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Abstract

A nonlinear dynamic finite element analysis of reinforced concrete (RC) frames subject to both dynamic and cyclic loadings is performed using
the layered section method. In contrast to conventional layered section approaches that adopt a perfect bond assumption, the bond-slip effect along
the reinforcing bar is quantified with the force equilibrium and compatibility condition at the post-cracking stage and its contribution is indirectly
implemented into the stress–strain relation of reinforcing steel. Thus, the advantage of the proposed analytical procedure is that it takes the bond-
slip effect into account while using the conventional layered section method, without the need for additional considerations such as taking the
double nodes. Comparisons between experimental data and analytical results verify that the proposed analytical procedure can effectively simulate
the cracking behavior of RC beams, columns, and frames that accompanies the stiffness degradation caused by bond-slip.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The ultimate design objective for structural engineers
is the creation of safe and economical structures. To this
end, advanced analytical tools can be indispensable aids
for assessing the safety and serviceability of a proposed
design. Such assessments are especially important for complex
modern structures such as nuclear power plants, long-span
bridges, and high-rise buildings, which are subjected to
very complex load histories. Time-consuming and costly,
experimental studies actually produce very limited data in
terms of structural responses. Therefore, in order to perform
safety and serviceability assessments of complex structures,
it is necessary to develop reliable numerical methods and
models. Accordingly, many numerical studies have been
performed [1–4]. In relation to this, enhanced building and
bridge design codes for RC (reinforced concrete) structures
subject to ultimate loads have accelerated the development of
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numerical models that can effectively simulate the nonlinear
dynamic behavior of RC structural members.

In order to ensure that serviceability requirements are met
in an RC structure, it is necessary to predict the cracking and
the deflection of the structure under service loads. Therefore,
estimation of the ultimate load is essential in assessing the
margin of safety of RC structures against failure. Furthermore,
it is necessary to predict the load–deformation behavior of
the structure for responses ranging from elastic to inelastic
as well as under all possible loading conditions, including
monotonic, cyclic, and dynamic loading. RC frame structures
in regions of high seismic risk particularly tend to develop
inelastic deformations when subjected to strong earthquakes.
Accordingly, a complete assessment of the seismic resistant
design of RC frame structures often requires a nonlinear
dynamic analysis. The nonlinear dynamic responses of RC
frame structures under earthquake excitations are usually
developed at certain critical regions, which are often located at
points of maximum internal forces, such as at the beam–column
joints. Thus, a reliable numerical model that can simulate the
hysteretic behavior of RC columns and beams is necessary for
predicting the nonlinear response of the frame structures. Since
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(a) Compressive region. (b) Tensile region [15].

Fig. 1. Stress–strain relation of concrete.
earthquake-induced energy is dissipated through the formation
of plastic hinges in the beams and columns, determining the
influencing factors that affect the nonlinear response at a joint
is essential in the construction of a numerical model. Initial
stiffness, bond-slip, anchorage slip, shear span ratio, and axial
force effects are some of the typical influencing factors that
must be included in the numerical model, as major sources
of deformation in RC frame structures are flexural rotation
and bond-slip. The hysteretic load–deformation behavior of a
frame member results from a combination of these deformation
mechanisms.

To date, many analytical models have been proposed for the
nonlinear analysis of RC frame structures; these range from
very refined and complex local models to simplified global
models [5,6]. In the case of frame structures, a numerical
model based on the moment–curvature relation is often used.
Since the bilinear moment–curvature relationship by Clough
and Johnson [7] was first introduced, many mechanical models
for the hysteretic moment–curvature relationship have been
proposed to analyze the behavior of RC beams subjected
to cyclic loading. These models include cyclic stiffness
degradation [4,8,9]. Further modifications have also been
introduced to consider the pinching effects due to shear force
and strength degradation after yielding of steel [2]. Recently,
many researchers have focused on including axial load and
bond-slip effects in their models [2,10,11]. Nevertheless, all
of these models based on the moment–curvature relation are
still limited in terms of simulating exact structural behavior,
because they exclude the internal force variation according to
the loading history.

In this paper, a new numerical model based on the layer
approach is introduced. The constitutive relation of an RC
section is not specified explicitly in this model. Instead, it
is derived by integration of the response of the imaginary
layers, which follows the uniaxial stress–strain relation of the
particular material. Therefore, changes in internal member
forces, such as the biaxial bending moments and the axial
force, can effectively be implemented through the force
equilibrium in a section. However, the conventional layer
models have a fundamental limitation in that they ignore the
bond-slip effect [12]. In order to overcome this shortcoming,
the numerical model introduced in this paper considers the
bond-slip effect by defining a modified initial loading branch
on the basis of the monotonic stress–strain relation of the
reinforcing steel. The validity of the proposed model is
established by comparing analytical predictions with results
from experimental studies. The results of a correlation study
based on the analytical results and experimental values from
an RC frame structure subject to an earthquake loading testify
to the applicability of the introduced model to the nonlinear
dynamic analysis of RC frame structures.

