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We construct a general theory describing the topological quantum phase transitions in 3D systems with

broken inversion symmetry. While the consideration of the system’s codimension generally predicts the

appearance of a stable metallic phase between the normal and topological insulators, it is shown that a

direct topological phase transition between two insulators is also possible when an accidental band

crossing occurs along directions with high crystalline symmetry. At the quantum critical point, the energy

dispersion becomes quadratic along one direction while the dispersions along the other two orthogonal

directions are linear, which manifests the zero chirality of the band touching point. Because of the

anisotropic dispersion at quantum critical point, various thermodynamic and transport properties show

unusual temperature dependence and anisotropic behaviors.
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The 3D topological insulator (TI) is a new state of matter
in which the nontrivial topology of bulk electronic wave
functions guarantees the existence of gapless states on the
sample’s boundary [1,2]. Because of its topological nature,
the surface gapless states are protected against small per-
turbations, preserving the time-reversal symmetry (TRS)
as long as the bulk band gap remains finite. Therefore, to
change the bulk topological property, the band gap should
be closed at some points in the Brillouin zone (BZ) via
accidental band crossing (ABC). Recently, such a topo-
logical phase transition (PT) is realized in BiTlðS1�xSexÞ2
[3,4], by modulating the spin-orbit interaction or the
crystal lattice. In inversion symmetric systems such as
BiTlðS1�xSexÞ2, the topological PT can be described by
the (3þ 1)-dimensional massive Dirac Hamiltonian, in
general. In this sense, the topological PT of 3D TIs pro-
vides a new venue to study intriguing quantum critical
behaviors of 3D particles with relativistic dispersion [5–7].

On the other hand, for noncentrosymmetric systems,
our understanding of the topological PT and of the corre-
sponding quantum critical behavior is still incomplete.
By considering the codimension for ABC, a stable metallic
phase was predicted to appear between a TI and a normal
insulator in 3D noncentrosymmetric systems [8]. The inter-
vening metallic phase, dubbed aWeyl semimetal, has topo-
logical stability because there are several gapless points
(Weyl points) with nonzero chiral charge at the Fermi level
[9]. Therefore, before every Weyl point is annihilated by
colliding with another Weyl point with opposite chiral
charge, the Weyl semimetal should stably survive across
the PT. In this respect, the recent discovery of a direct PT
between two insulators in the noncentrosymmetric com-
pound BiTeI is an unexpected surprise [10–12]. At the
quantum critical point (QCP) of BiTeI, instead of a Weyl

semimetal, several isolated band touching points (BTPs)
with anisotropic dispersion appear, which suggests the
diversity of the possible phase diagrams of noncentrosym-
metric systems accessible via ABC.
In this Letter, we propose generic phase diagrams for

3D noncentrosymmetric systems that can be achieved
through ABC, as depicted in Fig. 1. We carry out the
analysis of the minimal two-band Hamiltonian describing
the ABC to derive the conditions for these insulator-to-
metal and insulator-to-insulator transitions (IITs). The key
ingredient to obtain Fig. 1 is the fact that the chirality of the
BTP at the QCP is zero. Therefore, it can either be gapped
out, leading to another insulator [Fig. 1(a)], or split into
several Weyl points, resulting in a Weyl semimetal. In the
latter case, depending on whether the trajectory, traversed
by the Weyl point, is closed or not, the Weyl semimetal
phase turns into another insulator [Fig. 1(b)] or persists all
the way [Fig. 1(c)]. In all three cases, at the QCP between
any pair of neighboring phases, the energy dispersion
near a BTP is highly anisotropic, which is linear in two
directions and quadratic along the third direction. This
anisotropic dispersion induces new power laws in the
temperature dependence of various measurable quantities
and anisotropic physical responses.
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(a)                                                                              (b)                                    (c)

