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Abstract

This paper introduces an analytical model which can simulate the nonlinear behavior of slender reinforced concrete (RC) col-

umns. The layer approach is adopted to determine the equilibrium conditions in a section and to consider the different material

properties across the sectional depth effectively. The material nonlinearity including the cracking of concrete is taken into consid-

eration, and geometric nonlinearity due to the P–D effect is taken into account by using the initial stress matrix. In advance, the

creep deformation of concrete is described in accordance with a first-order algorithm based on the expansion of a degenerate kernel

of the compliance function. To verify the analytical results, correlation studies with previous numerical results and experimental

data are conducted, and numerous parameter studies are followed to discuss the structural responses of slender RC columns accord-

ing to the changes in design variables. Finally, the necessity for a rigorous nonlinear analysis is emphasized for more accurate pre-

diction of the ultimate resisting capacity of slender RC columns.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A reinforced concrete (RC) column, which is a pri-

mary structural member, is subjected to the axial force

and bending moment which may be due to end restraint

arising from the monolithic placement of floor beams

and columns or due to eccentricity from imperfect align-

ment. Due to the combination of axial force and bend-

ing moment, the column section must be designed to
ensure that the acting forces in a member exist inside

the P–M interaction diagram representing the resisting

capacity of the column. Recently, because of architec-

tural aesthetics and efficiency in use of space, relatively

slender columns have frequently been used in many
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building structures, either throughout an entire building
or in some parts of a structure, e.g., the exterior of build-

ings and the interior of lobbies. Moreover, the use of

high strength steel and concrete has led to an increased

use of slender members. However, as slender RC col-

umns may fail due to not only material failure in a sec-

tion but also instability of a structure, they require more

rigorous numerical analyses which consider secondary

effects such as the P–D effect and creep deformation of
concrete in order to reserve their strength and service-

ability.

There has been a lot of research on the behavior and

design of slender RC columns. On the basis of the force

equilibrium equation and the strain compatibility condi-

tion at a section, Bazant et al. [3,5] analytically calculated

the resisting capacity of slender RC columns by assum-

ing a deflection curve with a sinusoidal function. Mate-
rial nonlinearity of steel and concrete was taken into
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Fig. 1. Behavior of slender RC column.
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account and an excellent discussion of slenderness effects

on interaction diagrams was provided. Kim et al. [10,11]

introduced a numerical method considering material and

geometric nonlinearities by using the layer model and

carried out an experimental study to verify the exactness

of the algorithm they developed. Drysdale and Huggins
[8] conducted experimental and analytical studies for

both short-term and long-term behaviors of RC columns

with relatively high slenderness ratio and discussed de-

crease of the ultimate resisting capacity due to the P–D
effect and creep deformation of concrete. Recently, Yal-

cin and Saatcioglu [21] developed an analytical model

that considers the influence of anchorage slip and plastic

hinge length on the nonlinear behavior of RC columns.
In this paper, an analytical model to predict the

resisting capacity of slender RC columns is proposed.

The layer approach is adopted to simulate the different

material properties across the sectional depth. Material

nonlinearity due to the cracking of concrete and yield-

ing of reinforcing bars, and geometric nonlinearity due

to the P–D effect are taken into account. Concrete

creep is evaluated by the first-order algorithm based
on the expansion of the compliance function [9], and

the aging effect of concrete properties is included in

the evaluation. The validity of the numerical model

proposed in this paper is established by comparing

the analytical predictions with results from previous

analytical studies [5,10], and numerical analyses for

slender RC columns are conducted. On the basis of

the numerical results obtained, the necessity of rigorous
nonlinear analysis is emphasized for more accurate pre-

diction of the ultimate resisting capacity of slender RC

columns.
2. Structural behavior of slender RC columns

Generally, the ultimate compressive force P0 and the
ultimate bending moment M0 for an RC column section

are related to each other by means of an interaction dia-

gram (P–M interaction diagram). In the absence of sec-

ond-order effects (P–D effect), as in very short columns,

the cross-section would undergo proportional loading

until reaching the material strength at point A of the

cross-section interaction diagram (see Fig. 1). Slender

columns, however, will follow the loading path up to
point B where the material strength is reached. Point