2. Stress–strain relation of concrete

2.1. Monotonic envelope curve

The response of RC members under loads depends to a
large extent on the stress–strain relation of the constituent
materials and on the magnitude of the stress. Since concrete
is used mostly in compression, the stress–strain relation in
compression is of primary interest. Among the numerous
mathematical models currently used in the analysis of RC
structures, the monotonic envelope curve for the concrete
confined by rectangular hoops introduced by Kent and Park [13]
and later extended by Scott et al. [14] is adopted in this
paper because of its simplicity and computational efficiency.
In this model, as shown in Fig. 1(a), the monotonic concrete
stress–strain relation in compression has three discrete regions:
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where εo is the concrete strain at maximum stress, K is a factor
that accounts for the strength increase due to confinement, Z
is the strain softening slope, f ′

c is the concrete compressive
strength in MPa, fyh is the yield strength of the stirrups in
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Fig. 2. Stress–strain relation of steel (Belarbi and Hsu [22]).

MPa, ρs is the ratio of the volume of hoop reinforcement to the
volume of concrete core measured to the outside of the stirrups,
h′ is the width of the concrete core measured to the outside
of the hoops or ties, and sh is the center to center spacing of
tie or hoop sets. In Eq. (5), the first term of the denominator,
(3 + 0.290 f ′

c)/(144.0 f ′
c − 1000), takes into account the effect

of concrete strength on the slope of the falling branch of
unconfined concrete, and the second term of the denominator,
0.75ρs

√
h′/sh , considers the additional ductility developed by

lateral confinement with rectangular hoops.
On the other hand, it is assumed that concrete is linearly

elastic in the tension region. Beyond the tensile strength,
the tensile stress decreases linearly with increasing principal
tensile strain (see Fig. 1(b)). Ultimate failure from cracking
is assumed to occur when the principal tensile strain exceeds
the value εut = 2 · G f / f ′

t · ln(3/b)/(3 − b) in Fig. 1(b),
where b denotes the element length used in the finite element
analysis and G f is the fracture energy that is dissipated in
the formation of a crack of unit length per unit thickness and
is considered a material property. The value of εut is derived
from the fracture mechanics concept by equating the crack
energy release with the fracture toughness of concrete G f [15].
An experimental study by Welch and Haismen [16] indicates
that for normal strength concrete the value of G f / f ′

t is in
the range of 0.005–0.01 mm. If G f and f ′

t are known from
measurements, then εut can be determined.

2.2. Definition of hysteretic behavior

After defining the monotonic envelope curves, the unloading
–reloading branches need to be defined in order to
simulate the hysteretic behavior of concrete. Since a cyclic
stress–strain curve describes the changing material properties
of concrete under cyclic loadings, its exact definition is first
required. However, unlike the envelope curves obtained from
monotonic loading tests, the difficulties involved in conducting
experiments for plain concrete subject to cyclic loadings make
it almost impossible to develop a mathematical model of a
cyclic stress–strain curve based on experimental results. For
this reason, related research has been limited [17,18], and only
a few cyclic stress–strain curves have been introduced through
experimental studies [18,19].

The unloading–reloading behavior of cracked concrete is
particularly complex, and the cyclic behavior of concrete
is generally defined by the unloading–reloading curves
that connect several key points: the maximum strain, the
common point, the permanent strain, and the restoring strain.
Accordingly, to define the cyclic behavior of concrete,
simplified unloading–reloading curves are generally adopted
for their simplicity and computational efficiency in providing
numerical analyses of RC structures [20]. However, the
use of a simplified relation must be limited to the case
of bending members and/or axial members such as RC
beams and/or slabs, because the main part of these structures
experiences a biaxial stress combination in the tension–tension
or compression–compression region of the biaxial strength
envelope.