FIG. 1 (color online). Generic phase diagrams, resulting from
the ABC between the conduction and valence bands in 3D
noncentrosymmetric systems. Here, m indicates an external
control parameter.
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Phase transition through the ABC.—In noncentrosym-
metric systems, the ABC between the conduction
and valence bands can be described by the following
2� 2 Hamiltonian, Hðk;mÞ¼f0ðk;mÞþP3

i¼1fiðk;mÞ�i,
where f0;1;2;3 are real functions and �1;2;3 are Pauli matrices

indicating the two bands. Here, m describes a tuning
parameter. In particular, we consider the following situ-
ation. For m<mc, the system is fully gapped. An isolated
BTP occurs at the critical point ðk; mÞ ¼ ðkc; mcÞ, where
f1;2;3ðkc; mcÞ ¼ 0. Since f0 does not affect the ABC, we

can neglect f0. Then, the next question is what happens
when m>mc. To examine the system’s behavior near the
critical point, we derive the effective Hamiltonian through
an expansion in powers of q¼k�kc and �m ¼ m�mc.
Up to the linear order of q and �m, f ¼ ðf1; f2; f3ÞT
(T stands for transpose) can be written as fðq;�mÞ¼ M̂qþ
�mN, where M̂ij ¼ @fi

@qj
jq¼�m¼0 and Ni ¼ @fi

@m jq¼�m¼0. If

the determinant of M̂, i.e., DetM̂, is nonzero, the gap-

closing condition f ¼ 0 leads to q ¼ �M̂�1N�m, which
means that the gapless point moves as �m varies and
persists even when �m< 0, contradicting the initial as-

sumption. Therefore,DetM̂ ¼ 0 at the PT point. In fact, the

sign of DetM̂ ¼ "ijkM1iM2jM3k is the chirality (or chiral

charge) of the BTP at �m ¼ 0. Since the chirality is a
topological number, a BTP with a nonzero chirality is
stable against small perturbations. However, when

DetM̂ ¼ 0, it is not topologically protected. Therefore,
when �m> 0, the BTP can either be gapped out, leading
to another insulating phase, or be split into several Weyl
points with zero net chirality, generating a stable metallic
phase. When both of these possibilities are allowed, the
insulating phase should be preferred since the gapped
phase has lower energy.

To understand the nature of the ground state for�m> 0,
it is useful to rotate the momentum coordinates using a
basis which manifests the zero chirality of the BTP at

�m ¼ 0. Since DetM̂ ¼ 0, M̂ has an eigenvector n1 with

zero eigenvalue satisfying M̂n1 ¼ 0. We introduce two
additional normalized vectors n2 and n3, which can form
an orthonormal basis fn1;n2;n3g, and construct a matrix

Ŵ ¼ ðn1;n2;n3Þ. With the rotated coordinate p ¼ Ŵ�1q,

fðp;�mÞ ¼ u2p2 þ u3p3 þ �mN, where u2;3 ¼ M̂n2;3.

Here, terms that are linear in p1 do not appear in f due

to the fact that M̂n1 ¼ 0. Then, the leading contribution
of the p1 dependent term should start from quadratic
order, which leads to the minimal effective Hamiltonian
Hðp;�mÞ ¼ P

3
i¼1 fiðp;�mÞ�i in which

fðp;�mÞ ¼ u2p2 þ u3p3 þ u4p
2
1 þ�mN: (1)

Conditions to obtain an insulator.—Let us first derive the
condition for the IIT corresponding to Fig. 1(a). Since
the system is gapped for any �m � 0, the conduction
(valence) band should have a well-defined dispersion mini-
mum (maximum) near p ¼ 0. Considering the minimal

2� 2 Hamiltonian with f1;2;3ðp;�mÞ in Eq. (1), the con-

dition to have an extremum for small �m � 0 leads to the
following three equations: gi ¼ @Ecðp;�mÞ=@pi ¼ 0
(i ¼ 1, 2, 3). Here, Ec is the energy of the conduction
band. After solving the three coupled equations, the loca-
tion of the dispersion minimum is obtained as pmin ¼
ð0; A�m;B�mÞ, where A and B are some constants. This
implies that, across the ABC, the conduction (valence)
band minimum (maximum) should move along the straight
line, satisfying p1 ¼ 0 and p2 ¼ A

