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The thermal expansion mismatch of thermal grown silica on a silicon wafer is well known to induce

compressive stress upon cooling from the growth temperature to room temperature. In this Letter, we

investigate how this stress impacts silica disk structures by comparison of measurements with both a

finite element and an analytical model. The disk structures studied are also whispering gallery optical

resonators, and proper control of stress is critical to obtain high-Q resonances. Based on our analysis,

thicker oxide layers and proper control of undercut enable ultra-high-Q optical performance and

mechanical stability. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789370]

For the past few decades, numerous experimental and

theoretical studies have considered stress behavior and its

impact on devices.1–3 In the silicon system, the oxide silica is

grown at temperatures near 1000 �C. Upon cooling to room

temperature, the difference between the thermal expansion

coefficients of the silica and silicon causes a well-known com-

pressive stress in the oxide. While this stress typically does

not cause yield, reliability, or performance issues in photonic

devices, certain whispering gallery style optical resonators

and waveguides rely upon undercut of the oxide to create opti-

cal confinement.4–6 The undercut silica layer creates an air-

cladding to guide the light (Fig. 1(a)), and if there is sufficient

thermal-induced stress, then this thin air-cladding silica layer

may buckle and form crown-like patterns. Understanding the

buckling behavior is important in optimizing the device per-

formance. Specifically, oxide undercuts must be deep enough

in these structures to isolate the optical mode from the silicon

support pillar, however, the crowning behavior can occur at a

critical undercut value and thereby interfere with optical per-

formance. Likewise, in MEMS systems with free standing

structures, residual stress can physically warp devices to a

degree that renders them no longer useful.7,8 In this work, we

measure the buckling behavior of silica disks structures and

compare with two models so as to create design guidelines

that eliminate buckling in both resonator and waveguide struc-

tures. Specifically, by proper selection of oxide thickness and

undercut, excellent optical performance is obtained (over 800

million optical quality factor for disk resonator structures of

7.5 mm diameter and 10 lm oxide thickness4).

Earlier work on silica wedge-shaped resonators achieved

Q factors as high as 50 million9 in devices with diameters

around 100 lm. Those structures featured a lithographically

defined oxide disk of 2 lm thickness that had been partially

undercut using the silicon selective etchant xenon diflouride.

The ability to extend both the Q factor and the resonator di-

ameter to larger values (Q greater than 100 million and reso-

nator diameter to the mm-cm size range) is important for

applications such as microcombs and rotation sensing.10,11

However, due to thermal stress, simply scaling the previous

device to larger diameters fails to provide satisfactory

performance. Figure 1(b) shows a top view (interference

contrast mode) image of a silica wedge resonator having

500 lm diameter and 2 lm oxide thickness. With less than

70 lm undercutting of the silicon, the silica layer starts to

buckle and features a crown-like pattern. Further, the number

of nodes in the buckled pattern decreases with the deepness

of the undercut. For example, as shown in Figs. 1(b)–1(e),

the number of nodes in the buckled structures are 18, 10, 8,

and 6 for 70 lm; 120 lm; 155 lm, and 180 lm undercuts.

Ultimately, if the undercut is deep enough, the resonator will

return to the unbuckled configuration (Fig. 1(f)).

To assess the impact of buckling on the optical perform-

ance of the resonators, the intrinsic optical Q factor12 of normal

and buckled samples was measured. Devices were coupled to

an optical fibre using a fibre taper,13,14 and spectral lineshape

data were obtained by tuning an external cavity semiconductor

laser (1550 nm) across an optical resonance while monitoring

transmission on an oscilloscope (see sample scan in Fig. 1(g)).

To accurately calibrate the laser scan in this measurement, a

portion of the laser output was also monitored after transmis-

sion through a calibrated Mach-Zehnder interferometer having

a free-spectral-range of 6.72 MHz. The buckled resonators

(Figs. 1(b)–1(e)) show low Q factors, typically below 1 million.

Moreover, some of these samples were observed to crack over

a period of a few days. In contrast, an unbuckled 500 lm diam-

eter resonator with 2 lm thickness (corresponding to an under-

cut of 55 lm in Fig. 1(a)) featured a 38 million Q factor, and

this Q-factor performance was preserved for more than 1 year.

The spectral scan for this resonator is shown in Fig. 1(g).

To model thermal stress, we take the difference between

oxide growth temperature (1000 �C) and the simulation tem-

perature as a control parameter (DT) and simulate the equi-

librium state of the resonator via a finite element model in

COMSOL MULTIPHYSICS (http://www.comsol.com/). The follow-

ing is defined as an order parameter

X ¼ 1

V

ð ð ð
silica

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@w

@x

� �2

þ @w

@y

� �2
s

dV; (1)

where w is the vertical component of deformation due to ther-

mal stress, V is the volume of silica, and integration is carried

over the whole silica layer. The order parameter is a simple
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measure of the irregularity of the silica induced by the stress.

