets were sorted and

the induction of antigen-specific Tfh cells was compared

in vitro. At each indicated time point after the co-culture of

OVA-specific naive CD4+ T cells with either CD8a+ or CD8a�

DCs, the CD44+CD4+ T cells were sorted and then analyzed

for Tfh cell-related surface molecules, transcription factors,

and cytokines. Notably, we observed a higher expression of

ICOS on the CD4+ T cells induced by CD8a� DCs as early as

day 2 followed by elevated Bcl6 expression on day 3 (Figures

Figure 3. CD8a� DCs Induce Tfh Cells

In Vitro

(A�G) OT-II OVA specific Va2+CD4+ T cells were

co-cultured with each DC subset in the presence

of OVA peptide (323–339) with poly(I:C) (A�C

and G), LPS (D and E), or LPS, Flagellin, or

R848 (F). At each indicated time point after the co-

culture, Va2+CD4+CD44+ T cells were analyzed.

(A) Representative histograms of ICOS expres-

sion.

(B) Median fluorescence intensity (MFI) of

three independent experiments described in (A);

mean ± SEM.

(C) The relative mRNA expression of Bcl6, c-Maf,

or T-bet.

(D and E) MFI of CXCR5, ICOS (D), and Bcl6 (E).

(F) IL-21 production.

(G) Three days after co-culture, Va2+CD4+CD44+

T cells were sorted and adoptively transferred

together with naive CD19+ B cells into RAG-1-

deficient mice. Fourteen days after the boost im-

munization with OVA protein, spleen cells were

prepared and anti-IgG ASCs were analyzed (n = 2

per group).

*p < 0.05, **p < 0.01, ***p < 0.001. Data represent

mean ± SEM of three or more (C�F) or two (G)

independent experiments. See also Figure S3.

3A–3C and S3A), which supports the

previously suggested hypothesis on a

molecular hierarchy from ICOS to Bcl6

(Choi et al., 2011). The expression of

SAP and c-Maf (Bauquet et al., 2009)

was also highly increased in the CD4+

T cells induced by CD8a� DCs, whereas

T-bet, a transcription factor of Th1 cells,

was highly detected in those induced

by CD8a+ DCs (Figures 3C and S3A).

Such phenomena were again not

restricted to a given DC-maturation cue,

poly(I:C). We observed that the CD4+

T cells induced by CD8a� DCs in the presence of lipopolysac-

charide (LPS) expressed higher levels of CXCR5 and ICOS (Fig-

ure 3D), Bcl6 (Figure 3E), and highly secreted IL-21 (Figure 3F).

In addition, under Toll-like receptor 5 (TLR5) (flagellin) and

TLR7/8 (R848) stimuli, the CD4+ T cells induced by CD8a�

DCs secreted higher IL-21 compared with those induced by

CD8a+ DCs (Figure 3F). There was no significant difference in

CD4+ T cell proliferation induced by the two DC subsets

in vitro (Figure S3B).

In order to confirm the function of in-vitro-induced Tfh cells in

B cell help, we adoptively transferred the in vitro DC subset-

primed CD4+ T cells together with naive CD19+ B cells into

RAG-1-deficient mice. After prime and boost immunization

with soluble OVA protein, we observed significantly increased

anti-OVA ASCs in the group that received the Tfh cells induced

by CD8a� DCs (Figure 3G). Together, these data clearly demon-

strate that CD8a� DCs specialize in priming antigen-specific Tfh

cells.
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CD8a� DCs Efficiently Enhance GC Formation,
Reaction, and Antibody Titers
We examined the ability of Tfh cells as true B cell helpers in vivo

