

1

Design Phase Analysis of Software Qualities Using Aspect-Oriented
Programming

Daesung Park1, Sungwon Kang2 and Jihyun Lee3

1 LG Electronics, Korea
grayger@icu.ac.kr

2Information and Communications University, Korea
kangsw@icu.ac.kr

3ETRI, Korea
jihyun@etri.re.kr

Abstract
 If we can analyze software qualities during the design
phase of development without waiting until the imple-
mentation is completed and tested, the total develop-
ment cost and time will be significantly saved. There-
fore in the past many design analysis methods have
been proposed but either they are hard-to-learn and
use or, in the case of simulation-based analysis, func-
tionality concerns and quality concerns were intermin-
gled in the design as well as in the implementation
thereby making development and maintenance more
complicated. In this paper, we propose a simulation-
based design phase analysis method based on aspect-
oriented programming. In our method, quality aspects
remain separate from functionality aspect in the design
model and the implementation code for simulation is
automatically obtained by injecting quality require-
ments into the skeleton code generated from the design
level functionality model. Our method has advantages
over the conventional approach in reducing both the
development cost and the maintenance costly.

Keywords

Aspect-oriented programming, Design stage software
analysis, Performance analysis, Reliability Analysis

1. Introduction
Software architecture and design artifacts are produced
early in the development process and reflect early solu-
tion decisions for the system. They should be carefully
designed because later discovery and fixing of prob-
lems would result in a much higher cost of develop-
ment. In the past, many early analysis methods were
proposed. However, they have been rarely practiced in
industry since they require additional tasks such as
modeling, implementation and evaluation. It is desir-
able to have practical methods that can reduce analysis
overhead and can fill the gap between modeling and
implementation.

This paper proposes a new method for the design
phase quality analysis based on Aspect-Oriented Pro-
gramming (AOP). AOP is a programming paradigm
that realizes the principle of separation of concerns and
helps the programmer focus on various aspects one at a
time. AOP helps modularization of software by allow-
ing us to express various aspects independently. As will
be shown later, AOP can be utilized for analysis of
quality attributes for software systems. In this paper,
we develop a simulation-based analysis method based
on AOP that is general enough to apply for analysis of
various quality attributes of software systems.

The rest of the paper is organized as follows: Sec-
tion 2 introduces related analysis methods and Section
3 discusses aspect-oriented programming. Section 4
presents our analysis approach and compares it with the
traditional approach. In Section 5, we show the efficacy
of our method with performance and reliability analysis
examples. Finally, Section 6 is the conclusion.

2. Related Works
Quality attributes such as performance, reliability, secu-
rity, usability and etc. are often so critical to the busi-
ness goals of the software systems that they should be
considered from the early design phase. Therefore there
have been some methods for early phase analysis of
software qualities. Architecture Tradeoff Analysis
Method (ATAM) is a method to evaluate software ar-
chitecture considering multiple quality attributes at
once [Kazman 98]. The architecture-based approach
gives insight into the sensitivity of the total system
structure to each component, but it does not address
how to measure each quality attribute.

In the early stage of development, we can conven-
iently use models that capture quality characteristics of
the system to predict software quality since in the phase
usually there are no concrete implementations. There-
fore most early phase analysis methods were model-
based. For example, queuing networks, stochastic proc-
ess algebras, stochastic timed Petri nets were used to
model performance [Balsamo 04], and state-based
models, path-based models, and additive models were

2

used for reliability analysis [Goseva 01]. They are
called analytical models that describe a system using
formal, mathematical notation [Marzolla 04]. On the
other hand, simulation models predict qualities by de-
signing a model similar to the real system, and then
implementing and running it.

Although these methods seem to be promising, they
are not widely practiced in industry for the following
reasons. Analytical models have shortcomings such as
the state explosion or the semantic gap from design.
Moreover, analytical models may be difficult to learn
and use. The drawback of simulation models is the high
cost to build simulation programs. Therefore building
simulation programs efficiently and maintaining pro-
gram code are critical issues in simulation-based analy-
sis. In this paper, we develop a simulation-based analy-
sis method that reduces both the development cost and
the maintenance cost.

3. Aspect-Oriented Programming
Aspect-Oriented Programming (AOP) is a method that uses
aspectual decomposition and composition to separate and
then recombine different aspects of a system. When design-
ing and implementing a software system, we usually modu-
larize the system into small units such as objects, modules,
procedures, and so forth.