B is on the cross-section interaction diagram but is at

a smaller axial load, Pso, than it would be if L/r were

actually zero. Unlike a steel column, a concrete column

accompanies relatively large time-dependent deforma-

tion, such as creep. This time-dependent deformation

gradually increases the lateral deflection caused by the

initial eccentricity e and the P–D effect, and finally de-
creases the ultimate resisting capacity and serviceability

of slender RC columns.
In the case of an RC column with a relatively large

slenderness ratio, instability failure, which means a fail-

ure before reaching the P–M interaction diagram of an

RC cross-section (the solid line envelope in Fig. 1),

may occur. A typical description for the long-term fail-

ure is illustrated in Fig. 1. When an axial load PD with

initial eccentricity e acts on a slender RC column at
t = t0, the instantaneous lateral deflection will be e1

due to second-order effects (P–D effect). Moreover, the

creep deformation during t0 � t1 will increase the lateral

deflection in spite of the absence of additional axial

load. If an additional live load is applied at t = t1, its

increment terminates at point C, located outside the

cross-section interaction diagram, because the strength

for a live load applied after a period of creep under con-
stant load PD is usually higher than the short-term

strength. The larger the column slenderness ratio, the

greater is the reduction in the axial force resistance.

For not too slender columns, the failure occurs at

points rather close to the material strength. For very

slender columns, on the other hand, the failure occurs

well within the cross-section interaction diagram be-

cause of a pronounced second-order effect. Referring
to the structural behavior of RC columns, material non-

linearities of steel and concrete and time-dependent

deformation of concrete are taken into account for more

exact estimation of the ultimate resisting capacity of RC

columns. Moreover, it needs to be assumed that the fail-

ure of RC columns occurs due to material failure only

because the slenderness ratio in most RC columns de-

signed in practice is smaller than the critical ratio that
causes instability failure, even if the slenderness ratio

ranges to a large value.
3. Modeling of material properties

3.1. Concrete

Based on the principle of superposition, total uniaxial

concrete strain ec(t) at any time t is assumed to be
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composed of the mechanical strain em
c ðtÞ caused by short-

term service loads, and the nonmechanical strain enm
c ðtÞ

consists of creep strain ecr
c ðtÞ and shrinkage strain esh

c ðtÞ.

ec tð Þ ¼ em
c tð Þ þ enm

c tð Þ ¼ em
c tð Þ þ ecr

c tð Þ þ esh
c tð Þ: ð1Þ

Shrinkage strain can be evaluated directly by utilizing

the shrinkage models proposed in the design codes [1,7]

since it is defined as the volume change that occurs inde-

pendently of imposed stresses. On the other hand, creep

is defined as an increase in strain under sustained stress.

Introduction of an analytical model to calculate the
creep strain is inquired, and many studies have been per-

formed [4,9]. In this paper, the first-order algorithm

based on expansion of creep compliance, proposed by

Kabir and Scordelis [9], has been adopted because this

model can simulate the stress history effectively in spite

of its simplicity in application.

The increment of creep strain from time tn� 1 to time

tn for uniaxial stress state can be expressed as follows
[2,4]:

Dec
n ¼

Xm

i¼1

Ain�1
1� e�kiDtn
� �

; Ain ¼ Ain�1
e�kiDtn þ aiðsÞDrn;

ð2Þ

where Dec
n is the increment of creep strain, ki are inverse

retardation times, ai(s) are constants depending on the

age at loading s, m is a number of time steps, and Ai with

initial values Ai1 ¼ aiðt1Þ � Dr1 at n = 1 represent hidden

state variables by which the effects of past time steps

are considered.

Before starting the calculation of creep strain by Eq.

(2), parameters such as m, ai(s) and ki must be deter-
mined. Since the use of the compliance function

(J(t,s) = 1/E(t) + C(t,s)) in the form of a Dirichlet series

induces some numerical difficulties caused by not con-

sidering a separate term to represent the instantaneous

deformation, the creep compliance (C(t,s)) is used di-

rectly in this study, as shown in Eq. (3). Hence, m = 4

is taken, and the assumed corresponding retardation

times are 8.0, 80.0, 800.0, and 8000.0, respectively. Be-
sides, the values of ai(s) are determined by the method

of least squares using Kabir�s Dirichlet series creep com-

pliance [9]. After determination of nonmechanical strain

increments, the concrete stress at each layer correspond-
(a) (

Fig. 2. Stress–strain rel
ing to the mechanical strain can be calculated by using

the stress–strain relation of concrete.