It is assumed that the following rules given in Eqs. (6) and
(7) govern the hysteretic behavior of the concrete stress–strain
relation in the compression region (see Fig. 1(a)). In addition,
the unloading–reloading branches that always pass the origin
regardless of the loading history are assumed in the tension
region (see Fig. 1(b)), because application of the introduced
numerical model is limited to RC frame structures [5,20].
Eqs. (6) and (7) were proposed by Karsan and Jirsa [19] and
define a straight line connecting the point εr in Fig. 1(a) where
unloading starts to a point εp on the strain axis.
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3. A proposed stress–strain relation of steel

3.1. Reduction of yielding stress

Reinforcing steel is usually modeled as a linear elastic,
linear strain hardening material with a yield stress fy . However,
when reinforcing bars are surrounded by concrete, the average
behavior of the stress–strain relation is quite different, as
shown in Fig. 2 [22]. The most strikingly different feature
is the lowering of the yield stress below fy . Yielding of an
RC member occurs when the steel stress at a cracked section
reaches the yield strength of the bare bar. However, the average
steel stress at a cracked element still maintains an elastic stress
that is less than the yield strength, because the concrete matrix
located between cracks is still partially capable of resisting
tensile forces, owing to the bond between the concrete and
the reinforcement. Determination of element stiffness on the
basis of the yielding of steel at a cracked section where a
local stress concentration appears in the steel may result in
overestimation of the structural response at the post-yielding
range. Since this phenomenon is accelerated with increased
deformation, an analysis of RC members subject to cyclic
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(a) Tension member. (b) Strain distribution.

Fig. 3. Behavior of tension member.
loading accompanying relatively large deformations requires
the use of average stress–strain relations [21,22].

Accordingly, the average stress–strain relation of steel needs
to be defined so as to trace the cracking behavior of RC beams
and/or columns up to the ultimate limit state. This can be
accomplished by using the smeared crack model, in which
the local displacement discontinuities at cracks are distributed
over some tributary area within the finite element and where
the behavior of cracked concrete is represented by the average
stress–strain relations [21]. Considering these factors, the
following linear average stress–strain relation, which was
introduced by Belarbi and Hsu [22] from experimental data,
is used in this paper to revise the monotonic envelope curve of
steel.

σs = Es · εs, εs ≤ εn (8)

σs = fn + (0.02 + 0.25B) Es(εs − εn), εs ≥ εn (9)

where σs and εs represent the average strain and stress,
respectively, and fy and εy are the yield stress and the
corresponding yield strain of a bare steel bar, respectively. As
shown in Eq. (9), the average stress σs is a linear function of
the parameter B = ( f ′

t / f y)
1.5/ρ and is limited by the boundary

strain εn = εy(0.93 − 2B) for the yielding of steel, where ρ is
the percentage of the steel ratio and must be greater than 0.5%.
More details on the average stress–strain relation of steel can be
found elsewhere [22].

3.2. Bond-slip effect on stress–strain relation

Reinforcing bars transfer tensile stresses to concrete
through the bond stresses located along the surface between
reinforcements and surrounding concrete. In this way, part of
an RC member subjected to uniaxial tension and bounded by
two adjacent cracks can be extracted and used as a free body
diagram to obtain the equilibrium equations for concrete and
steel (see Fig. 3(a)). When the axial load N is applied, the far
ends represent the fully cracked state with a steel strain of εs2
(see Fig. 3(b)). For this application, the tensile force N is first
transferred from the steel bar to the concrete by bond stress, and
the value of the bond stress is zero at the inner part (L − 2lt ).
This means that there is no bond-slip within the central region
bounded by the transfer length. Moreover, it can be assumed
that the strains in steel and concrete are equal to each other
at x = lt and that the strain value corresponds to εs1 (see
Fig. 3(b)).

From the strain distribution, the local slip s(x) can be defined
as the total difference in elongations between the reinforcement
Fig. 4. Free body diagram for an RC member.

and the concrete matrix measured over the length between a
distance x from a crack face and the center of the segment
(x = L/2). That is,

s(x) =
∫ L/2

x
(εs(x) − εc(x)) dx (10)

where L is the length between two adjacent cracks, which is
equivalent to the crack spacing, and εs(x) and εc(x) are the
strain distributions of steel and concrete, respectively.

Since the applied tensile force of an RC member (N) is
carried partly by the concrete matrix (Fc) and partly by the
reinforcing steel (Fs ), the force equilibrium of N = Fc + Fs

can be defined. First, as shown in Fig. 4’s representation of the
free body diagram of an axial member, the steel and concrete
force variations can be derived in terms of the bond stresses.

dFs

dx
= As Es

dεs

dx
= mΣ0τb,

dFc

dx
= Ac Ec

dεc

dx
= −mΣ0τb

(11)

where m is the number of bars placed within an infinitesimal
length dx,Σ0 is the perimeter of a reinforcing bar, τb is the
bond stress at the steel concrete interface, and A and E are
the corresponding cross-section area and the elastic modulus
of each material, respectively.