AOP [Kiczales 97] realizes modular implementation of
crosscutting concerns. AOP enables us to decompose prob-
lems into not only functional components but also into as-
pects that crosscut functional components, and then imple-
ment them by composing these components and aspects. An
aspect weaver, so-called aspect compiler, is a code genera-
tor that composes them.

In this paper, we use AspectJ to build an executable
for a simulation. AspectJ [Kiczales 01] is a language
that extends Java to support AOP. It has new concepts
such as join point, pointcut, advice, and aspect. Join
point is an identifiable point of program execution such
as method/constructor calls, method/constructor execu-
tion, field get and set, exception handler execution, and
static and dynamic initialization. Pointcut is a set of
join points selected by a Boolean operation such as
“and” or “or”. Advice is used to define additional code
to be executed before, after, or around join points. As-
pect is a modular unit of crosscutting implementation.
The AspectJ compiler merges Java code with AspectJ
code to achieve the weaving of crosscutting concerns.

4. Our approach
We explain our approach to design phase analysis of
software qualities. We first present our analysis process
in detail and then compare it with the traditional ap-
proach to show the benefits of our approach.

4.1 The Basic Idea
The basic idea of our approach is to model systems in
the aspect-oriented way to implement an executable
program for simulation. In order to develop simulation
programs, we need to have quality analysis code in
addition to code for system functionality. The system
functionality concern is captured as a design model,
and the quality analysis concern is captured as a quality
analysis model. We regard quality analysis models or
implementations as aspects because they crosscut mul-
tiple software units. In design phase, we decompose a
system into core concerns for functionality and aspects
for qualities. Each concern is implemented independ-
ently and then recomposed to a simulation program.

4.2 The Process
Our analysis process consists of the following steps: (1)
Modeling functionality, (2) Modeling quality analysis
aspects, (3) Weaving, (4) Simulation and (5) Feedback.

The steps (1) and (2) mean aspectual decomposition
for separating aspects. The step (3) is the aspectual
composition. This process is pictorially shown in Fig. 1.

Presentation.java
BusinessLogic.java
DataManager.java

Java executable

Perf_Aspect.aj
Reliability_Aspect.aj

Weaving

Simulation

Feedback (B)

Quality analysis concerns Functionality concern

Feedback (A)

 Fig. 1. The process of our analysis

(1) Modeling functionality Analysis starts from
constructing a design model based on functionality of a
system. A model is an abstract description of software
that hides information about some aspects of the
software to present a simpler description of others. In
this step, we only consider functionality, which is the
ability of the system to do the job for which it was
intended. For example, we can model a design of
software system with UML class diagrams and
sequence diagrams. In these diagrams, quality analysis
aspects are not included, and only functionality is
considered.

3

In this step, it is very important that we extract the
main objects and their operations which are likely to
affect quality attribute being analyzed critically. It is
easy to generate skeleton program code from class dia-
grams. Many UML tools can generate code for class,
attribute, signature of operation, and relationship from
class diagrams. Sequence diagrams can model object
interactions arranged in time sequence and to distribute
use case behavior to classes. The results of this step are
core source code files with the extension “.java”.
(2) Modeling quality analysis aspects The next step is
to model quality analysis aspect of interest. The
proposed approach is scenario-based analysis. A
scenario is a sequence of component interactions
triggered by a specific input stimulus. Operational
profiles are used for description of scenarios with
specified input variables (or parameters). With these
parameters as input, metrics are used to produce output.
Therefore our quality analysis models include quality
profiles and metrics. Profiles or metrics differ from
quality to quality. Details of them are addressed in
Section 5. In case we would consider multiple
attributes, we should model these attributes one by one.
The results of this step are AspectJ files with the
extension “.aj”.
(3) Weaving Now we make a simulation program.
With AOP, quality analysis aspects can be developed
independently. Then AspectJ compiles code files from
Step (1) and code files from Step (2) together. This
compilation process is called weaving in the aspect-
oriented world. The results of this step are executable
files with the extension “.class”.
(4) Simulation We execute the result of Step (3) and
observe the result. Simulation model is based on a
number of assumptions about the real system’s
behavior. The simulation model can be implemented to
produce a simulation program. By running it, we can
measure values of the parameters of interest. Like some
early analysis methods in the past, it can predict
software qualities before the actual system is completed
[Marzolla 04].
(5) Feedback In analysis process, feedback can result
in redesign of software or reorganization of resource
demands when analysis result does not meet the
requirements. It can be utilized in impact analysis to
suggest where to allocate resource most effectively to
improve quality of the software system.