C t; sð Þ ¼
Xm

i¼1

ai sð Þ � 1� e�ki t�sð Þ� �
: ð3Þ

The response of RC columns under loads depends to a
large extent on the stress–strain relation of the constitu-

ent materials and the magnitude of stress. Since concrete

is used mostly in compression, the stress–strain relation

in compression is of primary interest. Of many mathe-

matical models currently used in the analysis of RC

structures, the monotonic envelope curve introduced

by Kent and Park and later extended by Scott et al.

[18] is adopted in this paper because of its simplicity
and computational efficiency. In this model, as shown

in Fig. 2(a), the monotonic concrete stress–strain rela-

tion in compression is described by three regions, where

eco is the concrete strain at maximum stress, K is a factor

which accounts for the strength increase due to confine-

ment, and Z is the strain softening slope.

On the other hand, it is assumed that concrete is line-

arly elastic in the tension region. Beyond the tensile
strength, the tensile stress decreases linearly with increas-

ing principal tensile strain (see Fig. 2(b)). Ultimate failure

is assumed to take place due to cracking, when the prin-

cipal tensile strain exceeds the value e0 = 2 Æ Gf/ft Æ ln(3/b)/

(3 � b) in Fig. 2(b), where b is the element length. Gf is the

fracture energy that is dissipated in the formation of a

crack of unit length per unit thickness and is considered

to be a material property. The value of e0 is derived from
the fracture mechanics concept of equating the crack

energy release with the fracture toughness of concrete

Gf [12]. The experimental study by Welch and Haismen

[20] indicates that for normal strength concrete, the value

of Gf/ft is in the range of 0.005–0.01 mm. If Gf and ft are

known from measurements, e0 can be directly determined

from the equation in Fig. 2. More details for the concrete

model can be found elsewhere [13].

3.2. Steel

Reinforcing steel is modeled as a linear elastic, linear

strain hardening material with yield stress fy. The rea-

sons for this approximation are: (1) the computational

convenience of the model; and (2) the behavior of RC
b)

ation of concrete.
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members is greatly affected by the yielding of reinforcing

steel when the structure is subjected to a monotonic

bending moment [17,19]. Thermal strain is the only non-

mechanical strain expected for steel. However, it is not

considered in this study, and thus the mechanical strain

can be directly calculated from the total strain of steel
ðesðtÞ ¼ em

s ðtÞÞ.
4. Determination of neutral axis

In order to formulate the constitutive relationships in

the section of an RC column, the following simplified

assumptions have been made: (1) The section of an ele-
ment is divided into imaginary layers to describe the dif-

ferent material properties; (2) plane sections remain plane

to represent the linearity in the strain distribution on any

section at any loading history; (3) a perfect bond between

the concrete matrix and reinforcing bars is assumed; and

(4) the constitutive materials are assumed to carry uniax-

ial stress only. In addition, shear deformation is not taken

into account in the formulation because the shear effect is
expected to be very small in slender RC columns.

Unlike a beam element subjected to a bending moment

only, a column element is subjected to both axial force

and bending moments so that the neutral axis of a

column section cannot be calculated directly by the
(a)

Fig. 3. Strain compon

Fig. 4. Time variation of strain cau
equilibrium condition of normal force only. To determine

the neutral axis while considering bending effects, the

mechanical strains of concrete ðem
c Þ and steel ðem

s ¼ et
sÞ

need to be partitioned into an axial strain ðem
ca; e

t
saÞ and a

bending strain ðem
cb; e

t
sbÞ, as represented in Fig. 3.

Since the axial strain is constant across the section
and the bending strain is zero at the neutral axis, the

bending strains of concrete and steel at any layer can

be calculated by em
cb ¼ em

c � em
ca ¼ et

c � enm
c � em

ca and et
sb ¼

et
s � et

sa, respectively. Based on the assumed neutral axis,

the stress corresponding to the mechanical bending

strain can be calculated from the stress–strain curves

of the constitutive materials, and iterations using the

bisection method are repeated until errors for the axial
force and bending moment calculated by the axial strain

and bending strain are within the given tolerances [14].

