
Product Line Approach to Role-based Middleware Development for
Ubiquitous Sensor Network*

Woojin Lee, Sungwon Kang, Dan Hyung Lee

School of Engineering
Information and Communications University, Korea

{wjlee, kangsw, danlee}@icu.ac.kr

* This work was partially supported by the Industrial Technology Development Program funded by the Ministry of Commerce, Industry and

Energy(MOCIE, Korea).
* This work was partially supported by Defense Acquisition Program Administration and Agency for Defense Development under the contract.

Abstract
Currently sensor network middlewares are

developed so that they include all functionalities for
various nodes. Since sensor network nodes usually
operate with limited resources, it is desirable for them
to have middlewares that have only the functionalities
necessary to perform their roles. This paper proposes
a systematic method for developing sensor network
middleware using the product line approach In this
method, functionalities of the sensor network
middleware common to all nodes and functionalities
specific to the different roles of nodes are carefully
separated and grouped so that nodes with different
roles have different middlewares that are specialized
to their roles but minimally consumes the resources.

1. Introduction

A ubiquitous sensor network [1] consists of a
number of sensor nodes with various roles that are
connected to each other through wireless networks.
Sensor network is used for various applications such as
environment monitoring, medical care, and military
application. However, it is not easy to develop sensor
network applications because resources of the nodes in
a sensor network are limited, wireless communication
between nodes may not be reliable and often nodes
should operate when power is low. Numerous such
factors make it challenging to develop sensor network
applications. Middleware alleviates this problem by
allowing the developer to abstract from the operating
systems details and supports developing, deploying,
executing, and maintaining sensor network
applications [2].

Sensor network nodes usually operate with limited
resources. So they should have only necessary software
modules in order to efficiently perform their functions.
On the other hand, sensor network nodes have different
roles that require different sets of functionalities.
Therefore, it is desirable that sensor network

middlewares can be differently customized for
different nodes so that only the functionalities
necessary to perform their roles are included.

Currently, several studies on the middleware are
under way in order to facilitate sensor network
applications development [3-6]. However, most
existing sensor network middlewares are not
modularized and so it is hard to customize them
according to the roles of nodes.

This paper proposes a method for efficiently
developing various sensor network middlewares
according to the roles of nodes using the product line
approach [7]. In this method, functionalities of the
sensor network middleware common to all nodes and
functionalities specific to the different roles of nodes
are carefully separated and grouped so that nodes with
different roles have different middlewares that are
specialized to their roles but minimally consumes the
resources.

2. Related Work

The techniques commonly used for sensor network
middleware development are component-based
development and modularized development. With help
of these techniques the time required for developing
middlewares has been reduced. But, it is hard to
efficiently develop various kinds of middleware
products using the techniques because the techniques
are methods for developing single middleware product.
Sensor network consists of a number of sensor nodes,
so various kinds of middleware products should be
developed to support various node applications.

There are new techniques for efficient middleware
development. Middleware developed using the aspect-
oriented development can easily add new
functionalities or change its functionalities without
modifying source code [8-10]. In the aspect-oriented
development technique [12], requirements are modeled
using aspects and so requirements are easily changed

without refactoring source code. Therefore
maintainability and modifiability of middleware are
improved. Model-driven middleware development [11]
is based on the idea that platform-independent
middleware model should be first designed based on
functional requirements, and then platform-dependent
middlewares are constructed from the platform-
independent middleware model. Accordingly, various
middlewares can be developed by reusing the platform-
independent middleware model.

These techniques can be used for developing
general application middlewares or embedded
middlewares that run on the platforms that have no
resource limitations but they are not suitable for sensor
network middleware, which have limited resources.

There are also dynamic reconfigurable middlewares
[14, 15], which can change modules during run-time.
Dynamic reconfiguration technique allows modules to
be changed or added during run-time depending on
requirements change.

This technique is different from the technique for
developing optimal middleware. Middleware
requirements can be changed during run-time even if
the middleware is optimally developed according to its
role, so dynamic reconfiguration technique is necessary
to reflect the requirements. Accordingly, our approach
is necessary to develop optimal sensor network
middleware. Scalability and efficiency of sensor

network middleware will be increased if our approach
and dynamic reconfiguration technique are harmonized.

3. Our Approach

Our approach for developing sensor network
middleware is based on the software product line
engineering approach. Its process consists of two parts
- domain engineering and application engineering [7].