Feedback (A) of Fig. 1 stands for modification of
the software design. Feedback (B) of Fig. 1 means
modification of quality parameters. Initially, parame-
ters used in simulation input are usually predicted val-
ues or assumed values. Through the feedback, simula-
tion results can be used as input, thereby making pre-
diction results more precise.

As Fig. 1 shows, Feedback (A) and Feedback (B)

are independent of each other because the model and
the implementation for the quality analysis concerns
were separate from those for the functionality concern.
Modification of the design or code for the functionality
concern will not influence that for the quality analysis
concerns, and vice versa. Therefore, our approach en-
ables us to minimize the coupling between functional-
ity-related modules (i.e., Presentation.java, Busi-
nessLogic.java and DataManager.java) and quality
analysis modules (i.e., Reliability_Aspect.aj,
Perf_Aspect.aj) in Fig. 1.

4.3 Benefits
The left hand side of Fig. 2 shows the conventional
approach. In the approach, software design combines
both a functional design and a quality analysis model
and therefore code for the design model and code for
the quality analysis model are forced to become insepa-
rably mixed in implementation. It is assumed that we
manually obtain code from the design model. Then the
source code is compiled, executed and analyzed. If
necessary, the system is redesigned and the whole
process is repeated. Disadvantages of the conventional
approach are that (1) it is difficult to develop the design
model because the designer should consider both the
design model and the quality analysis model at the
same time, and (2) it is difficult to understand and
maintain the program code because several concerns
will be intermingled in the implementation code.

Our approach solves these problems. In the design
phase, we clearly set the quality analysis model apart
from the design model and maintain the separation to
the implementation phase. In other words, the design
model has its own Java implementation code, and the
quality analysis model has its own AspectJ implemen-
tation code. Only at the last moment when the actual
implementation is needed, these two are woven to-
gether by the AspectJ compiler.

Java executable

Java implementation.
of software design

Java executable

Java implementation.
of quality analysis
model

Semi-automatic manual

Weaving and

compilation

Java implementation.
(tangled code)

Semi-automatic

Software
design
model

Quality
analysis model

Software
design model
integrated with
quality analysis
model

Conventional Approach Our Approach

Compilation

System
analysis

System
analysis

Redesign Redesign

Fig. 2. Comparison with the conventional approach

Our approach has many advantages over the conven-

4

tional approach. Each of the design model and the qual-
ity analysis model is transformed into the correspond-
ing code clearly. Even though feedback may require
redesign of either the design model or the quality
analysis model, direct code generation speeds up the
feedback cycle. Moreover strict modularization in the
implemented code enhances understandability and
maintainability. We don't have to take the trouble to
integrate the separated source code files for ourselves
because it can be automatically done by the AspectJ
compiler.

5. Application example
In this section, we demonstrate our approach using an
example of the map viewer system. The map viewer
system is a web-based application that allows users to
view a detailed map of a location. When users select an
area that they want to see, the map viewer system finds
the information of the area and then shows the map
image on the web. The system consists of three tiers:
Presentation, Business logic, and Data manager. For
example, the steps for “showing map image” scenario
are as below: (1) The presentation tier gets input from
users and requests a map image to Business logic, (2)
The business logic tier queries map data to Data man-
ager tier, (3) The data manager tier finds map data and
returns it to Business logic tier, (4) The business logic
tier makes a map image from map data and returns it to
Presentation tier (5) The presentation tier draws the
map image and shows it to users.

For the sake of simplicity, this scenario considers
neither branching nor alternative flow.

Fig. 3. Class diagram

As mentioned, class diagrams and sequence dia-

grams describe functionality. Fig. 3 shows object
classes and their operations for this application, and Fig.
4 shows Java code mapped to this class diagrams.

Except for the implemented code (lines 4, 5, 14, 15,
23) of each operation in Fig. 4, lines of skeleton code
can be generated from class diagrams automatically.
The operations in classes will be the join points of As-
pectJ code for quality analysis aspects and will be used
to describe behaviors of the system.