B p3 for both�m< 0 and

�m> 0. Such a condition can be satisfied generally when
the system has high crystalline symmetry along the line.
Therefore, the IIT is achievable when the extrema of the
conduction and valence bands of the gapped phases move
along a straight line across the ABC.
As a consequence of the IIT, the energy dispersion

develops a peculiar structure. To understand the band shape
near the dispersion minimum, we compute the Hessian

matrix Ĥmin
ij ¼ @2Ec

@pi@pj
, which has a block diagonal form

with Ĥmin
12 ¼ Ĥmin

13 ¼ 0 at p ¼ pmin. The other nonzero

components of Ĥmin satisfy

Ĥmin
11 ¼ c11�m; Det

Hmin
22 Hmin

23

Hmin
32 Hmin

33

 !
> 0;

where c11 is a constant. Interestingly, Ĥmin
11 changes the

sign across the PT because it is linearly proportional to
�m. For c11 < 0 (c11 > 0), the conduction band has a
dispersion minimum in all three directions for �m< 0
(�m> 0), while it has a saddle point with a negative
curvature along the p1 direction for �m> 0 (�m< 0).
Therefore when there is a IIT, one insulating phase should
possess a saddle point at the bottom (top) of the conduction
(valence) band along the p1 direction where the energy
dispersion is quadratic at the QCP.
We can apply this theory to the IIT of the pressured

BiTeI [12]. In this system, the ABC occurs along the high
symmetry line A-H in the kz ¼ � plane (the BZ of BiTeI is
shown in Fig. 1 of Ref. [12]). Because of the C3v symme-
try, the conduction (valence) band with Rashba-type spin
splitting develops a dispersion minimum (maximum) along
this line for any pressure across the ABC, which satisfies
the necessary condition for the IIT. In Fig. 2, we plot the
evolution of the band dispersion across the ABC near one
of the BTPs using the band structure obtained by first-
principles calculations [13]. At the QCP, the band disper-
sion is quadratic along one direction and linear along the
other two directions. Moreover, beyond the critical pres-
sure, the band dispersion of the insulating phase possesses
a saddle point, proving the occurrence of the IIT.
Conditions to obtain a semimetal.—If the condition for

gap reopening is not satisfied, the BTP at �m ¼ 0 can be
split into several BTPs. Here, we focus on the case of
generating two BTPs with opposite chiral charges for
convenience. Since there are four parameters (p1;2;3 and
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�m) but only three conditions of f1;2;3 ¼ 0 are required to

be satisfied to achieve a gapless phase, there is a line of
gapless points in the (p, �m) space, in general. Regarding
t � �m as a parameter, the trajectories of the two BTPs
form a curve p�ðtÞ ¼ ðp�

1ðtÞ; p�
2ðtÞ; p�

3ðtÞÞ in 3D momentum

space. To determine the structure of the phase diagram, it is
crucial to understand the shape of the curve in 3D space.

When the BTP, p�ðt ¼ 0Þ, is free of symmetry con-
straints, the three components of p�ðt ¼ 0Þ are linearly
independent, in general. In this case, from Eq. (1), the
location of BTPs for small t > 0 can be obtained as p�ðtÞ ¼
ð�a1

ffiffi
t

p
; a2t; a3tÞ with a1;2;3 constants, which is initially

proposed by Murakami and Kuga in Ref. [8]. The shape of
this trajectory in 3D momentum space and its 2D projec-
tions are shown in Fig. 3(a). Since the curve is lying on a
2D plane, the trajectory can form a closed loop, which can
generate another insulating state via a pair annihilation of
BTPs. Therefore, an ABC at a generic momentum point
without symmetry constraints can give rise to Fig. 1(b) [8].

On the other hand, when p�ðt ¼ 0Þ is under symmetry
constraints, the components of p�ðt ¼ 0Þ cannot be linearly
independent. For example, in BiTeI, p�ðt ¼ 0Þ exists on a
line where the Hamiltonian is invariant under the combina-
tion of time-reversal and mirror symmetries. Although the
IIT should occur in this system, let us suppose that the
splitting of the BTP is possible. In this case, it can be shown

that the trajectory follows p�ðtÞ ¼ ð��
ffiffi
t

p
;��t3=2; �tÞ

with constants�,�, and �. This is because the components
p1;2;3 of p

�ðtÞ satisfy p2 / p1p3 due to the symmetry con-

straint at t ¼ 0. The detailed derivation is provided in the
Supplemental Material [14]. The shape of this trajectory is

shown in Fig. 3(b). It is worth noting that the trajectory
moves in 3D space. It is vanishingly improbable that
two curves emanating from the origin and traveling in
3D space can collide again, considering the huge volume
of the momentum space. Therefore, if an ABC occurs at a
momentum under symmetry constraints, the trajectory of
BTPs can form an open curve, leading to the phase diagram
in Fig. 1(c).
Topological PT.—The IIT can accompany the change of