On the basis of the bond-slip s(x), as defined by the relative
displacement between the reinforcing steel and the concrete
(see Eq. (10)), the second order differential equation of the
bond-slip leads to d2s/dx2 = −d/dx(εs(x) − εc(x)). After
substituting Eq. (11) into this relation, and assuming the linear
bond stress–slip relationship of τb = Eb · s(x), the following
governing differential equation is obtained:

d2s

dx2 − k2s = 0 (12)
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Fig. 5. Distribution of slip and stresses between two adjacent cracks.
where k2 = mΣ0 Eb(1 + nρ)/As Es , n = Es/Ec, ρ =
As/Ac, and Eb is the slip modulus and is assumed to be 1.826
× 104 MN/m3.

The general solution to Eq. (12) is given by s(x)

= C1 sinh kx + C2 cosh kx , in which C1 and C2 are constants
that have to be determined from the two boundary conditions.
That is, the slip should be zero at x = lt in Fig. 3 and has a
maximum value of s0 at x = 0, which is the crack face. Since
it can be assumed that the crack width ω is equivalent to twice
the bond-slip s0 at the cracked location, the bond-slip s0 can be
expressed in terms of the corresponding crack width, s0 = ω/2.
Since the small area around the reinforcing steel at the flexural
crack surface of a reinforced concrete beam is similar to the end
face of the tension member in Fig. 3(a), the solution of Eq. (12)
may be applied to bending members. A relation introduced by
Gergely and Lutz [23], which is commonly used to determine
the allowable crack width of cracked RC frame members, is
adopted in this paper.

ωmax = 1.08βc fs
3
√

dc A × 10−5 mm (13)

where βc is the ratio of distances from the tension face and from
the steel centroid to the neutral axis and dc is the thickness of
the concrete cover. A is equal to Ae/m, the effective tension
area of concrete surrounding the main tension reinforcing bars,
where m is the number of bars in tension and Ae is 2ds ∗ b0,
where ds is the distance to the centroid of the tension bar
group and b0 is the width of a section. Moreover, the transfer
length lt can be determined either from the force equilibrium of
N = εs2 · As Es = εs1(As Es + Ac Ec) = Fc(1 + nρ), as in
Fig. 3, and the relation of Eq. (14)

Fc|x=lt = N

1 + nρ
= −mΣ0

∫ lt

0
τb(s)dx

= −mΣ0 Eb

∫ lt

0
s(x)dx (14)

or by the following linear relationship proposed by Somayaji
and Shah [24] on the basis of much experimental data from
pull-out tests:

lt = K p · Fc

Σ0
(15)

where Fc is the transfer load equal to Fc = Ac Ecεs1 = N/(1 +
nρ), and K p is a constant determined from the pull-out test. An
experimental study by Mirza and Houde [25] indicates that the
value of K p is in the range of 2.028–5.441 1/MPa. Therefore,
the average value of 3.76 1/MPa is used in this paper.

Determination of the bond characteristics along the member
makes it possible to obtain the unique distribution of slip and
stresses between two adjacent cracks, as shown in Fig. 5(a).
First, for the applied axial force N , the load carried by the
concrete and by the steel can be defined by Fc = σc(x)Ac and
Fs = σs(x)As = N − Fc, respectively. Accordingly, using the
relation between the bond stress and the force component in
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Fig. 6. Equivalent stress–strain relation of steel.

Eq. (11), the steel stress can be expressed by

σs(x) = N

As
− σc(x)Ac

As
= N

As
+ mΣ0τ

eq
b

As
x (16)

where τ
eq
b = ∫ lt

0 τb(s)dx/ lt is the equivalent average bond
stress introduced in this paper for computational convenience
(see Fig. 5(b)). In Fig. 5(b), the average steel strain εs

eq can also

be calculated by εs
eq = ∫ lt

0 εs(x) dx/ lt .
Since the layer model basically adopts the perfect bond

assumption, the steel stress must maintain a constant value
along the element length unless the magnitude of the applied
axial load is not changed. This means that the equivalent
steel stress within the transfer length must be the same
as the steel stress outside of this range. That is, σ s

eq
= Eeqεs

eq ≡ σ s
0 = Esεs1 in Fig. 5 must be satisfied. Further,

the corresponding equivalent modulus of elasticity for steel can
finally be determined by Eeq = Esεs1/ε

s
eq up to the yielding

point in the stress–strain relation of the embedded reinforcing
steel, as depicted by the solid line in Fig. 2. The same ratio
of Eeq to Es is assumed to be maintained at the post-yielding
region, and Fig. 6 shows the stress–strain relation of steel that
is finally constructed by considering the bond-slip effect.

