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We report feature ofKohn–Sham (KS)molecular orbitals computedwith theKrieger–Li–Iafrate (KLI) approx-
imation for exact exchange through the comparison to the results of Hartree–Fock (HF) and other KSmethods
such as local density approximation (LDA) and generalized gradient approximation (GGA). KLI occupied
orbitals have similar energies and shapes with those of HF. KLI virtual orbitals are likely to form bound states
with negative eigenvalues due to the correct −1/r asymptotic behavior of KLI potentials, whereas HF virtual
orbitals are mostly unbound. As a result, HF orbitals tend to be diffuse because of their plane-wave-like nature,
and their energies are highly sensitive to the size of basis set. The energies of LDA/GGA orbitals appear to
be upshifted by a constant factor from the KLI results, but they also produce unbound virtual orbitals like
HF. The energy gaps between KLI occupied and virtual orbitals are very close to the corresponding experi-
mental excitation energies compared to the other methods. We also show that Brillouin's theorem can be
applied to a Slater determinant made of KLI orbitals as a corollary of the KLI approximation.

Keywords: Density functional theory, Exact exchange, Optimized effective potential, Krieger–Li–Iafrate
approximation, Kohn–Sham orbitals, Brillouin's theorem, Configuration interactions

Introduction

Kohn–Sham density functional theory (KS-DFT) provides an
efficient single determinant method with reliable accuracy for
electronic structure calculations of atoms, molecules, and
solids. The tremendous success of KS-DFT in computational
physics and chemistry is apparently thanks to the active devel-
opment of accurate functionals using the local density approx-
imation (LDA) and generalized gradient approximation
(GGA).1–3 However, such conventional functionals suffer
from the notorious self-interaction error (SIE), which causes
serious problems in DFT computations: e.g., diffuse KS orbi-
tals, high orbital energies, small bandgap energies, and even
wrong ground states for strongly correlated systems.3–5 In
addition, conventional exchange-correlation potentials decay
exponentially and thus fail to reproduce the correct −1/r
asymptotic behavior, which is essential to correctly describe
Rydberg states, electron affinities, and charge-transfer excita-
tions.3,5,6 Because those problems are due to the absence of
exact exchange (EXX), hybrid functionals created by mixing
the Hartree–Fock (HF) exchange and GGAs according to the
adiabatic connection theory partly alleviated them and soon
became a method of choice especially in chemistry.1–4

Unlike the nonlocal HF exchange, the KS potential should
be local and equal for all the electrons in a given system. The
optimized effective potential (OEP)method enables us to gen-
erate a local potential from the HF exchange, resulting in an
EXX KS potential.7–11 In practice, various approximated

methods such as the Krieger–Li–Iafrate (KLI),12–15 localized
HF,16–18 and common energy denominator approxima-
tions19,20 have been developed to avoid the numerical diffi-
culty in solving the OEP integral equation. More recently,
the orbital-consistent and density-consistent effective poten-
tials have been proposed as a practical alternative.21,22 How-
ever, use ofOEPmethods in real applications has been limited,
because there have been no appropriate counterparts for cor-
relation energies: the errors including the SIE in conventional
correlation functionals cannot be canceled out by EXX meth-
ods. Ultimately, therefore, exchange-only OEP methods
should be combined with correct correlation methods.
In this regard, it appears a natural extension to develop accu-

rate correlation methods in the basis of EXX DFT. On one
hand, according to the hierarchy of the Jacob's ladder for
DFT accuracy,23,24 the random phase approximation has been
used widely to calculate correlation energies as a counterpart
of EXX methods.25–31 Recently, a correlation version of the
OEPmethodhas been developed.32–37On the other hand,mul-
ticonfiguration (MC) methods can be exploited to take espe-
cially the nondynamical correlation energies into account.
The following two approaches were proposed. The first one
uses kinetic and electron–electron interaction energies from
post-HF calculations and generates the electron density
directly from a corresponding many-electron wavefunc-
tion.38–49 Then, residual dynamical correlation energies are
corrected by using the conventional correlation functionals
in DFT. However, the double counting of correlation energies
is inevitable in this approach. Range-separation treatment of
Coulomb interactions39,43,46,47 or pair-density func-
tionals38,40,44,46,47 may be used to resolve it. The second
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approach replaces HF orbitals byKS orbitals as a basis forMC
expansions. (Multireference) Configuration interaction calcu-
lations fromKSorbitals showed faster convergence in termsof
the size of reference spaces than those from HF orbitals.50–56