bulk topological properties [15]. In 3D systems with TRS,
band insulators can be classified by Z2 topological num-
bers �0;1;2;3 [1,16,17]. In the BZ, there are three pairs of

parallel planes, in which k � ai ¼ 0 or � (i ¼ 1, 2, 3).
Here, a1;2;3 are primitive lattice vectors. Since each plane

has TRS, a 2D Z2 invariant �0
i (��

i ) can be assigned to
the plane, satisfying k � ai ¼ 0 (k � ai ¼ �). Since
�0
1 þ ��

1 ¼ �0
2 þ ��

2 ¼ �0
3 þ ��

3 , only four 2D invariants

are independent and determine the Z2 invariants of the
3D system in the following way: ð�0; �1; �2; �3Þ ¼
ð�0

1 þ ��
1 ; �

�
1 ; �

�
2 ; �

�
3 Þ. The strong invariant �0 distin-

guishes a TI (�0 ¼ 1) and a band insulator (�0 ¼ 0).
Since �0 ¼ �0

i þ ��
i for any i ¼ 1, 2, 3, if one of the 2D

Z2 invariants changes by 1 through the ABC, a topological
PT occurs.
In a 2D BZ with TRS, the Z2 invariant � is given by the

Chern number (modulo 2), which is the integral of the
Berry curvature over the half BZ (with additional contrac-
tion procedures [16]). Therefore, if the ABC between the
valence and conduction bands, changing the Chern number
of each band by �1 per a touching [18], occurs an odd
number of times in the half BZ, � changes by 1, leading
to a 3D topological PT. Therefore, when IIT happens, if the
high crystalline symmetry line embracing QCPs is on a
2D plane with TRS and the number of such lines in the
half BZ is odd, a topological PT occurs. This condition is
exactly satisfied in BiTeI, where three high symmetry lines
embracing BTPs are on the kz ¼ � plane with TRS leading
to the topological PT [12].
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FIG. 3 (color online). The trajectory of BTPs in 3D space
and its 2D projections. (a) The curve is lying on a 2D plane
leading to Fig. 1(b). (b) The curve is moving in 3D space leading
to Fig. 1(c).
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FIG. 2 (color online). Evolution of the band structure, obtained
from first-principles calculations, across the topological PT in
BiTeI under pressure P. The energy dispersion of the conduction
or valence bands near one of the BTPs in the (p1, p2) plane,
which is normal to the high symmetry line embracing QCPs, is
shown for (a) P< Pc, (b) P ¼ Pc, and (c) P> Pc, respectively.
Energy dispersions along the p1 (red solid line), p2 (green
dash-dotted line), and p3 (blue dashed line) directions are
shown for (d) P< Pc, (e) P ¼ Pc, and (f) P> Pc, respectively.
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Thermodynamic properties at QCP.—The anisotropic
dispersion of the BTP with zero chirality leads to the
following minimal Hamiltonian at the QCP,

HQCPðpÞ ¼ Ap2
1�1 þ �p2�2 þ �p3�3; (2)

where � is the velocity and A is the inverse mass. This gives

rise to the density of states Dð"Þ / "3=2, which is quite
distinct from that for a 3D Weyl semimetal [Dð"Þ / "2] or

a 3D normal metal with quadratic dispersion [Dð"Þ /
"1=2]. The distinct power law of Dð"Þ directly leads to
new exponents in the temperature dependence of various
thermodynamic quantities such as the specific heat (CV)
and compressibility (�), as summarized in Table I. The
diamagnetic susceptibility 	D also shows an unexpected
singular behavior. We have computed 	D using the

Fukuyama formula for the orbital susceptibility 	D ¼ e2

c2
�

T
V

P
n;pTr½G�aG�bG�aG�b� [19]. Here, G is the Green’s

function, �a � @HQCP

@pa
, and a and b are two orthogonal

directions perpendicular to the applied magnetic field.
From Eq. (2), 	D is given by 	Dð
Þ ¼ cos2
	1 þ
sin2
	2, in which 	1 � C1T

�1=2 and 	2 � 	0
2 þ C2T

1=2,

with 	0
2 and C1;2 constants. Here, 
 is the angle between

the external magnetic field and the p1 direction. Therefore,
	D shows unusual singular temperature dependence in low

temperature, given by 	D 	 T�1=2 irrespective of magnetic
field directions.