The stress–strain relation for compressive steel is defined
by the same envelope curve as that used for tensile steel.
This is because it is assumed, in the case of compressive
steel, that the reduction of yield strength can be explained
by the possibility of local buckling in the reinforcing steel
embedded in the concrete matrix when it is subjected to a
compressive axial force. Moreover, when subjected to a tensile
axial force, the cyclic loading accompanying repeated crack
opening and closing develops slip behavior even in compressive
steel. Therefore, this paper uses the identical stress–strain
relation defined in Fig. 6 to describe the nonlinear behavior of
tensile and compressive steels.

3.3. Definition of hysteretic behavior

After modifying the monotonic envelope curve, it is then
necessary to define the hysteretic curves. At load reversals,
as shown in Fig. 7, the unloading stiffness is assumed to
be the same as the initial stiffness. When loading continues
in the opposite direction, the stress–strain curve exhibits
the Bauschinger effect. This causes a nonlinear stress–strain
relation and a reduction in stiffness of the stress–strain curve
before the stress reaches the yield stress in the opposite
direction. Among a number of models developed to describe
the cyclic stress–strain curve of reinforcing steel [16], the
most commonly used approach is the Giuffré–Menegotto–Pinto
(G–M–P) model, introduced by Pinto et al. [26,27]; this model
is also adopted in this paper. The stress–strain relation can be
expressed by

σ ∗ = b · ε∗ + (1 − b) · ε∗(
1 + ε∗R

) 1
R

(17)

where ε∗ = (ε−εr)/(ε0−εr ), σ ∗ = (σ−σr )/(σ0−σr ). Eq. (17)
represents a curved transition from a straight line with slope
E0 to another asymptote with slope E1, as represented by lines
(a) and (b) in Fig. 7. The parameter b is the strain-hardening
ratio between E0 and E1, ε0 and σ0 are the coordinates for the
point at which the asymptotes of the branch under consideration
meet (point A in Fig. 7(a)), and εr and σr are the strain and
stress, respectively, at the point where the last strain reversal
with stress of equal sign took place (point B in Fig. 7(a)). ε0, σ0,
εr , and σr are updated at each strain reversal. R is a parameter
that controls the shape of the transition curve and allows the
representation of the Bauschinger effect. The expression for R
is

R = R0 − a1 · ξ
a2 + ξ

(18)

where R is a decreasing function of ξ , which is the strain
difference between the current asymptote intersection point
(point A in Fig. 7(b)) and the previous load reversal point
with maximum or minimum strain, depending on whether the
corresponding steel stress at reversal is positive or negative
(point A in Fig. 7(b)). ξ is updated following a strain reversal
because the asymptote intersection point or the previous load
reversal point with maximum or minimum strain may change.
R0, a1, and a2 are experimentally determined parameters. In
this paper, it is assumed that R0 = 20, a1 = 18.5, and
a2 = 0.15, as used by Filippou et al. [28].

The original G–M–P model provides a good representation
of complete stress–strain cycles but is problematic in terms of
representing the isotropic strain hardening effect in the case
of partial loading. In an effort to improve the applicability of
the original G–M–P model, Filippou et al. [28] proposed a
set of rules to shift the asymptote representing the yielding of
steel. By horizontally moving the asymptote by σst before the
asymptote intersection point (ε0, σ0) is newly calculated, the
isotropic hardening effect can be considered. The shifting stress
σst is calculated from

σst

fy
= a3

(
εmax

εy
− a4

)
(19)

where εmax is the absolute maximum strain at strain
reversal, and εy and fy represent the yielding strain and
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(a) Idealized representation. (b) Definition of curvature parameter R.

Fig. 7. A hysteretic stress–strain relation for steel.
stress, respectively. a3 and a4 are experimentally determined
parameters; the values of a3 = 0.01 and a4 = 7.0 used by
Filippou et al. [28] are assumed in this paper as well.

4. Solution algorithm

In order to analyze RC beams, a layer approach based on
the Euler beam theory was used in this study. This approach
and the beam theory are both well established and widely used
in the analysis of beams, and as such more details for the
formulation of beam elements can be found elsewhere [5,29].
In a typical Euler beam, it is usual to assume that plane sections
remain plane to represent linearity in the strain distribution of
any section at any loading history. In addition, the effects of
shear deformation are not taken into consideration in simulating
nonlinear behavior since the normal bending stresses reach a
maximum at the extreme fibers, where the transverse shear
stresses are at their lowest value, and reach a minimum where
the transverse shear stresses are highest. Thus, the interaction
between transverse shear stresses and normal bending stresses
is relatively small and can be ignored. This means that the
flexural rigidity E I is replaced by that corresponding to
the curvature calculated from the nodal displacements. The
shear rigidity of the beam element G A is assumed to be
unchanged [11,13,30] and the shear modulus is calculated from
G = E/[2(1 + ν)].