by utilizing a DC targeting strategy. As expected, we observed

higher percentage of CD19+IgD�GL7+FAS+GCBcells in spleno-

cytes collected from the CD8a� DC targeted group under

different stimuli cues (Figures 4A, 4B, S4A, and S4B). Histologi-

cally, the formation of PNA+ cells surrounded by IgD+ cells was

confirmed in the CD8a� DC targeted group, whereas no GC for-

mation was observed in the CD8a+ DC targeted group (Fig-

ure S4C). The CD8a� DC targeted group showed higher titers

of both anti-OVA immunoglobulin M (IgM) and IgG antibodies

than those from the CD8a+ DC targeted group (Figure 4C). Titers

of anti-OVA IgM induced by CD8a� DCs were higher than those

induced by CD8a+ DCs at day 5, which were isotype-switched to

IgG at day 5. In the case of theCD8a+ DC targeted group, the iso-

type-switched anti-OVA IgG was notably detected 7 days after

the immunization, but its titers still remained lower than those

from the CD8a� DC targeted group. To further confirm the

Figure 4. CD8a� DCs Enhance the Forma-

tion of GC B Cells and Antibody Titers

(A�D) OVA-specific DO11.10+Thy1.1+CD4+

T cells were adoptively transferred to naive

Thy1.2+ BALB/c mice at day �1 and immunized

s.c. with PBS, OVA protein, aDEC:OVA (CD8a+ DC

targeting), or aDCIR2:OVA (CD8a� DC targeting)

conjugated mAbs in the presence of poly(I:C)

(A�C) or LPS (D) at day 0. At each indicated time

point after the immunization, spleen cells (A and B)

or sera (C and D) were prepared for analysis.

(A) Representative flow cytometry plots of

GL7+FAS+ GC B cells gated from CD19+IgD�

splenocytes.

(B) Data represent mean ± SEM of four indepen-

dent experiments described in (A).

(C) ELISA analyses of OVA-specific serum IgM or

IgG antibodies.

(D) Ten days after the immunization, each group

was re-immunized with NP16-OVA (day 0). ELISA

of NP-specific serum IgG antibodies (NP8/NP30).

*p < 0.05, **p < 0.01, ***p < 0.001. Data represent

mean ± SEM of four (C and D) independent ex-

periments. (A�D) n = 3-4 per group. See also

Figure S4.

enhanced GC reaction in the CD8a� DC

targeted group, we examined affinity

maturation of antibodies using NP-OVA.

Briefly, 10 days after the immunization

described in Figure 4A, the mice were

re-immunized with 10 mg of NP16-OVA.

After 7 and 14 days of re-immunization,

we observed that higher ratio of NP8 to

NP30 of anti-OVA IgG antibodies was

induced by CD8a� DCs compared with

those induced in both soluble OVA pro-

tein and CD8a+ DC targeted groups (Fig-

ure 4D). These data strongly support that

the CD8a� DC subset is an inducer of

functional Tfh cells, which leads to efficient humoral immune re-

sponses in vivo.

Upregulated ICOSL and OX40L on CD8a� DCs Play a
Critical Role in Inducing Tfh Cells
To understand distinct differences between the two DC sub-

sets in the induction of Tfh cells, various Tfh cell-related ligands

were compared in the presence of poly(I:C) or LPS stimulus.

CD8a� DCs expressed higher levels of ICOSL (Choi et al.,

2011) and OX40L (Fillatreau and Gray, 2003) with both poly(I:C)

(Figure 5A) and LPS (Figure 5B), whereas CD8a+ DCs ex-

pressed higher levels of PDL1 and PDL2 (Figures S5A and

S5B), which are known to negatively regulate Tfh-dependent

humoral immune responses (Cubas et al., 2013; Hams et al.,

2011). When ICOSL on the DC subsets was blocked during

DC-T cell priming, the formerly increased expression of

CXCR5 and ICOS on the CD4+ T cells induced by CD8a�

DCs was significantly reduced to the level of that induced by

CD8a+ DCs (Figures 5C and S5C). Interestingly, blocking
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OX40L on CD8a� DCs during DC-T cell priming also decreased