In the domain engineering process, middleware
features for sensor network nodes with various roles
are identified. The architecture for the all inclusive full
middleware is designed marked with variation points.
Core components for common features are
implemented in this part. In the application engineering
process, middlewares for nodes are actually developed
by designing middlewares specialized to the roles of
nodes and implementing the design by reusing domain
engineering artifacts. Steps of application engineering
process are iterated until middlewares for all kinds of
roles for nodes in the specific sensor network are
developed. Figure 1 depicts our process for developing
sensor network middlewares.

Step D0: Middleware PL Scoping
In this step, sensor network middleware features for
various nodes are identified, and commonalities and
variabilities of middleware are determined. Features-
to- roles mapping table (Table 1) which presents the

Middleware PL
Requirements Engineering

Middleware PL
Domain Realization

Commonalities
& Variabilities

Analysis

Variability
Modeling

Features-to-
Components

Mapping

PL Architecture
Design

Detailed
Design

Middleware
Implementation

Middleware PL Domain
Design

Domain Engineering

Application Engineering

D1 D2 D3

Middleware PL Scoping

Role & Feature
Identification

Role & Feature
Mapping

D0

Middleware
Requirements Engineering

Role
Identification

Feature
Selection

A1
Middleware Realization

Features-to-
Components

Mapping

Architecture
Design

Detailed
Design

Middleware
Implementation

Middleware Design
A2 A3

One iteration per role

Figure 1. Middleware development process

relationship between middleware features and roles for
nodes is created. Commonalities and variabilities of
middleware are determined through the table. In Table
1, Feature 2 and Feature 5 become commonalities, and
the others become variabilities. This step corresponds
to the product line mapping in [13].

Table 1. Features-to-Roles mapping table

Feature 5

Feature 4

Feature 3

Feature 2

Feature 1

VVVV

VV

VV
Feature
Group 2

VVVV

VVFeature
Group1

Role 4Role 3Role 2Role 1

Feature 5

Feature 4

Feature 3

Feature 2

Feature 1

VVVV

VV

VV
Feature
Group 2

VVVV

VVFeature
Group1

Role 4Role 3Role 2Role 1

Step D1: Middleware PL Requirements Engineering
After determining commonalities and variabilities of
middleware, variability model is designed. Variability
model is designed using Orthogonal Variability Model
(OVM) [7]. OVM integrates the variability defined in
different software development models into an overall
picture of the software variability, so variabilities of
middleware can be managed through OVM.

Step D2: Middleware PL Domain Design
To implement middleware, it is necessary to identify
components for middleware and design the components
based on middleware features. In this step, common
features identified in Step D1 are mapped to
components. Figure 2 presents the diagram depicting
features-to-components mapping. In general, one
feature is implemented with one or more components
and one component may be used for implementing one
or more features.

<<feature>>
Feature 1

<<feature>>
Feature 2

Component 1 Component 2 Component 3

Figure 2. Features-to-components mapping

Once features-to-components mapping is

determined, middleware PL architecture is designed.
The notation for describing middleware PL architecture
is presented in Table 2.

Table 2. Basic notation for PL architecture

description
Notation Description

NameName

Represents a component.

VP

<<feature>>
VP name

VP

<<feature>>
VP name

Represents a variation point. It is a variant
constituent of a middleware. It is replaced by
components according to the role of a node in
the application engineering.

 Represents the association between
components, variation points, or a component
and a variation point.

Only a basic set of notations is shown in Table 2.

During domain design, middleware PL architecture is
designed using core components and variation points.
Common features are mapped to core components and
variable features are marked with variation points.
Later, during application engineering variable features
are realized with components.

Step D3: Middleware PL Domain Realization
Common components for middleware are designed in
detail and implemented. Components are designed and

implemented by considering target operating system
and programming language.

Step A1: Middleware Requirements Engineering
This is the first step of application engineering.
Middleware features for each role of a node are
selected from features-to-roles mapping table. For
optional features, corresponding variants are selected
from the variability model.

Step A2: Middleware Design
Features-to-components mapping for common features
obtained in domain engineering is used in application
engineering. In this step, components for implementing
middleware features specific to each role of a node are
identified and variant features selected from variability
model are mapped to the components. Selected
variation points for a specific middleware are replaced
with components identified in features-to-components
mapping and other variation points are removed from
PL middleware architecture.

Step A3: Middleware Realization
Components specific for variation part of middleware
architecture are designed in detail and implemented. A
middleware is completed by composing the
components which are implemented in domain
engineering or application engineering.

4. Application Example

In this section, the method proposed in Section 3 is
illustrated with the example of the Gas Sensing System.
The system is composed of sensor nodes, router nodes
and a sink node. Sensor nodes sense gas data and
transmit the data to router nodes. The router nodes
receive the data and transmit it to the sink node. The
sink node is connected to the monitoring system and
determines the action command, and a gas valve that
contains an actuator to turn off the gas valve.