Since the global stiffness matrix of the structure depends
on the displacement increments, the solution of equilibrium
equations is typically accomplished by an iterative method
through a convergence check. The nonlinear solution scheme
selected in this study uses a tangent stiffness matrix at the
beginning of each load step in combination with a constant
stiffness matrix during the subsequent correction phase; that
is, an incremental-iterative method is used. All the remaining
algorithms, from the construction of an element stiffness matrix
to the iteration at each load step, are the same as those used
in the conventional nonlinear analysis of RC structures; more
details of these algorithms can be found elsewhere [5,12,15].
In this paper, only the dynamic equilibrium equation
for a multi-degree of freedom system is briefly introduced.
When a structure is subjected to ground acceleration, üg , the
incremental equation of the dynamic equilibrium can be written
as

M
ü + C
u̇ + K
u = 
P = −M{1}
üg (20)

where 
u,
u̇, and 
ü are the incremental displacement,
velocity, and acceleration vectors during the time step 
t ,
respectively. M , C , and K are the mass, damping, and stiffness
matrices, respectively. 
P is the increment of external loads
during the time step 
t and is given by 
P = −M{1}
üg,
where {1} is a unit vector. A lumped mass matrix M and
Rayleigh damping matrix C are used in the analysis. The
time history analysis of the structure is based on the average
acceleration method, which is one of two special cases in
Newmark’s method because it does not require iteration to solve
Eq. (20). More details can be found in Ref. [31].

5. Numerical analysis

5.1. RC beams subject to cyclic loadings

In order to establish the applicability of the modified
stress–strain model of steel, two RC beams are investigated and
discussed. These beams are specimen 40.048 (COLUMN1),
experimented on by Wight and Sozen [32], and specimen 1
(COLUMN2), experimented on by Low and Moehle [30].
The material properties of each specimen are summarized in
Table 1, where ρt and ρc are the steel ratios in the tension and
compression parts, respectively.

The first specimen 40.048 consists of a reinforced concrete
cantilever beam with a span length of 876 mm, and the
transverse reinforcement is equally spaced at 88.9 mm. The
beam was subjected to a cyclic lateral load V and a constant
axial load P at the free end (see Fig. 8(a)). The plastic
deformation is concentrated at the end of the beam with
narrow width, accompanying the fixed-end rotation that occurs
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(a) COLUMN1.

(b) COLUMN2.

Fig. 8. Details of specimens (unit: mm).
Table 1
Material properties used in application

Specimen Ec Es f ′
c f y ρt = ρc

(MPa) (MPa) (MPa) (MPa)

COLUMN1 24,464 200,000 26 506 0.0122
COLUMN2 31,068 200,000 26 506 0.0113

in addition to the elastic rotation at the large deformation
stage. In order to more exactly simulate structural behavior that
considers the beam element and is formulated on the basis of
the average deformation in an element, separate consideration
of this region is required in the finite element modeling. The
plastic hinge length l p is determined to be 200 mm according
to a simple equation proposed by Sawyer [33]. Accordingly, the
specimen is modeled along the entire span with an element of
l = 50 mm.

In order to have moderate ductility, RC beams are generally
designed to be subjected to less than about 10% of the axial
strengths of their sections. Both specimens, COLUMN1 and
COLUMN2, are loaded to 11% (equivalent to an axial force
of 178.15 kN) and 4.5% (equivalent to an axial force of
44.54 kN) of their axial strengths, respectively. The transfer
length calculated from Eq. (14) and the equivalent elastic
modulus of steel determined on the basis of the proposed
numerical model for COLUMN1 and COLUMN2 are listed in
Table 2. When calculating those values, m of 2 and 4 and Σ0

of 119.63 mm and 96.60 mm for COLUMN1 and COLUMN2,
respectively, are used for calculation of the transfer length and
the equivalent elastic modulus of steel.

This table shows that the transfer length in COLUMN2 is
longer than the length of the specimen, which means that the
equivalent elastic modulus of steel (Eeq ) must be applied along
Table 2
Transfer length and equivalent elastic modulus of steel Eeq for test specimens

Specimen Transfer length Eeq
(lt : mm) (MPa)

COLUMN1 658 118,588
COLUMN2 989 116,319

the entire span because the bond-slip is expected to develop
along the entire span.