the expression of CXCR5 and ICOS as much as that induced

by CD8a+ DCs (Figures 5C and S5C). To further confirm the

roles of upregulated ICOSL and OX40L on CD8a� DCs in

inducing Tfh cells in vivo, blocking antibodies against ICOSL

or OX40L were administered during distinct DC-subset tar-

geting. The enhanced expression of CXCR5 on the CD4+

T cells induced by CD8a� DCs was again significantly

decreased by the blocking of either ICOSL or OX40L (Fig-

ure 5D). In addition, the blocking of either ICOSL or OX40L

on CD8a� DCs dramatically decreased the number of CXCR5+

PD1+, CXCR5+Bcl6+, or CXCR5+IL-21+ Tfh cells induced by

CD8a� DCs both in the lymph nodes (Figure 5E) and spleen

(Figure S5D). Thus, the data suggest the importance of both

ICOSL and OX40L signaling in CD8a� DCs in the differentiation

of Tfh cells.

Figure 5. The IncreasedNumber of Tfh Cells

Was Induced by the Enhanced Expressions

of ICOSL and OX40L on CD8a� DCs

(A and B) Sorted DC subsets were stimulated

either with poly(I:C) (A) or with LPS (B) for 0, 12, or

24 hr in vitro. Representative histograms of ICOSL

and OX40L. MFIs represent mean ± SEM of three

independent experiments.

(C) OT-II OVA specific Va2+CD4+ T cells were co-

cultured with each DC subset with OVA peptide

(323–339) and LPS in the presence of ICOSL- or

OX40L-blocking (aICOSL or aOX40L) mAbs or

isotype mAbs (Iso Ab) for 3 days. MFI of CXCR5

was analyzed from three independent experi-

ments; mean ± SEM.

(D and E) OVA-specific DO11.10+Thy1.1+CD4+

T cells were adoptively transferred to naive

Thy1.2+ BALB/c mice at day �1 and immunized

s.c. with either aDEC:OVA (CD8a+ DC targeting)

or aDCIR2:OVA (CD8a� DC targeting) conjugated

mAbs in the presence of LPS at day 0. ICOSL-

or OX40L-blocking mAbs (aICOSL or aOX40L)

or isotype mAbs (Iso Ab) were injected intrave-

nously (i.v.) to the immunized mice at day 0 and 2.

Four days after immunization, lymph nodes

cells were prepared. MFI of CXCR5 (D) and the

number of CXCR5+PD1+, CXCR5+Bcl61+, or

CXCR5+IL-21+ Tfh cells (E) were analyzed from

three independent experiments; mean ± SEM

(n = 4 per group).

*p < 0.05, **p < 0.01, ***p < 0.001. See also

Figure S5.

Enhanced Non-canonical NF-kB
Signaling Pathway of CD8a� DCs
Regulates Icosl and Ox40l Gene
Expressions
Based on a recent study showing that

the non-canonical NF-kB pathway regu-

lates high level of ICOSL expression in

B cells (Hu et al., 2011), and based on

our analysis of the NF-kB signaling

pathway in the two DC subsets from

the published gene array data (Dudziak

et al., 2007), we hypothesized that the upregulated expressions

of ICOSL and OX40L on CD8a� DCs are regulated by the non-

canonical NF-kB signaling pathway. Notably, NF-kB-inducing

kinase (NIK), a signal integrator of the non-canonical NF-kB

signaling pathway (Sun, 2011), was detected in CD8a� DCs

even in the absence of stimulation and its expression level

was further increased after poly(I:C) stimulation, whereas it

was hardly detectable in CD8a+ DCs (Figures 6A and S6A).