In addition, time rate in a stress increment has been

considered. If a stress increment Drc(t0) is introduced

at time t0 and sustained without a change in magnitude,

the time variation of strain in concrete follows the

continuous line ABC in Fig. 4, and the total strain at

time t, instantaneous plus creep, can be represented by

Decr
c ðtÞ ¼

Drcðt0Þ
Ecðt0Þ

1þ /ð Þ; ð4Þ

where / = /(t, to) is the creep coefficient.
(b)

ents at a section.

sed by a stress increment Drc.
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On the other hand, when a stress increment Drc(t,t0)

is gradually introduced between t0 and t, the strain var-

iation with time can be represented by the dashed line in

Fig. 4. The total strain produced during the period t0 � t

can be obtained by

Decr
c ðt; t0Þ ¼

Drcðt0; t0Þ
Ecðt0Þ

1þ v/ð Þ; ð5Þ

where v is the concrete aging coefficient which accounts

for the effect of aging on the ultimate value of creep for

stress increments or decrements occurring gradually

after the application of the original load. It is found that

an average value of v = 0.82 can be used for most prac-

tical problems where the creep coefficient lies between
1.5 and 3.0 and t0 is greater than 5 days. An approxi-

mate value of 0.8 has frequently been used for v, and

the same value of v = 0.82 is adopted in this study [16].
5. Construction of equilibrium equation

Based on the assumed displacement field formula-
tion, all the constitutive equations including the element

stiffness matrix are derived. As shown in Fig. 5, the no-

dal displacement vectors of a two-dimensional beam ele-

ment in its local coordinate system can be expressed by

u = {u1,u2}T, v = {v1,v2}T, and h = {h1,h2}T and the no-

dal displacements of an element may be expressed as the

column vector r = {u,v,h}T.

Assuming that the independent axial displacement
U0(x) varies linearly with x, and that the small rotation

hi at each node can be calculated by derivation of the

vertical displacement vi with respect to x, the displace-

ments, U0(x) and V(x) at any point within the element,

can be represented by

U 0ðxÞ ¼ / � u; V ðxÞ ¼ w �
v

h

� �
; ð6Þ

where / = [(1 � p), p] and w = [(1 � 3p2 + 2p3),

(3p2 � 2p3), L(p � 2p2 + p3), L(�p2 + p3)] represent the

displacement shape functions, and the nondimensional

parameter p denotes x/L, that is, the position along

the axis of the beam element.
Then, by adopting the plane section hypothesis, the x

displacement U(x) at any point can be written by the

relation of Uðx; yÞ ¼ U 0ðxÞ � y � dV ðxÞ=dx ¼ / � u�
Fig. 5. Displacement compon
yw;x
v
h

� �
. Hence, x displacement U(x,y) and y displace-

ment V(x,y) may be expressed in terms of the displace-

ment column vector r

Uðx; yÞ ¼ ½/;�yw;x� � r; V ðxÞ ¼ ½0;w� � r; ð7Þ

where w,x means the first order derivative of w with re-

spect to x.

In addition, the axial strain e(x,y) can be defined by

eðx; yÞ ¼ dUðx; yÞ
dx

þ 1

2

dV ðxÞ
dx

� 	2

; ð8Þ

where the second term represents the nonlinear displace-

ment effect.
When a finite change in the joint displacement Dr oc-

curs, corresponding changes in the strain De can be ex-

pressed by

De ¼ dDU
dx

¼ /;x;�yw;xx

� �
� Drþ 1

2
DrT � 0;w;x

� �T � 0;w;x

� �
� Dr

¼ B � Drþ 1

2
DrT � cT � c � Dr; ð9Þ

where B = [/,x,�yw,xx] = [�1/L, 1/L,y(1 � 2p)(6/L2),

y(�1 + 2p)(6/L2), y(2 � 3p)(2/L),y(1 � 3p)(2/L)]. More-

over, the incremental strain–displacement relationship

of de = B Æ dr + drT Æ cT Æ c Æ Dr = drT Æ (B + cT Æ c Æ Dr)

can be developed by taking the differential from Eq. (9).