As introduced by the load–deflection relations shown in
Fig. 9, direct application of the elastic modulus of steel
without additional considerations for the bond-slip between
the reinforcing steel and its surrounding concrete matrix leads
to hysteretic behavior with a high degree of error. When a
shear dominant RC member, which is commonly thought to
have a shear span ratio of less than 4.0, is subjected to cyclic
loadings, it shows pinched hysteresis responses induced from
the bond-slip at the anchorage region. In particular, if an RC
member is axially loaded, even though it is not shear dominant,
the axial force will cause the crack to open or close more
rapidly to satisfy the force equilibrium of the section, and
the resulting in a pinched hysteresis response. As seen in
Fig. 8(a), COLUMN1 is a shear dominant RC member with
a shear span ratio of 3.68 and is subjected to axial loading.
Accordingly, the response obtained displays highly pinched
behavior regardless of whether the equivalent elastic modulus
for steel is considered, as shown in Fig. 9. Fig. 9 also shows
that the basic layered section approach overestimates the energy
absorption capacity of the beam—this is considered to be
the most important factor affecting the serviceability of the
structure. Meanwhile, the proposed model effectively estimates
the energy absorption capacity and simulates the pinching
phenomenon even at the large deformation stage.



H.-G. Kwak, J.-K. Kim / Engineering Structures 28 (2006) 1715–1727 1723
(a) Basic layered section model. (b) Proposed model.

Fig. 9. Load–deflection relation of COLUMN1.

(a) Basic layered section model. (b) Proposed model.

Fig. 10. Load–deflection relation of COLUMN2.
The second specimen (COLUMN2) has a similar shape
to the first specimen. No. 9 wire (7.935 mm2) was used as
transverse reinforcement in the columns. Starting from the
left end of the column, the tie spacing was 25.4 mm for the
first 228.6 mm followed by ties situated at every 38.1 mm
on centers. The geometry and cross-section dimensions are
presented in Fig. 8(b), and this example structure is modeled
along the entire span with an element of l = 40 mm in
consideration of the plastic hinge length.

As shown in Fig. 10, COLUMN2 shows lower pinched
behavior than COLUMN1. This is because the shear span ratio
of COLUMN2, which is 4.84, is larger than that of COLUMN1,
and the ratio of axial force to the ultimate axial strength is also
smaller than that of COLUMN1. As shown in Fig. 10(b), the
proposed model slightly overestimates the ultimate resisting
capacity despite its consideration of the equivalent elastic
modulus of the steel. This discrepancy appears to be caused
by an assumption at the post-yielding stage of a slightly larger
hardening ratio of the embedded steel. However, even with this
overestimation, the proposed model still effectively estimates
the energy absorption capacity throughout the entire loading
history and captures the pinching phenomenon. On the other
hand, as shown in Fig. 10(a), a basic layered section model that
does not consider the equivalent elastic modulus of steel cannot
effectively estimate the energy absorption capacity, because it
does not take the bond-slip effect into account.

5.2. RC frame structure subject to dynamic loading

The ability of the introduced model to describe the dynamic
response of RC frame structures is assessed by comparing
analytical and experimental results. The RC frame structure is
specimen RCF2, which has been tested on a shaking table by
Clough and Gidwani [34]. As shown in Fig. 11, this structure is
a two-story, one-bay RC frame subject to a simulated strong
base motion and is a 0.7 scale model of a two-story office
building representative of common design and construction
practice. Concrete blocks were added on every floor to take
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Fig. 11. Idealization of RCF2 and section geometry (unit: mm).
Fig. 12. N69W Taft Record W2, scaled to 0.57g.

into account the influence of the floor mass and self-weight
when a base acceleration acts. The N69W Taft record from
the Arvin-Tahachapi earthquake of July 1952, scaled to peak
acceleration of 0.57g and referred to as W2 (see Fig. 12), was
used. The same material properties of concrete and steel as
those in the previous analytical study [34] are used and have
the following values: f ′

c = 30 MPa, Ec = 2.60 × 104 MPa,
Es = 2.0 × 105 MPa, and fy = 400 MPa. The damping ratio
is assumed to be 5%, which is generally used for the dynamic
analysis of a RC structure. The arrangement of the shaking table
and the test procedure are described in detail in Ref. [34].

Since the test results show that plastic deformations
concentrate at the beam-to-column joints and/or at the column-
to-foundation joints, each equivalent elastic modulus of steel,
obtained from Eq. (14), is applied over the transfer length
regions near each joint. The calculated values are listed in
Table 3. In particular, the girders in Fig. 11, which have
asymmetric T-shape sections, result in a different equivalent
elastic modulus for compression steel as well as a different
Table 3
Transfer lengths and equivalent elastic modulus of steels Eeq for RCF2

Element Transfer length Eeq
(lt : mm) (MPa)

Top story girder 742 108,000
Bottom story girder 727 111,000
Column 647 126,000

transfer length for tension steel. However, this study uses the
average values for computational convenience. According to an
equation proposed by Sawyer [33], the plastic hinge length l p

is determined to be 200 mm. Therefore, the end regions of each
member are modeled with an element of l = 50 mm, and the
other regions at each member are equally idealized by using 20
elements.