Anisotropic dc conductivity.—The anisotropic disper-
sion at QCP also induces the anisotropic temperature de-
pendence of the dc conductivities. Assuming momentum
independence of the scattering rate 1

�ð!Þ , a straightforward
calculation of the conductivity tensor using the Kubo
formula gives rise to the following expression of the dc
conductivities:

�11ðTÞ ¼ 2e2
ffiffiffiffi
A

p
7�2�2

Z
d!j!j5=2

�
� @f

@!

�
�ð!Þ;

�22;33ðTÞ ¼ 9e2

20�2
ffiffiffiffi
A

p
Z

d!j!j3=2
�
� @f

@!

�
�ð!Þ:

(3)

When the Coulomb interaction between electrons domi-

nates the scattering, we can take 1
� ¼ �2T, with � ¼ e2

4�"� ,

considering that the low temperature transport is dominated

by the linear dispersion. In this case, the dc conductivity

satisfies �11ðTÞ / T3=2 and �22;33ðTÞ / T1=2. On the other

hand, when the scattering due to random potentials domi-
nates the transport, using the Born approximation, the lead-
ing contribution to the scattering rate can be obtained by
1

�ðwÞ�2��0DðwÞ with �0¼ niV
2
0

2 [14]. Here, V0 is the impu-

rity scattering potential and ni is the impurity density. Then,

usingEq. (3), we obtain�33ðTÞ¼ 9e2�2

20��0
and�11ðTÞ¼ 2e2A

7��0
�

ð2ln2ÞT, which also shows the anisotropic T dependence
[20]. In fact, Eq. (3) implies that, as long as the scattering
rate is momentum independent, irrespective of the scatter-

ing mechanism, �11ðTÞ
�33ðTÞ ¼ C0

A
�2 T, where C0 � 1:8.

Stability of QCP.—Finally, let us discuss the stability of
the QCP against disorder and Coulomb interaction. The
effective action of the QCP, including both random disorder
potential and 1=r Coulomb interaction, can be written as

S¼
Z

dtd3x

�
c yði@t þA@21�1

þ X
j¼2;3

i�@j�jÞc þVic
yMic

�

þ
Z

dtd3xd3x0ðc yc Þx;t g2

2jx� x0j ðc
yc Þx0;t; (4)

where ViðxÞ is a random potential coupled to fermion field
c ðxÞ via a matrix Mi. g

2 ¼ e2=", where e and " are the
electric charge and the dielectric constant, respectively.
We take a random disorder potential with Gaussian invari-

ance whose impurity average satisfies hViðxÞVjðx0Þi ¼
�ij�

ð3Þðx� x0Þ. The key characteristic of the Gaussian

fixed point in Eq. (2) is the invariance of the Hamiltonian
under the anisotropic scaling of spatial coordinates, i.e.,

~x1 ¼ x1=b
1=2 and ~x2;3 ¼ x2;3=b, accompanied by ~t ¼ t=b,

where the tilde indicates the new scaled coordinates.
Under this scale transformation, �ij transforms as
~�ij ¼ b�1=2�ij, showing the irrelevance of the disorder.

Similarly, we can show that ~g2 ¼ g2; i.e., the Coulomb
interaction is marginal, which, however, eventually
becomes irrelevant, according to the one-loop perturbative
renormalization group calculation [21]. Therefore, the
unusual power laws in various thermodynamic and trans-
port properties, which are predicted based on the free par-
ticle Hamiltonian in Eq. (2), should persist even under the
influence of the disorder and the Coulomb interaction.
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TABLE I. Temperature (or energy) dependence of various
physical quantities for a 3D Weyl semimetal and at the QCP.
Dð"Þ, CV , �, 	D, and �dc are the density of states, specific heat,
compressibility, diamagnetic susceptibility, and dc conductivity,
respectively. �dcðTÞ is obtained by using the T linear scattering
rate due to the Coulomb interaction between electrons.

Dð"Þ CVðTÞ �ðTÞ 	DðTÞ �dcðTÞ
Weyl semimetal "2 T3 T2 lnT T
At the QCP "3=2 T5=2 T3=2 T�1=2 T1=2
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