4.1. D0: Product Line Scoping for Sensor
Network Middleware

Nodes in the sensor network are classified as sensor,
router, sink, and actuator according to their roles.
Middleware features for a node are different depending
on the role of a node. In this step, all necessary features
for sensor network middleware are identified by
considering the roles of nodes as shown in Table 3.

Table 3 also shows the relationship between
middleware features and roles for nodes. Resource
Awareness, Channel Discovering, Security, and Packet
Delivery are common features. So they are always
included in the sensor network middleware. On the
other hand, for example, Location Awareness, Routing,
Node Discovering, and Fault Recovery are required
only in router and sink nodes.

Table 3. Middleware features required for each
role of nodes

VUltra-sonic

VHumidity

VGas

V
Point-infra-
red

VLight

Temperature

V
Actuating
Control

V

Sensing
ControlHardware

Abstraction

VVVV
Packet
Delivery

VMonitoring

Data
Aggregation

Fault
Recovery

Security

Channel
Discovering

Node
Discovering

Routing

Resource
Awareness

Location
Awareness

VV

VV

VVVV

Service

VVVV

VV

VV

Network
Management

VVVV

VV
Context
Awareness

ActuatorSinkRouterSensorFeature Role

VUltra-sonic

VHumidity

VGas

V
Point-infra-
red

VLight

Temperature

V
Actuating
Control

V

Sensing
ControlHardware

Abstraction

VVVV
Packet
Delivery

VMonitoring

Data
Aggregation

Fault
Recovery

Security

Channel
Discovering

Node
Discovering

Routing

Resource
Awareness

Location
Awareness

VV

VV

VVVV

Service

VVVV

VV

VV

Network
Management

VVVV

VV
Context
Awareness

ActuatorSinkRouterSensorFeature Role

4.2. D1: Middleware PL Requirements
Engineering

Variable middleware features may or may not be
included in the middleware depending on the role of a
node. A variability model depicts such variations

among related features. Figure 3 shows a variability
model for the Gas Sensing System.

In Figure 3, Network Management variation point
has two variants – Routing and Node Discovering
feature. Service variation point has three variants -
Data Aggregation, Fault Recovery, and Monitoring
feature. Fault Recovery variant and Routing variant
have a “requires_V_V” relationship, which means that
a variant must be selected if another variant is selected.
In the sensor network, since routing is necessary to
recover communication fault, Routing feature must be
selected if Fault Recovery feature is selected.

4.3. D2: Middleware PL Domain Design

After identifying middleware features, components
for middleware implementation have to be identified,
and features have to be mapped to them. Figure 4
presents the mapping results for common middleware
features.

Also in this step, middleware product line
architecture is designed and used in the domain
engineering phase to design various middleware
product architectures according to the role of nodes.

VP

<<feature>>
Service

VP

<<feature>>
Context Awareness

VP

<<feature>>
Network Management

V <<feature>>
Routing

V <<feature>>
Node Discovering

V <<feature>>
Location Awareness

V <<feature>>
Data Aggregation

V <<feature>>

Fault Recovery

V <<feature>>

Monitoring

requires_V_V

VP
<<feature>>

Hardware Abstraction

V <<feature>>

Sensing Control

V <<feature>>

Actuating Control

VP

<<feature>>
Sensing Control Type

V <<feature>>
Temperature

V <<feature>>

Gas

V <<feature>>

Humidity

V <<feature>>

Light

V <<feature>>

Point-infra-red

V <<feature>>

Ultra-sonic

requires_V_VP

[1..6]requires_V_V requires_V_V

requires_V_VP requires_V_VP
Exclusive or

[min..max]Permissible range of choice
Inclusive or

Legend

Figure 3. Variability model for middleware

<<feature>>

Packet Delivery

Security
Managing

Data
Transmission

Channel
Discoverer

Resource
Monitor

<<feature>>
Security

<<feature>>
Channel Discovering

<<feature>>
Resource Awareness

Figure 4. Features-to-components mapping for

common features

Figure 5 presents the middleware product line

architecture. Components identified in Step D2 are
used for common features, and variation points in the
variability model designed in Step D1 are used for
variant features. Lines between components mean that

they are connected to each other through interfaces.
Using this product line architecture, specific
middleware architecture for a node can be designed in
the domain engineering phase by selecting appropriate
variant features first according to the role of the node
and then replacing it with the components for the
introduced features.