Applying the virtual work principle of drT Æ
(Rj + DRj) = �V de Æ (r + Dr)dV to a finite element on

the basis of the virtual displacement dr and neglecting

a higher order incremental term, the incremental of no-

dal force vector DRj applied at node j can be written

from Eq. (9) as

DRj ¼
Z

V
BTDrdV þ

Z
V

cTrc dV � Dr

¼
Z

V
BTEðdet � denmÞdV þ

Z
V

cTrcdV � Dr

¼
Z

V
BTEB dV þ

Z
V

cTrcdV

 �

� Dr

�
Z

V
BTE denm dV ; ð10Þ

where E is the tangent modulus of constitutive material.
ents in a beam element.



Fig. 6. Solution procedure.
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Finally, the equilibrium equations can be rewritten in

differential form as

dR ¼ dRj þ dRnm ¼ K½ � � dr; ð11Þ
where

½K � ¼ ½K e� þ ½Kg� ¼
Z

V
BTEB dV þ

Z
V

cTrcdV ;

½K e� ¼
Z

V
BTEB dV ; ½Kg� ¼

Z
V

cTrc dV ;

dRnm ¼
Z

V
BTE denm dr;

½Ke� ¼

EA=L �EA=L 0 0 0 0

EA=L 0 0 0 0

12EI=L3 �12EI=L3 6EI=L2 6EI=L2

12EI=L3 �6EI=L2 �6EI=L2

sym: 4EI=L 2EI=L

4EI=L

2
666666664

3
777777775
;

ð12Þ

½Kg� ¼

0 0 0 0 0 0

0 0 0 0 0

6P=5L �6P=5L P=10 �P=10

6P=5L �P=10 �P=10

sym: 2PL=15 �PL=30

2PL=15

2
666666664

3
777777775
;

ð13Þ
while calculating the elastic stiffness [Ke] and the geomet-

ric stiffness [Kg], the value of E at each layer is assumed

to be held constant along the element length, and thus

the volume integration in Eq. (10) can be represented
by the inner product of the line integration along the ele-

ment length and the area integration across the sectional

depth. Moreover, since the layer approach is employed,

wherein a typical section is divided into imaginary lay-

ers, the sectional stiffness terms of EA and EI in Eq.

(12) can be evaluated by summation over all layers,

i.e., EA ¼
R

AE dA ¼
Pnc

i¼1Eci Aci þ
Pns

i¼1Esi Asi and EI ¼R
AEy2 dA ¼

Pnc

i¼1Eci y
2
ci

Aci þ
Pns

i¼1Esi y
2
si
Asi , where nc and

ns denote the number of concrete and steel layers respec-

tively, Ai and Ei are the sectional area and elastic mod-

ulus of ith layer, yi is the distance from the centroid, and

P refers to the applied force.
6. Solution algorithm

Every nonlinear analysis algorithm consists of four

basic steps: the formation of the current stiffness matrix,

the solution of the equilibrium equations for the dis-

placement increments, the state determination of all ele-

ments in the model, and a convergence check. These

steps are presented in some detail in the flow diagram

of Fig. 6. Since the global stiffness matrix of the struc-
ture depends on the displacement increments, the solu-
tion of the equilibrium equations is typically

accompanied by an iterative method through the con-

vergence check. The nonlinear solution scheme selected

in this paper uses the tangent stiffness matrix at the

beginning of each load step and each time step in

combination with a constant stiffness matrix during

the subsequent correction phase, that is, an incremen-

tal-iterative method.
The criteria for measuring the convergence of the

iterative solution are generally based on the accuracy of

satisfying the global equilibrium equations or on the

accuracy of determining the total displacements. The

accuracy of satisfying the global equilibrium is controlled

by the magnitude of the unbalanced nodal forces. Hence

the convergence criteria for the unbalanced nodal forces

are used in this paper, and these can be expressed as

F max
unbal:

�� �� 6 Tol:F ; Mmax
unbal:

�� �� 6 Tol:M ; ð14Þ
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where jF max
unbal:j and jMmax

unbal:j are the absolute values of the

maximum unbalanced axial force and bending moment,

respectively, and Tol.F and Tol.M are the specified toler-

ances corresponding to the axial force and bending mo-

ment. Tol.F = Tol.M = 0.01 are taken in this study, and

more details for the solution procedures can be found
elsewhere [14].
Fig. 7. Comparison of analytical model with test results.
7. Analytical and experimental verification

7.1. Short-term loading

The experimental results from several hinged RC col-
umns tested by Kim and Yang [11] are used to investi-

gate the validity of the analytical model proposed in

this paper. More details from the material properties

used in the experimental procedure for each specimen

can be found elsewhere [11].