Gutlé et al. reported that a coupled-cluster (CC) method using
KS orbitals obtained from the KLI approximation has shown
rapid energy convergence for atomic systems with similar
accuracy compared to the HF-based CC method.57,58 These
previous studies may indicate promising applicability of KS
orbitals toMCmethods. Unfortunately, however, Slater deter-
minants derived from KS orbitals do not hold Brillouin's
theorem, which is relevant to the computational efficiency
in the evaluation of two-electron integrals between Slater
determinants.
In the presentwork,we investigatewhetherKSorbitals com-

puted from theKLI approximation can be a good reference con-
figuration for correlation energy calculations using MC
methods. To be self-contained and clarify the feature of the
KLI approximation,we revisit theOEP derivation using pertur-
bation theory and explain the numerical implementation of the
KLI method into our DFT code that uses Lagrange-sinc func-
tions as a basis set.59 Subsequently, we compare the shape
and energy of the occupied and virtual orbitals obtained from
theHF, LDA,GGA, andKLImethodswith each other.We also
compare the KS total energy and the ground state energy from
the configuration interaction singles (CIS) using KS orbitals to
examine the validity of Brillouin's theorem. Finally, we address
a future outlook of the KLI method toward MC approaches.

Theory

Derivation of the OEP and KLI Methods. In general,
the exact exchange-correlation energy (Exc) in DFT may be a
nonlocal functional of the electron density, though many con-
ventional LDA, GGA, and meta-GGA functionals are either
local or semilocal. Hybrid functionals partly include those fea-
tures with the parameters optimized. The OEP method offers a
rigorous way to obtain a local KS potential (VKS) from a non-
local exchange-correlation energy.9–11 Because the exact
expression of the exchange energy is known, as shown in
Eq. (1), one can readily obtain an exchange-only potential
(Vx) using the OEP method.

EHF
x φiσf g½ � = −

1
2

X
σ

XNσ

i, j= 1

ð ð
drdr0

φ∗
iσ rð Þφ∗

jσ r'ð Þφjσ rð Þφiσ r'ð Þ
r−r0j j , ð1Þ

where {φiσ} is a set of KS or HF orbitals, andNσ is the number
of electrons with spin σ. Here, we derive the OEP method for
the exchange-only case using perturbation theory and subse-
quently obtain a formal expression of Vx under the KLI
approximation.
KS-DFT, in principle, gives the exact ground state energy

and density of a noninteracting system that is identical to those
of a corresponding interacting system.60 Assuming an inter-
acting systemwith only the Hartree and exchange interactions

between electrons, a corresponding KS reference system
should have the ground state energy and density identical to
HF results:

nHFσ rð Þ = nKSσ rð Þ, EHF φiσf g½ �=EKS nKSσ
� �

, ð2Þ

where both HF and KS spin densities nσ(r) can be represented
with HF and KS orbitals {φiσ}, respectively, as follows:

F̂
HF
σ φHF

iσ
� �� �

φHF
iσ = ϵHFiσ φHF

iσ , nHFσ rð Þ =
XNσ

i

φHF
iσ rð Þ�� ��2 ð3Þ

and

Ĥ
KS
σ φKS

iσ = ϵKSiσ φKS
iσ , nKSσ rð Þ=

XNσ

i

φKS
iσ rð Þ�� ��2, ð4Þ

where ϵiσ is the energy of the corresponding orbital φiσ. Note
that the Fock operator FHF is used in Eq. (3), while the
exchange-only KS HamiltonianHKS is used in Eq. (4). If both

HF and KS densities are identical, the difference between F̂
HF
σ

and Ĥ
KS
σ solely comes from their exchange parts:

F̂
HF
σ φHF

iσ
� �� �

−Ĥ
KS
σ ≡v̂HFx − v̂OEPx , ð5Þ

where v̂HFx and v̂OEPx denote the HF exchange operator (Eq. (6))
and the exchange-only OEP, respectively.

vHFx, iσ φiσf g½ � rð Þ= 1
φ∗
iσ rð Þ

δEHF
x φiσf g½ �
δφiσ rð Þ

= −
1

φ∗
iσ rð Þ

XNσ

j= 1

φ∗
jσ rð Þ

ð
dr0

φ∗
iσ r0ð Þφjσ r0ð Þ

r−r0j j
ð6Þ

As indicated in Eq. (6), theHartree exchange potential is spin–
orbital-dependent and thus should be labeled with iσ (i.e.,
vHFx, iσ). Using Eq. (6), the HF exchange energy in Eq. (1) can
be written as