Security Managing Data Transmission

Channel Discoverer

VPVP

<<feature>>
Service

VPVP

<<feature>>

Context Awareness

VPVP

<<feature>>
Network

Management

VPVP

<<feature>>

Hardware Abstraction

Resource Monitor

Middleware
Figure 5. Middleware product line architecture

4.4. D3: Middleware PL Domain Realization
In Step D3, core components are designed and

implemented. In our example, there are four core
components mapped from common features as
presented in Figure 4. They are Security Managing,
Data Transmission, Channel Discoverer, and Resource
Monitor. In this step, middleware components are
designed in detail and implemented by considering
target operating system for the sensor network.

4.5. Application Engineering

The steps from middleware requirements
engineering to middleware design is described by using
the artifacts generated in domain engineering.

Table 4 shows the selected middleware features for
gas sensor nodes. Shaded boxes are the selected
features for the gas sensor node.

Table 4. Selection of middleware features for gas

sensor nodes

VUltra-sonic

VHumidity

VGas

V
Point-infra-
red

VLight

Temperature

V
Actuating
Control

V

Sensing
ControlHardware

Abstraction

VVVV
Packet
Delivery

VMonitoring

Data
Aggregation

Fault
Recovery

Security

Channel
Discovering

Node
Discovering

Routing

Resource
Awareness

Location
Awareness

VV

VV

VVVV

Service

VVVV

VV

VV

Network
Management

VVVV

VV
Context
Awareness

ActuatorSinkRouterSensorFeature Role

VUltra-sonic

VHumidity

VGas

V
Point-infra-
red

VLight

Temperature

V
Actuating
Control

V

Sensing
ControlHardware

Abstraction

VVVV
Packet
Delivery

VMonitoring

Data
Aggregation

Fault
Recovery

Security

Channel
Discovering

Node
Discovering

Routing

Resource
Awareness

Location
Awareness

VV

VV

VVVV

Service

VVVV

VV

VV

Network
Management

VVVV

VV
Context
Awareness

ActuatorSinkRouterSensorFeature Role

(a) Feature Tree

(b) Features-to-Components Mapping

<<feature>>

Gas
<<feature>>

Gas

Sensing ControllerSensing Controller Gas_InfGas_Inf

VP

<<feature>>
Hardware Abstraction

VP

<<feature>>

VP

<<feature>>
Hardware Abstraction

V <<feature>>

Sensing Control

V <<feature>>

Sensing Control

V <<feature>>

Actuating Control

V <<feature>>

Actuating Control

VP

<<feature>>
Sensing Control Type

VP

<<feature>>

VP

<<feature>>
Sensing Control Type

V <<feature>>

Temperature

V <<feature>>

Temperature

V <<feature>>

Gas

V <<feature>>

Gas

V <<feature>>

Humidity

V <<feature>>

Humidity

V <<feature>>

Light

V <<feature>>

Light

V <<feature>>

Point-infra-red

V <<feature>>

Point-infra-red

V <<feature>>

Ultra-sonic

V <<feature>>

Ultra-sonic

requires_V_VP

[1..6]

Figure 6. Features-to-components mapping for

gas sensor nodes

Figure 6 shows the selected variants from the
variability model designed in domain engineering and
the features-to-components mapping. Gray boxes of
Figure 6(a) shows selected variants for gas sensor
nodes and Figure 6(b) shows the mapping from a
selected variant feature to the components that realize it.

Security
Managing

Data
Transmission

Channel
Discoverer

Resource
Monitor

Middleware

Sensing
Controller

Gas_Inf

Figure 7. Middleware architecture for gas sensor

nodes

In Figure 7, four components - Security Managing,

Channel Discover, Data Transmission, and Resource
Monitor – are the core components generated in
domain engineering, and two components - Sensing
Controller and Gas_Inf – are specific middleware
components for the gas sensor node.

Middleware architecture for gas sensor nodes is
designed using middleware PL architecture.
Appropriate variation points among the variation points
in the PL architecture are selected according to the
selected features shown in Table 4. The variation

points, then, are replaced with components through
features-to-components mapping. Figure 7 shows the
middleware architecture for the gas sensor node.

5. Conclusion

This paper proposed a systematic method for
developing sensor network middlewares that are
specialized according to the roles of nodes using the
product line approach. In order to help apply the
product line approach to sensor network middlewares
development, this paper (1) identified various roles of
sensor network nodes, (2) analyzed common
middleware features and variant middleware features
for the roles, and (3) presented notation for describing
middleware product line architecture based on
Orthogonal Variability Model [7]. This paper also
showed feasibility of the proposed technique through
an application example.