The ultimate loads of columns measured experimen-

tally are compared with those obtained by the analytical

model in Table 1 in which the third column shows two
test results measured from two specimens with the same

specification for each slenderness ratio. The good agree-

ments for the individual columns, regardless of the com-

pressive strength of concrete and the slenderness ratio,

lead to the conclusion that the ultimate loads of hinged

RC columns can be accurately predicted by the pro-

posed numerical model. In addition, Fig. 7 representing

a relation between the axial force and lateral deflection
at the mid-span, shows that the proposed numerical

model not only gives accurate predictions for the ulti-

mate load but also effectively simulates the nonlinear

behavior of simply supported slender RC columns as

the axial force increases from zero to its ultimate value.
Table 1

Comparison of computed ultimate strength of RC columns with test

results from Kim and Yang [11]

f 0c ðkgf=cm2Þ L/r Test results Pu,t

(·103 kgf)

(Kim et al.)

Analysis results Pu,a

(·103 kgf)

(This study)

Pu,a/Pu,t

259.9 60 6493 6600 1.02

6697 0.99

100 3894 3780 0.97

3568 1.06

647.3 60 10479 10400 0.99

11570 0.90

100 4608 4840 1.05

4852 1.00

878.7 60 12446 11840 0.95

12610 0.94

100 5535 5520 1.00

5596 0.99
The second group of specimens used to validate the

proposed analytical model is a series of columns with

a width · depth of 20 cm · 30 cm. These columns were

tested by Chuang and Kong [6]. More details of the

material properties as well as the configuration of the
specimens can be found elsewhere [6]. From Table 2,

which shows the experimental results and the analytical

predictions, it can be seen that the proposed numerical

model accurately predicts the ultimate load regardless

of the eccentricity ratio.

An additional comparison with numerical calcula-

tions introduced by Bazant et al. [3,5] is conducted to

verify the accuracy of the proposed numerical model.
The steel ratio and cross-section dimensions of the se-

lected columns with slenderness ratios of L/r = 10, 70

and 100 are represented in Fig. 8. The same material

properties of concrete and steel as those in the previous

analytical study are used and have the following values:

f 0c ¼ 5000 psi (352 kgf/cm2), Es = 29 · 106 psi (2.04 ·
106 kgf/cm2) and fy = 60000 psi (4220 kgf/cm2).

For the design of slender RC columns, ACI318 [1]
recommends a simple approximate formula based on

the moment magnification factor. When a column is

subjected to ultimate loads of Pu and Mu, the load

and moment used in the design of the column section

are assumed to be Pu and d Æ Mu, where d is the moment

magnification factor, and is calculated from d = Cm/

(1 � Pu//k Æ Pcr) P 1; Pcr is the elastic buckling load;

and Cm is an equivalent uniform moment diagram
factor. Note that Cm = 1 for the columns used in this

example.

Moreover, as mentioned in a previous study [15], the

stiffness reduction factor /k designed to consider the

inevitable random variability of the materials has not

been incorporated for the purpose of comparison with

the numerical results (i.e. /k = 1.0 is assumed).

As shown in Fig. 8, the results from the proposed
numerical model are in good agreement with those



Table 2

Comparison of computed ultimate strengths of RC columns with test results from Chuang and Kong [6]

Specimen L/r e/h q (%) Test results Pu,t (·103 kgf) Analysis results Pu,a (·103 kgf) Pu,a/Pu,t

A-17-0.25 58.9 0.25 3.27 120.3 123.5 1.03

A-18-0.25 62.4 110.1 113.8 1.03

A-19-0.25 65.8 121.8 107.3 0.88

A-17-0.50 58.9 0.50 91.9 92.0 1.00

A-18-0.50 62.4 86.7 84.0 0.97

A-19-0.50 65.8 83.1 82.0 0.99

B-17-0.25 58.9 0.25 1.34 110.8 106.0 0.96

B-18-0.25 62.4 100.7 100.0 0.99

B-19-0.25 65.8 106.6 92.0 0.86

B-17-0.50 58.9 0.50 48.8 50.0 1.02

B-18-0.50 62.4 48.8 50.0 1.02

B-19-0.50 65.8 47.1 49.0 1.04

Fig. 8. Failure envelopes for pin-ended RC columns.