Upon anti-CD40 stimulation (Coope et al., 2002), which is

known to elicit strong signals via both the canonical and non-

canonical pathways, the expression level of NIK was increased

in both DC subsets, but its level was still significantly higher in

CD8a� DCs (Figure 6A; Figure S6A). In addition, higher expres-

sion levels of phospho-100 (p100), p52, and RelB were

observed in CD8a� DCs in the absence or presence of

stimulation (Figures 6A and S6A). CD8a+ DCs constitutively
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expressed higher levels of signaling components in the pro-in-

flammatory mitogen-activated protein kinase (MAPK) pathway,

particularly p-JNK, which was hardly detectable in CD8a� DCs

(Figure 6B and S6A). To determine whether the promoter of

Icosl or Ox40l associates with the non-canonical NF-kB com-

plex, we performed chromatin immunoprecipitation (ChIP) ex-

periments. The enriched DNA from the immunoprecipitates

was quantified by qPCR using primers spanning the upstream

regions of Icosl or Ox40l (Figure S6B). After poly(I:C) stimula-

tion, the significant enrichment of p52 was found to be associ-

ated with the upstream region of Icosl (�3,000) or Ox40l

(�1,000) in CD8a� DCs (Figure 6C). Gapdh and Ccl2 genes

were used as negative and positive controls for p52, respec-

tively (Figure S6C). Moreover, when a NIK inhibitor (4H-isoqui-

noline-1,3-dione) was utilized, the enhanced expression of both

ICOSL and OX40L on CD8a� DCs was dramatically decreased

(Figure 6D). We observed comparable expression of co-stimu-

latory and MHC molecules on the two DC subsets upon stimu-

lation in vitro (data not shown). Taken together, our findings

suggest that highly activated non-canonical NF-kB signaling

regulates the enhancement of ICOSL and OX40L expression

in CD8a� DCs.

Figure 6. CD8a� DCs Induce High Expres-

sion of ICOSL and OX40L via an Enhanced

Non-canonical NF-kB Signaling Pathway

(A and B) Sorted DC subsets were stimulated with

either poly(I:C) or aCD40 for 2 hr in vitro followed

by western blot analysis of non-canonical NF-kB-

(A) or MAPK-pathway-related (B) molecules.

p, phosphorylation; T, total.

(C) ChIP-PCR shows percent (%) input of p52

upstream of Icosl and Ox40l in the DC subsets in

the absence or the presence of stimulation. Data

are representative of three (A and B) or two (C)

independent experiments (mean ± SD).

(D) The two DC subsets were treated with either

DMSO (vehicle) or an NIK inhibitor (aNIK) for 12 hr

in the presence of poly(I:C), and the MFI of ICOSL

or OX40L was analyzed. Data represent mean ±

SEM of three (ICOSL) or two (OX40L) independent

experiments.

*p < 0.05, **p < 0.01, ***p < 0.001. See also

Figure S6.

Harnessing CD8a� DCs to Improve
Vaccine-Induced Humoral
Immunity
In order to validate the enhanced humoral

immune responses conferred by CD8a�

DC-primed Tfh cells in respect to

improved vaccine strategy, we utilized

various human pathogenic antigens

such as Y. pestis LcrV, HIV Gag, and

hepatitis B surface antigen (HBsAg). For

each pathogen, long-term protective

humoral responses are required and

vaccines are not available. First, with V

antigen, we observed that only CD8a�

DC targeting induced significant numbers

of anti-V IgM ASCs in the lymph nodes, which were successfully

isotype-switched to IgG1 (Figure 7A). In the spleen, similar

observation was made where anti-V IgM ASCs were detected

as early as day 3, isotype-switched to IgG1 at day 5, and

migrated into the bone marrow (Figures 7B and 7C). On the

contrary, targeting CD8a+ DCs with V antigen was inefficient

in inducing anti-V ASCs in all lymphoid organs tested (Figures

7A–7C). Overall anti-V titers including IgG2a isotype were

higher in the CD8a� DC targeted group as well (Figure S7A).

Moreover, data showing dramatically elevated numbers of

anti-V ASCs 6 months after the immunization indicate the effi-

cacy of CD8a� DCs in the induction of long-term humoral immu-

nity (Figure 7D).