Figure 2 is a plot of the numerically simulated order parameter

plotted versus DT. The plot shows a second-order phase tran-

sition behavior as DT increases in a resonator of diameter

500 lm, silica layer thickness 2 lm, and undercut of 70 lm.

Above a critical temperature difference (DTc), the silica layer

buckles and features a crown-like pattern with 16 nodes. In

contrast, the silica layer bends uniformly downward when DT
is smaller than the critical value. Since the silica is grown at

1000 �C, the equilibrium state of this resonator at room tem-

perature will have a buckled pattern.

The equilibria of resonators with differing amounts of

undercut were also calculated for comparison with the meas-

urements in Fig. 1 (see, Figs. 1(h) and 1(i)). Ultimately, if

the undercut is deep enough, the silica layer will uniformly

bend downward. The simulated configurations have 16, 10,

6, and 6 nodes for 70 lm; 120 lm; 155 lm, and 180 lm

undercuts and are more or less consistent with measure-

ments. The discrepancy might result from the slight irregu-

larity in the etched silicon pillar.

In addition to the finite element analysis, an analytic

model was studied to provide guidance on device design. The

approach is based on a two-dimensional buckling model of

the annular disk and the energy method. The energy model

employed is especially useful when a rigorous solution of the

Kirchkoff equation is unknown or it is required to find only an

approximate value of the critical temperature difference for

buckling.15–17 Basically, if the work done by thermal stress is

smaller than the strain energy of bending for every possible

shape of buckling, then the unbuckled equilibrium is stable. If

the same work becomes larger than the energy of bending for

any shape of deformation, then the structure tends to be unsta-

ble and starts buckling. In a silica disk resonator with radius b,

thickness t, and for a silicon pillar of radius a, the buckling

shape can be approximated by a sine curve along the circum-

ference of a plate.18,19 Assume that the deflection of the annu-

lar disk in the vertical direction is

w ¼ Cðr � aÞ2cosðnhÞ; (2)

where C is the amplitude of buckling, 2n is the number of nodes

in the crown-like pattern, and the deflection obeys the clamped

boundary condition at r¼ a. With respect to a polar coordinate

system ðr; hÞ with origin at the center, the components of stress

induced by the thermal expansion mismatch are20

rrðrÞ ¼
b2 � a2

a2 b2

r2 � 1
� � r; (3)

rhðrÞ ¼ �
b2 � a2

a2 b2

r2 þ 1
� � r; (4)

where

r ¼ Da � DT

1��Si

ESi
þ 1

ESiO2

1þq2

1�q2

� �
þ �SiO2

ESiO2

(5)

¼ Da � DT � hðqÞ (6)

and where q ¼ a=b; �Si and �SiO2
are the Young’s moduli of

silicon and silica; ESi and ESiO2
are the Poisson’s ratio of sili-

con and silica; Da is the difference of the thermal expansion
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FIG. 2. Plot of the order parameter (Eq. (1)) versus the change in tempera-

ture relative to the growth temperature. A second-order phase transition is

apparent at a critical temperature difference (DTc). Above this value, the

disk buckles and features a crown pattern with several nodes. On the other

hand, the silica layer bends uniformly down when DT is smaller than the

critical value. In this FEM simulation, the resonator has diameter 500 lm,

thickness 2 lm, and undercut 70 lm.

FIG. 1. (a) SEM image of an unbuckled silica disk (500 lm diameter and 2 lm oxide thickness) resonator on a silicon pillar. The undercut is about 55 lm. (b)-

(f) Top-view microscope images of resonators (500 lm diameter and 2 lm oxide thickness) with different buckled oxide configurations. The undercuts of these

devices are 70 lm, 120 lm, 155 lm, 185 lm, and 225 lm respectively. (g) Spectral scan for the resonator in panel (a). The measured linewidth corresponds to

an optical Q factor of 37 million. The red curve gives a Lorentzian fitting of the experimental transmission and the cyan line shows a sinusoidal fitting of the in-

terferometer output. (h)-(i) Finite element simulation results of resonators (500 lm diameter and 2 lm oxide thickness) showing different buckling configura-

tions. The undercut of these devices match those in the panels (b)-(f).
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coefficients; and DT is the temperature difference between

oxidation growth temperature and room temperature. For

clarity, we defined that hðqÞ ¼ 1
1��Si

ESi
þ 1

ESiO2
ð1þq2

1�q2Þþ
�SiO2
ESiO2

. The bend-

ing energy is15ð� ¼ �SiO2
;D ¼ ESiO2

t3

12ð1��2
SiO2
ÞÞ;