Fig. 9. Long-term resistance of RC columns.
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obtained by Bazant and Xiang [5], and leading to the

conclusion that the ultimate loads of slender RC col-

umns can be accurately predicted by the proposed

numerical model. Fig. 8 also leads to the following con-

clusions: (1) As the slenderness ratio increases, the differ-

ence between the ACI strength interaction curve and the

proposed model gradually increases; (2) the ACI method

may underestimate the resisting capacity of slender RC
columns; and (3) the ACI method does not achieve a

uniform safety margin, defined in this study as the uni-

form difference between the results predicted by the

ACI method and the results calculated by a rigorous

analysis over the entire interaction diagram for columns

with L/r = 70 and 100.

7.2. Long-term loading

To verify the accuracy of the proposed numerical

model for long-term behavior, correlation studies be-

tween analytical and experimental results by Drysdale

and Huggins [8] are conducted. The geometry and
cross-section dimensions of the tested columns are rep-

resented in Fig. 9, and those columns have a slenderness

ratio of L/r = 107. Moreover, the following material

properties, which have the same values with those used

in the experiments, are used: f 0c ¼ 4000 psi (282 kgf/

cm2), Es = 29 · 106 psi (2.04·106 kgf/cm2), and fy =

56000 psi (3940 kgf/cm2). To trace the time-dependent

behavior of RC columns, creep and shrinkage of con-
crete are considered with the aging effect of concrete,

and an ultimate creep coefficient of cu = 3.0 and an ulti-

mate shrinkage strain of e1sh ¼ 600� 10�6 are used on

the basis of the ACI model.

Fig. 9 shows a plot of Pou/Put versus bd where

bd = PD/(PD + PL) = ratio of dead load to total load,

Pou = short-term failure load, and Put = long-term fail-

ure load. When an RC column is subjected to a small
sustained load, which means that bd has a small value,

the points of failure caused by the subsequent sudden

overload generally indicate a substantial increase in

strength. This phenomenon, however, is almost nonexis-

tent in the tests of Drysdale et al. because drying
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prevents the increase of concrete strength due to hydra-

tion. This means that the analytical results may repre-

sent lower values of Pou/Put than those from the

experimental data along the whole range of bd because

the increase in concrete strength can accurately be con-

sidered in the numerical analyses by implementing the
age effect. In this aspect, the two models proposed by

the ACI and Bazant et al. give slightly conservative re-

sults and underestimate the resisting capacity of slender

RC columns as bd increases. In advance, since the dead

load takes possession of 50% of the total design load in

most RC columns (bd P 0.5), direct application of the

ACI model or the Bazant model may result in a conser-

vative design.
On the other hand, the numerical results from the

proposed analytical model agree well with the experi-

mental results. Especially at bd = 1, the numerical result

shows 30% reduction in the ultimate resisting capacity

for the axial load. This coincides well with the experi-

mental results, which represent reductions ranging from

20% to 40%.
8. Numerical analyses

8.1. Short-term loading

The ultimate resisting capacity of slender RC col-

umns is affected by many variables in addition to the

compressive strength of concrete, such as the slenderness
ratio, steel ratio, eccentricity, etc. In order to isolate the

effects of these variables, a parametric study is con-

ducted. The same cross-section dimensions as those used

in the analytical verification under short-term loading

are used (see Fig. 10). Two values of steel ratio

(qs = 0.03 and 0.08) are investigated and the slenderness

ratio is limited to a maximum L/r = 70, because the slen-

derness ratio of RC columns generally used in design
practice is less than 70. The following material proper-
(a) (b

Fig. 10. P–M interaction diagrams of RC col
ties are assumed: f 0c ¼ 360 kgf=cm2, Es = 2.1 · 106 kgf/

cm2 and fy = 4350 kgf/cm2. The resulting strength inter-

action curves in terms of primary bending moments are

given in Fig. 10.