Second, to further confirm that enhanced humoral immune re-

sponses induced by CD8a� DCs are not limited to V protein, we

used DC-subset targeting antibodies conjugated with HIV

Gagp24 (Gag) and observed consistent enhancement in anti-

Gag ASCs and antibody titers from the CD8a� DC targeted

group (Figures 7E and S7B). Third, we utilized sorted CD8a�

DCs to enhance humoral immune responses against HBsAg,

the immunogen of hepatitis B vaccine. We again observed the

upregulated ICOS expression on the CD4+ T cells primed by
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CD8a� DCs (data not shown) as well as significantly increased

anti-HBsAg ASCs following adoptive transfer of the CD8a�

DC-primed CD4+ T cells with naive CD19+ B cells into RAG-1-

deficient mice (Figure 7F). These data clearly demonstrate the

efficacy of CD8a� DCs in the induction of efficient humoral im-

munity via functional Tfh cell priming.

DISCUSSION

Various research suggests the importance of DCs in priming Tfh

cells, but little is known about the mechanisms by which DCs

promote the initial commitment of antigen-specific CD4+

T cells into Tfh cells. In this study, our data provide important

cellular and molecular mechanisms regulated by CD8a� DCs

to induce Tfh cell differentiation, enhancing Tfh cell-dependent

humoral immunity. We also provide the rationale for targeting

Figure 7. CD8a� DCs Enhance Tfh Cell-

Dependent Humoral Immune Responses

against Various Human Antigens

(A�C) BALB/c mice were immunized i.p. with

either aDEC:V (CD8a+ DC targeting) or aDCIR2:V

(CD8a� DC targeting) conjugated mAbs in the

presence of aCD40 mAb and poly(I:C). At each

indicated time point after the immunization, cells

from the lymph nodes (LN) (A), spleen (SP) (B), or

bone marrow (BM) (C) were prepared and anti-V

(IgM or IgG1) ASCs were analyzed.

(D) BALB/c mice were primed and boosted with

PBS, F1-V protein with alhydrogel (V protein),

aDEC:V (CD8a+ DC targeting), or aDCIR2:V

(CD8a� DC targeting) conjugated mAbs in the

presence of poly(I:C). Six months later, bone

marrow cells were prepared and anti-V ASCs were

analyzed.

(E) B6 mice were primed and boosted i.p. with

PBS, Gagp41 protein (Gag protein), aDEC:gagp24

(CD8a+ DC targeting), or aDCIR2:gagp24 (CD8a�

DC targeting) conjugated mAbs in the presence of

poly(I:C). Two weeks after the boost, bone marrow

cells were prepared and anti-gagp24 ASCs cells

were analyzed.

(F) Naive CD4+ T cells co-cultured with each DC

subset in the presence of HBsAg and poly(I:C) for

3 days were isolated and then adoptively trans-

ferred together with naive CD19+ B cells to RAG-1-

deficient mice. Fourteen days after the boost

immunization with soluble HBsAg, spleen cells

were prepared and anti-IgG HBsAg ASCs were

analyzed.

**p < 0.01, ***p < 0.001. All data represent mean ±

SD of three or more independent experiments;

n = 3 per group. See also Figure S7.

CD8a� DCs to induce efficient humoral

immune responses against various hu-

man pathogenic antigens.

Our study illuminates unexplored

intrinsic differences between the two DC

subsets in Tfh cell differentiation. In

particular, our findings suggest that highly

activated non-canonical NF-kB signaling

enhances the expression of ICOSL and OX40L on CD8a� DCs,

thereby establishing a molecular mechanism of specific DC-

subset-derived Tfh cell differentiation. Such intrinsic features

or capacity of CD8a� DCs in inducing Tfh cells is not limited to

a specific stimulus. A previous study showed that ICOS signals

during DC T cell priming instruct Bcl6 expression, leading to

CXCR5 expression on CD4+ T cells and thus determine the early

bifurcation between Tfh and effector Th cell developments (Choi

et al., 2011). However, it was not known that distinct CD8a�DCs

upregulate ICOS signals promoting Tfh cell differentiation. Inter-

estingly, our data also suggest that not only the enhanced ICOSL

but also OX40L in CD8a� DCs play important roles in promoting

ICOS signals of Tfh cells. Considering a previous study showing

the importance of OX40L in CD11c+ DCs for CD4+ T cell migra-

tion to the follicle (Brocker et al., 1999), as well as another study

showing that OX40 stimulation could overcome the impaired
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trafficking of CD4+ T cells to B cell follicles caused by lack of