5.1 Performance Analysis
A model should represent behaviors of system and per-
formance requirements in static and dynamic ways, and
provide appropriate format that can be easily utilized

for the analysis phase. We use XML to represent the
performance model.

public class Presentation {
 BusinessLogic bl;
 public void showImage() {
 bl.getImage();
 drawImage();
 }
 public void drawImage() {}
}
public class BusinessLogic {
 Presentation pre;
 DataManager dm;
 public void getImage() {
 dm.getMapData();
 makeImage();
 }
 public void makeImage() {}
}
public class DataManager {
 BusinessLogic bl;
 public void getMapData() {
 findMapData();
 }
 public void findMapData() {}
}

Fig. 4. Java code for functionality

For simulation, we transform the performance
model to the XML format. Each class in the model is
mapped to an element in the XML schema and attrib-
utes of the class are mapped to the attributes of the
element in XML. As performance context class in the
model aggregates workload, scenario, and resource
class, the performance context node in XML format has
three child nodes: workload, scenario, and resource.
The input of the simulation is a valid XML file contain-
ing actual performance parameters. Table 1 explains
performance parameters that appeared as attributes of
the XML nodes. The output of the simulation, response
time or throughput, is also stored in the XML sharing
the same schema.

Table 1. Performance parameters [Allen 97]

NODE Attribute Explanation

Workload population Size of the workload (number of system
users).

Scenario response
time

Total time required to execute the sce-
nario, including all resource waiting,
synchronization delays and execution
times.

response
time

Total delay to execute the step including
all resource waiting and all execution
times.

Step

interval
Time interval between successive repeti-
tions of this step, when it is repeated
within a scenario.

capacity Number of permissible concurrent users.
Resource throughput Rate at which the resource performs its

function.

5

Fig. 5. A sequence diagram for a scenario

Except for the implemented code (lines 4, 5, 15, 16,

25) of each operation, lines of skeleton code can be
generated from class diagrams automatically. The im-
plementation of each operation is manually written
from sequence diagrams straightforwardly. Later, the
operations in classes will be the join points of AspectJ
code reflecting performance characteristics and will be
used to describe the behaviors of execution steps.
Performance concern As we mentioned in Section 3,
the performance concern is represented in the XML
format. As the functionality concern is implemented in
Java language, the performance concern is also imple-
mented in Java language. We simulate dynamic behav-
ior of the system with the executable compiled from
functionality-based skeleton code and the performance
model implementation.

The workloads are generated with Java threads. The
number of threads is the same as the population of
workloads, or Workload.population in Table 1. Each
thread tries to obtain resources to execute the given
operation. However, each resource has limited capacity,
or Resource.capacity. When a thread representing a
workload fails to obtain the resource, it waits for an
instance and retries. Step.interval represents the interval
between trials. If the thread succeeds in obtaining the
resource, it executes the operation for
Step.responseTime. The time consumed for execution
is emulated using the sleep() method of
java.lang.Thread class.
Weaving In Fig. 5, objects in the sequence diagrams
can represent resources required for workloads. The
functionality concern and the performance concern are
weaved by the AspectJ compiler. Fig. 6 shows se-
quence diagrams overlaid with AspectJ elements. Lines
of Code for performance analysis are inserted before or
after appropriate pointcuts.
Simulation In this section, we show how to calculate
performance metrics using simulation and how to apply
the AOP techniques for checking time taken for opera-
tions and counting the number of service completions.

 Fig. 6. Sequence diagram with pointcuts and advice

The purpose of the simulation is to get the response
time of the scenario and the throughput of resource
from performance parameters of step, resource, and
workload. We can get the response time of scenario, or
Scenario.responseTime using join points, pointcuts, and
advices of AOP.

 <J-1> Presentation.showImage();
 <J-2> BusinessLogic.getImage();
 <J-3> DataManager.getMapData();
 <P-1> pointcut pShowImage() :
 execution(* Presenta-
n.showImage(..));
 <A-1> before() : pShowImage();
 <A-2>after() returning : pShowImage();

Fig. 7. Join points, pointcut, and advices

In Fig. 7, the lines <J-1>, <J-2>, <J-3> are the op-
erations that appeared in the functionality implementa-
tion. The line <P-1> is the pointcut appeared in the
performance implementation. When <J-1> calls <J-2>,
<J-2> calls <J-3>. The response time of scenario is the
time taken to execute <J-1>. To get the response time,
time checking should be done in before/after the point-
cut <P-1> corresponding to <J-1>. The advices <A-1>
and <A-2> mean the very time before <P-1> is exe-
cuted and the very time after <P-1> is returned respec-
tively. Therefore, we can get the response time by sub-
tracting the moment of <A-1> from the moment of <A-
2> because the difference is the elapsed time executing
the operation step.