U ¼
ð ð

rdrdh

	
D

2

@2w

@r2
þ 1

r

@w

@r
þ 1

r2

@2w

@h2

� �2

� Dð1� �Þ @
2w

@r2

1

r

@w

@r
þ 1

r2

@2w

@h2

� �

þDð1� �Þ 1

r

@2w

@r@h
� 1

r2

@w

@h

� �2

: (7)

The work done by the silica layer forces during the buckling

is found to be15

T ¼ � 1

2

ð ð
rdrdh rrt

@w

@r

� �2

þ rht
1

r

@w

@h

� �2
" #

; (8)

where t is the thickness of the silica layer. By equating U
and T, the critical condition of buckling can be written as

DT ¼ 2t2ESiO2

b2ð1� �2
SiO2
ÞDahðqÞ �

Fðn; qÞ
Gðn; qÞ ; (9)

where

Fðn;qÞ ¼ ð�1þ qÞ �
�
8ð1þ �Þð�1þ qÞ

þ 2n4ð�1þ �Þð1þ qÞð1þ ð�8þ qÞqÞ
�n2ð13þ 12�ð�1þ 3qÞ þ qð�43þ ð�7þ qÞqÞÞ�
þ 4ð�2þ 6n4ð�1þ �Þ þ n2ð�9þ 6�ÞÞq2logðqÞ;

(10)

Gðn; qÞ ¼ q2

�1þ q2
�
	

4
�

3þ qð�16þ 12qþ q3Þ
�

� n2
�

9þ qð�64þ 36qþ 19q3Þ
�

þ 12q2
�
�4þ n2ð6þ q2Þ

�
logðqÞ



: (11)

Figure 3 shows the relation between the normalized critical

temperature difference (DaDTb2=t2) and parameter q ¼ a=b
for configurations with different numbers of nodes in the

silica/silicon disk system. The normalization used here pro-

vides a dimensionless parameter that characterizes the thresh-

old of buckling. It also reflects the fact that critical

temperature difference depends quadratically on the resona-

tors’ oxide thickness and inversely quadratically on their ra-

dius. At each q, the configuration with minimal critical

temperature difference gives the equilibrium state after buck-

ling. As the undercut goes deeper, the equilibrium buckled

configuration will have fewer nodes. This result is consistent

with both experimental observation and the finite element sim-

ulation. Further, the combination of these curves defines an en-

velope function that outlines the boundary between the

unbuckled and buckled state (cf., Fig. 2). It also explains the

fact that the resonator has an unbuckled configuration for

small silicon pillar (Fig. 1(f)).

The y-axis parameter in Fig. 3 shows that the critical

temperature difference depends quadratically on the thick-

ness of the silica layer. It implies that thicker oxides will

avoid the buckling and maintain mechanical stability. Inter-

estingly, optical performance, in particular the Q factor, also

improves for thicker oxides. This can be understood to result

because the optical field at the oxide-air interface is gener-

ally weaker for thicker oxide.4 This reduces both surface

absorption and scattering, thereby increasing the optical Q

factor. From a design perspective, the undercut needs to be

carefully controlled. On one hand, it must be deep enough to

reduce optical loss due to the mode leakage into the silicon

pillar. On the other hand, shallow undercut is more desirable

to avoid buckling. Indeed, we have demonstrated elsewhere4

that by increasing the oxide thickness to 10 lm and control-

ling the undercut to be approximately 150 lm, it is possible

to obtain a record Q factor on a chip of 875 million Q in a

device that is mechanically stable.

FIG. 3. The relation between normalized critical temperature difference

(DaDTb2=t2) and parameter q ¼ a=b for configurations with different num-

bers of nodes (see legend) in the silica/silicon system. Insets show examples

from experiments of the buckled configurations with q ¼ 0:52, 10 nodes and

q ¼ 0:26, 6 nodes (see, Fig. 1).

FIG. 4. The threshold of undercut parameter ðn ¼ 1� a=bÞ for buckling.

For each thickness, the left side of curve defines a region in which the disk

resonators do not buckle.
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To provide guidance to disk resonator design, we calcu-

late the buckling threshold of undercut for different disk res-

onators having 6 lm and 10 lm oxide thickness. As shown in

Figure 4, for each resonator radius there are two thresholds

(lower and higher). If the undercut is smaller than the lower

threshold or larger than the higher threshold, the resonator

remains in the unbuckled configuration. In contrast, if the

undercut is between these two thresholds, the resonator will

buckle (cf., Fig. 1).

In summary, this work demonstrates and models the

impact of the thermal stress in silica-on-silicon disk resonators.

We provide both analytical and finite element modeling to

understand buckling behavior and offer guidance on perform-

ance improvement. In particular, by proper design, stress does

not limit the optical performance of these devices. Although we

only discuss the particular case of the disk resonator, our analy-

sis could be extended to guide the design of other structures.
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