CD40 in DCs (Fillatreau and Gray, 2003), it is possible that the

enhanced OX40L on CD8a� DCs may also be involved in such

a molecular hierarchy from ICOS to Bcl6 to CXCR5, which facil-

itate the migration of Tfh cells into B cell follicles. Given the fact

that CD8a� DCs upregulated the expression of ICOSL and

OX40L via the non-canonical NF-kB signaling pathway and

that blocking of either ICOSL or OX40L critically decreased the

capacity of CD8a� DCs in inducing Tfh cells in vivo, the efficient

induction of Tfh cells by the CD8a� DC subset is delivered by its

bona fide intrinsic property.

Given that the CD4+ T cells induced by CD8a+ DCs highly ex-

pressed T-bet, and since a number of previous studies demon-

strated the efficacy of a CD8a+ DC targeting strategy in the

induction of IFN-g-secreting Th1 type cellular immunity (Do

et al., 2010; Trumpfheller et al., 2012), we surmised that the

highly activated JNK signaling may be involved in Th1 rather

than in Tfh cell differentiation. However, further studies are

required to examine whether CD8a+ DCs negatively regulate

Tfh dependent-humoral immune responses with highly ex-

pressed PDL1/L2 and JNK signaling.

We do not exclude possibilities such as the differences in

antigen processing in vivo (Dudziak et al., 2007), prolonged

antigen presentation (Deenick et al., 2010; Lahoud et al.,

2011), or extrafollicular B cell activation (Chappell et al., 2012)

by DC subsets in Tfh cell differentiation. In addition, as reported

by other studies that CD14+ dermal DCs (Klechevsky et al.,

2008), late activator APCs (Yoo et al., 2012), or monocyte-

derived DCs (Chakarov and Fazilleau, 2014) promote Tfh cell

differentiation, we believe Tfh cell differentiation may be depen-

dent on the type of the immune responses. Further investiga-

tions on how various DC subsets interact in vivo within

lymphoid organs will also help us to appreciate diverse physio-

logical functions of DC subsets. Since CD8a� DCs locate at the

bridging channel/interfollicular zone (Dudziak et al., 2007) and

Tfh cell development initiates in the same zone (Kerfoot et al.,

2011), the anatomical localization of CD8a� DCs and their

intrinsic features may synergistically contribute to Tfh cell

development, whereas CD8a+ DCs located in the T cell zone

are more likely to induce the differentiation of Th1 cells. Of in-

terest, a recent insightful study demonstrated the importance

of EBI2 of splenic CD4+33D1+ DCs (equivalent of CD8a� DCs

in this study) in bridging channel positioning and homeostasis,

as well as in facilitating the uptake and presentation of particu-

late antigens to lymphocytes (Yi and Cyster, 2013), adding to

the potential of investigating CD8a� DCs for promoting Tfh

cell differentiation and thus providing B cell help against various

blood-borne pathogens.

A previous study using peptide-pulsed bone-marrow-derived

DCs showed that DCs were potent inducers of Bcl6 in naive

CD4+ T cells, but such DC-restricted peptide immunization failed

to induce potent GCs along with lower PD1 expression on Tfh

cells than the soluble protein immunization regimen (Baumjo-

hann et al., 2011). Likely, when antigens were restricted to DCs

by using CD11c/Ab
b mice, it was shown to be sufficient to initiate

Tfh cells, but these Tfh cells failed to produce IL-21, thereby

requiring additional interaction with cognate B cells for full

effector function (Goenka et al., 2011). In contrast, a CD8a�

DC targeting strategy showed that immunization with �1.6 mg

of OVA per mouse could induce Tfh cells as well as Tfh cell-

dependent humoral immune responses more efficiently than

the group immunized with 500 mg per mouse of soluble OVA

protein (Figures 2, 4, S1, S2, and S4), suggesting the efficacy

of targeting CD8a� DCs in the induction of fully functional Tfh

cells in vivo.