To get the throughput of the resource, or Re-
source.throughput, we use a simple formula. Let T be
the length of time in the observation period, and let C
be total number of service completions in the observa-
tion period. Then the throughput of the system is C
divided by T. We can get T by observing simulation run
time and can get C by setting counters before or after
appropriate pointcuts.

6

5.2 Reliability Analysis
To specify reliability concern, we use profiles and met-
rics. There is no reliability profile universally accepted.
Therefore we choose a reliability domain model pro-
posed in [Cortellessa 04]. Parameters that we consider
for reliability analysis are shown in Table 2.

Table 2. Reliability parameters [Cortellessa 04]

Node Attribute Explanation

fail_prob The atomic failure probability of a
component Com-

ponent usage_ratio The usage ratio of a component

access_prob The probability that a certain type
of user accesses to the system

User
service_prob

The probability that the type of
user, once accessed, requires a
certain service

The paper [Dolbec 95] proposed a component based

reliability model using component reliabilities and
component usage ratios. Software system reliability, sR ,
is equal to:

1
1

m

s k k
k

R U D
=

= −∑

where m represents the number of components used
during system execution, U represents the usage ratio
of component k in Nk tests, and Dk represents the prob-
ability of failure of component m. This model assumes
that the component failures and execution path failures
are independent. In our approach, we use this model for
a reliability model due to its simplicity.

Fig. 8. Sequence diagrams with reliability information

Fig. 8 shows sequence diagrams with reliability pa-

rameters. Each component has a probability of failure
and a usage ratio. Reliability information is imple-
mented in AspectJ code and weaved into simulation
program with functionality implementation.

7. Conclusion
In this paper, we showed a design phase quality analy-
sis method based on AOP and demonstrated its efficacy
with performance and reliability analyses for an exam-
ple. The method is general and can be used for analysis
of other quality attributes of software systems.

The benefits of our method are as follows: Firstly,
we can check at the design stage whether the imple-
mentation will show the required qualities. With a func-
tional model and quality analysis models of interest, we
can predict software qualities before the actual system
is implemented. Secondly, development becomes much
easier than the case in which various concerns for
simulation are interwoven with functionality. Thirdly,
maintenance is simplified to modifying the functional-
ity model and quality analysis models separately in the
design phase. Lastly, separation of concerns enables
improved traceability from design to code, and delivers
much more understandable code.

8. References
[Allen 97] R. Allen and D. Garlan, “A Formal Basis For Ar-
chitectural Connection,”, A revised version of the paper that
appeared in ACM Trans. on Software Engineering and Meth-
odology, July 1997.
[Balsamo 04] S. Balsamo, A. D. Marco, P. Inverardi, and M.
Simeoni, “Model-based Performance Prediction in Software
Development: A Survey,” IEEE Trans. SE, Vol.30, No.5,
May 2004.
[Cortellessa 04] V. Cortellessa, A. Pompei, “Towards a UML
profile for QoS: a contribution in the reliability domain”,
Proc. 4th Int’l workshop on Software and performance, 2004.
[Dolbec 95] J. Dolbec, T. Shepard, “A component based
software reliability model,” Proc. the conference of the Cen-
tre for Advanced Studies on Collaborative research 1995.
[Goseva 01] K. Goseva-Popstojanova, K. S. Trivedi, “Archi-
tecture-based approach to reliability assessment of software
systems,” Performance Evaluation, Vol.45/2-3, June 2001.
[Katara 03] M. Katara and S. Katz, “Architectural Views of
Aspects,” Proc. 2nd Int’l Conf. on Aspect-oriented software
development, pp.1-10, March 17-21, 2003.
[Kazman 98] R. Kazman, M. Klein, M. Barbacci, “The Ar-
chitecture Tradeoff Analysis Method,” ICECCS, Aug 1998.
[Kiczales 97] G. Kiczales, J. Lamping, A. Mendhekar, C.
Maeda, C. V. Lopes, et. al., “Aspect-Oriented Programming,”
Proc. ECOOP, Springer-Verlag, 1997.
[Kiczales 01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Ker-
sten, J. Palm, and W. G. Griswold, “An Overview of As-
pectJ,” Proc. 15th European Conf. on Object-Oriented Pro-
gramming, pp.327-353, June 18-22, 2001.
[Marzolla 04] M. Marzolla, “Simulation-Based Performance
Modeling of UML Software Architectures,” PhD Thesis,
Dipartimento di Informatica, Università Ca' Foscari di
Venezia, Feb 2004.