As shown in Fig. 10, which represents the relation be-

tween the axial force and the primary bending moment,
the P–D effect appears more significant as the steel ratio

decreases. This seems to arise from the fact that columns

with relatively small steel ratios have smaller bending

stiffnesses, EI, at the post-cracking state, and this leads

to an increase in the lateral deflection and accompanying

the P–D effect. On the other hand, the P–D effect gradu-

ally disappears as the slenderness ratio converges to zero,

so that a minor influence of the steel ratio on the P–D ef-
fect appears in columns with low slenderness ratios (i.e.,

L/r 6 30). This effect also disappears when the applied

axial force P becomes zero. More details related to the

P–D effect can be found in the companion paper.

Fig. 11 shows the structural response of slender RC

columns according to changes in the compressive

strength of concrete. A more significant decrease of

the ultimate resisting capacity with an increase of the
slenderness ratio appears in the RC columns using con-

crete with relatively high compressive strength. Since the

stress–strain relation of concrete represents more brittle

behavior as the compressive strength increases, a slender

high strength concrete column has a relatively small en-

ergy absorption capacity when it is subjected to a large

lateral deflection accompanied by the P–D effect. This

is why a significant decrease of the ultimate resisting
capacity occurs in the high strength concrete column.

The obtained results also show that the use of high

strength concrete in slender RC columns is not as effec-

tive as in short columns.

8.2. Long-term loading

In order to study the long-term behavior of slender
RC columns, time-dependent analyses using the
)

umns in accordance with the steel ratio.



(a) (b)

Fig. 11. P–M interaction diagrams of RC columns in accordance with the compressive strength of concrete.
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proposed model are conducted in the case of bd = 1 be-

cause this case represents the most severe decrease in the
ultimate resisting capacity for the axial load (see Fig. 9).

The cross-section dimensions and material properties
(a) (b

Fig. 12. P–M interaction diagrams of RC col

(a) (

Fig. 13. P–M interaction diagrams of RC columns in acc
are the same as those used in the short-term loading

case. Figs. 12 and 13 show the P–M interaction dia-
grams, which represent the relation between the axial

force and the primary bending moment.
)

umns in accordance with the steel ratio.

b)

ordance with the compressive strength of concrete.
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As shown in Fig. 12, greater strength reduction due

to the creep deformation of concrete appears in RC col-

umns with relatively small reinforcement because the

creep deformation in an RC section increases as the steel

ratio decreases and larger creep deformation accompa-

nies greater increase of the lateral deformation. In ad-
vance, this figure shows that more significant strength

reduction due to creep deformation occurs in RC col-

umns with larger slenderness ratios, and this tendency

seems to be maintained always, regardless of changes

in the variables. Fig. 13 also shows a decrease of the ulti-

mate resisting capacity of RC columns according to the

creep of concrete. It can be seen that the strength reduc-

tion due to the creep effect is increased proportionally to
the compressive strength of concrete. Moreover, from a

comparison of Figs. 12 and 13 with Figs. 10 and 11 for

the short-term loading case, it can be found that all the

characteristics for the resisting capacity of RC columns

represented in short-term loading are maintained in the

long-term behavior.
9. Conclusions

A numerical model to simulate the nonlinear behav-

ior of slender RC columns considering the long-term

deformations of concrete is presented in this paper,

and the proposed model is verified by comparison with

results from previous analytical and experimental stud-

ies. Moreover, on the basis of the numerical results in
this limited investigation, the following conclusions are

obtained: (1) the use of high-strength concrete in slender

RC columns is not as effective as in short columns since

the resisting capacity is significantly decreased in high-

strength concrete columns; and (2) an increase of the

steel ratio leads to a relatively small decrease in the ulti-

mate resisting capacity of slender RC columns and im-

proves the structural behavior under short-term and
long-term loading.

Since the nonlinear behavior of slender RC columns

is dominantly affected by many design variables such

as the slenderness ratio, steel ratio, compressive strength

of concrete, eccentricity and the magnitude of ultimate

creep coefficient, etc., sophisticated numerical methods

considering material and geometric nonlinearities will

play an increasingly important role and will become
the standards for final design checks. Nevertheless, the

introduction of a simple design formula that can be

effectively used in practice to determine an initial section

of slender RC columns may be required because the de-

sign formulas noted in the current design codes still have

some limitations in considering numerous design vari-

ables and they give slightly conservative results for slen-

der RC columns.
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