Recently the involvement of Tfh cells in human diseases is be-

ing unveiled. A study showed significant expansion of HIV-spe-

cific Tfh cells in chronic HIV-infected individuals explaining IgG

hypersecretion seen in these patients (Lindqvist et al., 2012).

Another study also reported that the expanded Tfh cells in HIV-

infected individuals provided inadequate help for B cells due to

the negative regulatory role of PDL1/L2 (Cubas et al., 2013).

Based on a recent perspective on developing an HIV vaccine

by harnessing CD4+ T cell responses, particularly Tfh cells

(Streeck et al., 2013), the understanding of cellular andmolecular

mechanisms regulating Tfh cell initiation and differentiation is

critical in developing vaccines and in improving therapeutic ap-

proaches. Our study clearly demonstrates the value of CD8a�

DCs in enhancing humoral immunity against human pathogenic

antigens. In particular, CD8a� DCs were utilized to increase the

number of ASCs specific to HBsAg, the immunogen of currently

available hepatitis B vaccine (Figure 7F). Although the current

hepatitis B vaccine is very effective, �5%–15% of vaccines fail

to develop humoral immune responses (Coursaget et al., 1986;

Hadler et al., 1986). Conjugation of HBsAg with CD8a� DC tar-

geting antibody would be an alternative for hepatitis B vaccine

non-responders. Additionally, in our previous study, we demon-

strated successful protection against virulent Y. pestis pneu-

monic plague when we targeted CD8a� DCs with V protein, of

which protection efficacy was mainly due to the increased anti-V

titers (Do et al., 2010), which supports our current study in

designing improved pneumonic plague vaccine by targeting

CD8a� DCs. Therefore, CD8a� DCs can be potentially utilized

as a preferential target for improving vaccine efficacy in various

human diseases.

In conclusion, our findings provide insights on how DCs influ-

ence Tfh cell fate; it might not be a purely stochastic event, as

currently suggested (Ballesteros-Tato and Randall, 2014; Dee-

nick et al., 2011; Vinuesa and Cyster, 2011), but instead, it could

be a selective initial commitment to Tfh cells by the CD8a� DC

subset. Our study sheds light on the mechanisms involved in

Tfh cell differentiation by DC subsets, and we believe that these

results, along with future efforts to characterize human DC sub-

set counterpart of CD8a� DCs, will provide a rationale to design

improved vaccines by enhancing the quality and quantity of anti-

body responses.

EXPERIMENTAL PROCEDURES

Mice

BALB/c (BC,H-2d) andC57BL/6 (B6,H-2b)micewere purchased fromTaconic.

DO11.10 Thy 1.1, OT-II, RAG-1-deficient, CXCR5-KO, IL-4R-KO, and IL-

12p40-KO mice were purchased from The Jackson Laboratory. IL-21R-KO

mice were provided by The Rockefeller University (by the late Dr. Ralph M.

Steinman). SLAM-associated protein or SAP KO mice were kindly provided

by Dr. Pamela L. Schwartzberg from National Human Genome Research Insti-

tute, NIH. All mice were maintained under specific-pathogen-free conditions
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and used at 6–8 weeks, as approved by the Ulsan National Institute of Science

and Technology’s institutional animal care and use committee (approval

number: UNISTIACUC-12-006-A).