The numerical results obtained on the basis of the proposed
model and those from the basic layered section model are
shown in Figs. 13 and 14, respectively. The results from
the proposed model show very good agreement with the
experimental results, indicating that the proposed model
simulates the prolonged period of the structure due to stiffness
degradation very well. In contrast, if the bond-slip effect is not
considered, then large differences in period and displacement
(approximately 16%) from the experimental data are shown
(see Fig. 14). These differences are attributed to overestimation
of the stiffness and the energy dissipation, which results from
ignoring the bond-slip effect. The overestimated stiffness due
to ignoring the bond-slip effect causes a slight phase shift at
the initial loading stage and leads to a remarkable decrease in
the structural displacement as the loading stage continues, as
shown in Fig. 14. Comparing Fig. 13(b) with Fig. 13(c), which
show the inter-story drift, the lateral deformation at the first-
story column is revealed to be almost twice that of the second-
story column. In addition, a comparison of Figs 13(a) and (b)
with Figs 14(a) and (b) reveals that the difference of maximum
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(a) Top-story displacement. (b) Bottom-story displacement.

(c) Top-story drift.

Fig. 13. Displacement and drift responses from analysis with Eeq .
(a) Top-story displacement. (b) Bottom-story displacement response.

Fig. 14. Displacement responses from analysis with Es .
displacements between the two analysis procedures for Eeq

and for Es is approximately the same for the top and bottom
story displacements. This confirms that most of the inelastic
deformation of the test frame arises in the bottom story. On
the other hand, the displacement–time histories in Figs 13(a)
and (b) show a slight underestimation of the positive maximum
displacements, as opposed to the good estimation of negative
maximum displacements. This result appears to be caused by
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using the average equivalent elastic modulus and transfer length
in spite of the asymmetric T-shape girder, which gives different
values for the compression and tension steel.

Careful investigation of the obtained numerical results in
Figs. 13 and 14 yields the following three observations. First,
the maximum response value for the bottom-story displacement
is increased by more than 20% when the bond-slip effect is
taken into account whereas the research results by Filippou
et al. [1] showed a 50% increase by considering bond-slip
effect. The smaller difference in this paper may be attributed
to the adoption of the average stress–strain relation of steel in
this paper, which indirectly considers the stress concentration of
steel at cracks in an element, for application to the case ignoring
bond-slip effect as well as the case considering the bond-slip
effect. Second, in terms of the bond-slip effect, satisfactory
agreement between experimental and analytical results is
observed for the displacement time histories throughout the
entire time range, although a slight discrepancy still exists in the
last stage of the response time history. This discrepancy appears
to be caused by the induction of gradual stiffness degradation,
even at the same loading condition. Third, these figures confirm
that the steel model introduced in this paper can effectively be
applied to a nonlinear dynamic analysis of RC frame structures.

6. Conclusions

If the cracking behavior of RC beams is described based
on a layered section approach that adopts the perfect bond
assumption, it is not possible to directly consider the bond-
slip effect in a layered beam model. In this regard, none
of the numerical models found in the literature has taken
the bond-slip effect into account. In an effort to solve this
problem, this paper introduces a stress–strain relation of
reinforcing steel designed through indirect consideration of
the bond-slip effect between the reinforcing steel and its
surrounding concrete. The introduced stress–strain relation of
steel is also recommended for use in the maximum moment
regions bounded by the transfer length, because the bond-slip
accompanying the cracking behavior is usually concentrated in
these regions.

Correlation studies of the proposed model with experimental
results from two typical RC beams and a two-story one-bay RC
frame verify that the proposed model is capable of describing
the cyclic behavior of RC beams as well as the dynamic
response of RC frame structures with satisfactory accuracy. The
analytical studies demonstrate that considering the bond-slip
effect improves the accuracy of the numerical results and is
essential in the cyclic and dynamic analysis of RC structures. In
contrast, ignoring the bond-slip effect leads to overestimation of
the energy absorption capacity and the stiffness of the structure
during cyclic excitation. That is, the fundamental period and
the displacement response of the structure are underestimated.
Therefore, in order to predict the cyclic and dynamic structural
behaviors of RC beams and beam-to-column subassemblages,
the bond-slip effect must be taken into account. The introduced
numerical model makes it possible to consider the bond-slip
effect in a layered RC beam element.
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