The contributions of the paper are twofold: First, by
applying the product line approach to sensor network
middleware development, we opened up a new domain
for applying the software product line approach.
Middlewares are commonly perceived as complex and
expensive software to develop and thus as the things
that should be deployed as a whole even at the expense
of using up much system resources. We believe that the
notion of middleware specialized to the role of the
system containing it will be useful in many areas and
especially so when system resources are limited as in
sensor networks. As the product line development
methods and tools are developed more and more and
becomes advanced, production of specialized
middlewares and, more generally, production of
particular products of product lines will require less
and less effort. Second, by providing a concrete process
together associated models and notations and working
out example middleware development for the gas
sensor node which is a constituent of the sensor
network for the Gas Sensing Application, we illustrated
our method so that with a little adaptation the method
in this paper can be easily applied to different sensor
networks and also to other software where the
application of the approach is justified.

References
[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E.
Cayirci, “Wireless Sensor Networks: A Survey,” Computer
Networks, March 2002, 38(4):393–422.
[2] K. Römer, O. Kasten, and F. Mattern, “Middleware
Challenges for Wireless Sensor Networks,” ACM
SIGMOBILE Mobile Commun. and Commun. Rev., vol. 6, no.
2, 2002.
[3] T. Liu and M. Martonosi, “Impala: A Middleware System
for Managing Autonomic, Parallel Sensor Systems,” Proc.

ACM SIGPLAN Symp. Principles and Practice of Parallel
Programming (PPoPP 03), 2003, pp. 107–118.
[4] Eduardo Souto, Germano Guimarães, Glauco
Vasconcelos, Mardoqueu Vieira, Nelson Rosa, Carlos Ferraz,
“A Message-Oriented Middleware for Sensor Networks,”
Proc. 2nd Int’l Workshop Middleware for Pervasive and Ad-
Hoc Computing (MPAC 04), 2004, pp. 127–134.
[5] P. Levis and D. Culler, “Mate: A Tiny Virtual Machine
for Sensor Networks,” Proc. 10th Int’l Conf. Architectural
Support for Programming Languages and Operating Systems
(ASPLOS-X), 2002, pp. 85–95.
[6] D.M. Lee, S.H. Han, I.S. Park, S.H. Kang, K.M. Lee, S.J.
Hyun, Y.H. Lee, and G.H. Lee, "A Group-Aware Middleware
for Ubiquitous Computing Environments," Proc. 14th Int’l
Conf. Artificial Reality and Telexistence (ICAT 2004), 2004.
[7] K. Pohl, G. Bockle, F. Linden, Software Product Line
Engineering: Foundations, Principles, and Techniques,
Springer, 2005.
[8] S.S. Yau, Y. Wang and D. Huang, “Middleware Support
for Embedded Software with Multiple QoS Properties for
Ubiquitous Computing Environments,” Proceedings of The
Eighth IEEE International Workshop on Object-Oriented
Real-Time Dependable Systems, 2003, pp. 250- 256.
[9] D. Kaul and A. Gokhale, "Middleware Specialization
using Aspect Oriented Programming," Proceedings of the
44th ACM SE conference, 2006.
[10] F. Hunleth, R. Cytron, and C. Gill, "Building
Customizable Middleware Using Aspect Oriented
Programming,” Proceedings of the 2001 ACM Conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA'01), 2001.
[11] A. Gokhale, K. Balasubramanian, J. Balasubramanian,
A.S. Krishna, G. Edwards, G. Deng, J. Parsons and Douglas
C. Schmidt, "Model Driven Middleware: A New Paradigm
for Developing and Provisioning Distributed Real-time and
Embedded Applications," Elsevier Journal of Science of
Computer Programming, Special Issue on Model Driven
Architectures, 2005.
[12] K. Lieberherr, D. Orleans and J. Ovlinger, "Aspect-
oriented programming with adaptive methods," Comm. ACM,
Vol. 44, No. 10, Oct. 2001, pp.39-41.
[13] K. Schmid, “Product Line Mapping Report,” IESE-
Report No. 028.00/E Release 1.0, 2000.
[14] G. Coulson, G.S. Blair, M. Clarke and N. Parlavantzas,
"The Design of a Configurable and Reconfigurable
Middleware Platform," Distributed Computing, Volume 15,
Issue 2, Springer-Verlag, April 2002, pp.109-126.
[15] N. Wang, C. Gill, D.C. Schmidt, and V. Subramonian,
"Configuring Real-Time Aspects in Component
Middleware," CoopIS/DOA/ODBASE 2004, LNCS 3291,
Springer-Verlag, 2004, pp.1520–1537.