DC Preparation

The total number of splenic DCs was increased by Fms-like tyrosine 3 ligand

(Flt3L) as described previously (Dudziak et al., 2007). In brief, 5 3 106 Flt3L-

melanoma cells were subcutaneously injected to naive C57BL/6 mice. After

10–14 days, the expanded splenic CD11c+ DCs were enriched with positive

magnetic-activated cell sorting (MACS) and were further sorted into DC sub-

sets, CD3�B220�CD11c+CD8a+ or CD3�B220�CD11c+CD8a� DCs, by

MoFlo XDP (Beckman Coulter). To analyze intrinsic differences in the two

DC subsets, DCs were stimulated with 25 mg poly(I:C) or 100 ng/ml LPS

for 0, 12 or 24 hr. In some experiments, 10 mM NIK inhibitor (4H-isoquino-

line-1,3-dione, combi-Blocks) (Ranuncolo et al., 2012) was added to the

DC subsets.

CD4+ T Cell Preparation

OVA-specific transgenic CD4+ T cells from the lymph nodes and spleen of OT-

II or DO11.10 Thy1.1 mice were purified negatively using hybridoma superna-

tant cocktail of rat-anti mouse CD8 (2.43), MHC class II (T1B120), M4 (F4/80),

B220 (RA3-6B2), and natural killer cell (NK1.1) antibodies followed by deple-

tion with Dynabeads sheep anti-rat IgG (Invitrogen).

Induction of Tfh Cells In Vitro

Naive OVA-specific CD4+ T cells purified from OT-II mice were co-cultured

with sorted CD8a+ or CD8a� DCs (1:10 ratio of DC to T cells) for 1–6 days in

the presence of 25 mg/ml poly(I:C), 100 ng/ml LPS, Flagellin, or R848 (Invivo-

gen) ± 2 mM of OVA peptide (aa 323–339) (Genscript). At each indicated time

point, Va2+CD4+CD44+ T cells were sorted and analyzed for the expression

of various surface molecules, transcription factors, and cytokines by flow

cytometry, qRT-PCR, and ELISA. To block ICOSL or OX40L expressed on

DC subsets, 20 mg/ml blocking antibodies or their corresponding isotype anti-

bodies was added when CD4+ T cells were co-cultured with DC subsets for

3 days.

Induction of Tfh Cells In Vivo

Isolated CD4+ T cells from DO11.10 Thy 1.1 mice were adoptively transferred

(33 106 cells per mouse) into naive Thy 1.2+ BALB/cmice intravenously (i.v.) at

day �1. At day 0, PBS, 500 mg soluble OVA protein (endotoxin-free; Seika-

gaku), or 5 mg of each distinct DC subset targeting mAb (anti-DEC-205 or

anti-DCIR2 mAbs) conjugated with OVA protein in the presence of 50 mg

poly(I:C) or LPS was injected via footpads. At the indicated time points, single

cells from the lymph nodes or spleen were prepared and analyzed for the

expression of various molecules by flow cytometry. In some experiments,

100 mg isotype, ICOSL-, or OX40L-blockingmAbs were injected i.v. into immu-

nized mice at days 0 and 2. Then, 4 days after immunization, cells were pre-

pared for analysis.

Intracellular Staining

Tfh cells were induced in vivo as described above. Five days later, cells were

prepared from the lymph nodes or the spleen, and Fcg receptors were

blocked with anti-CD16/CD32 antibodies. The cells were then incubated

with anti-mouse Thy1.1 or DO11.10, CD4, CD44, and CXCR5 for 30 min.

Following fixation and permeabilization with a Cytofix/Cytoperm kit (BD Bio-

sciences) according to the manufacturer’s protocol, the cells were stained

for intracellular Bcl6 or IL-21 along with their isotypes for 25 min at 4�C.
Data were analyzed by flow cytometry. To detect IFN-g- or IL-4-secreting

CD4+ T cells, the cells were re-stimulated with 2 mM OVA peptide (323–

339) and 2 mg/ml aCD28 mAbs for 2 hr followed by the addition of GolgiStop

(Invitrogen) for 4 hr.

Statistics

Results are expressed as mean ± SD or mean ± SEM. We used Excel or Prism

4.0 (GraphPad Prism) and performed a nonparametric Mann-Whitney U test

when appropriate. p values < 0.05 were considered significant.
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