EHF
x φiσf g½ �=

X
σ

XNσ

i= 1

φiσ v̂HFx, iσ φiσf g½ �
���

���φiσ

D E
: ð7Þ

For an arbitrary KS Hamiltonian, its ground state energy
and density may be different from the corresponding HF
results. Then, we add a small perturbation Δv on the given
KS potential so as to minimize their energy and density differ-
ence. By taking perturbative corrections up to the first order,
the modified KS equation reads

Ĥ
KS
σ + λΔv

� �
φKS
iσ + λφ 1ð Þ

iσ +O λ2
	 
� �

= ϵKSiσ + λϵ 1ð Þ
iσ +O λ2

	 
� �
φKS
iσ + λφ 1ð Þ

iσ +O λ2
	 
� � ð8Þ
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and the resulting spin density becomes

nKSσ rð Þ=
XNσ

i

φKS
iσ rð Þ + λφ 1ð Þ

iσ rð Þ+O λ2
	 
���

���2

=
XNσ

i

φKS
iσ rð Þ 2 + λφ 1ð Þ∗

iσ rð ÞφKS
iσ rð Þ + c:c:

� ����
o
+O λ2

	 

,

���
n ð9Þ

where λ indicates a bookkeeping order parameter,φ 1ð Þ
iσ denotes

the first-order correction to a KS orbital φKS
iσ that is given as

φ 1ð Þ
iσ rð Þ =

X∞
k = 1,k 6¼i

φKS
kσ

� ��Δv φKS
iσ

�� �
εKSkσ −εKSiσ

φKS
kσ rð Þ, ð10Þ

and ϵ 1ð Þ
iσ is the first-order correction to the corresponding KS

orbital energy, which is given as

ϵ 1ð Þ
iσ = φKS

iσ Δvj jφKS
iσ

� �
= φKS

iσ v̂HFx, iσ− v̂
OEP
x

���
���φKS

iσ

D E

≡�vHFx, iσ−�v
OEP
x, iσ : ð11Þ

Here we used the fact that the perturbative potentialΔv is just
the potential difference in Eq. (5). Replacing the spin density
in Eq. (2) by Eq. (9), the so-called OEP integral equation can
be obtained as

0 = nKSσ rð Þ−nHFσ rð Þ

=
XNσ

i

φKS
iσ rð Þ 2 + λφ 1ð Þ∗

iσ rð ÞφKS
iσ rð Þ + c:c:

� ����
o���

n

−
XNσ

i

φHF
iσ rð Þ�� ��2 +O λ2

	 


= λ
XNσ

i

φ 1ð Þ∗
iσ rð ÞφKS

iσ rð Þ+ c:c:
� �

+O λ2
	 
 ð12Þ

To obtain an explicit expression of vOEPx , Eq. (8) can be
rewritten as

Ĥ
KS
σ φKS

iσ + λΔvφKS
iσ + Ĥ

KS
σ λφ 1ð Þ

iσ =
ð13Þ

ϵKSiσ φKS
iσ + λϵKSiσ φ 1ð Þ

iσ + λϵ 1ð Þ
iσ φKS

iσ +O λ2
	 


:

The first terms on both sides in Eq. (13) cancel out because
of Eq. (4). Therefore, by ignoring the higher order terms,
Eq. (13) can be rearranged as

Δv−ϵ 1ð Þ
iσ

� �
φKS
iσ = ϵKSiσ −Ĥ

KS
σ

� �
φ 1ð Þ
iσ

= ϵKSiσ +
1
2
r2− v̂KSσ

0
@

1
Aφ 1ð Þ

iσ :
ð14Þ

After multiplying v̂KSσ to the last line in Eq. (12) and substitut-
ing Eq. (14) into the result, we arrive at

0 = v̂KSσ
XNσ

i

φ 1ð Þ∗
iσ rð ÞφKS

iσ rð Þ + c:c:

=
XNσ

i

εKSiσ +
1
2
r2

0
@

1
Aφ 1ð Þ∗

iσ rð Þ
8<
: φKS

iσ rð Þ

− Δv rð Þ−ϵ 1ð Þ
i

� �
φKS ∗
iσ rð ÞφKS

iσ rð Þ
o
+ c:c::

ð15Þ

Rearranging the above equation to obtain vOEPx , we have

vOEPx,σ rð Þ= 1
2ρσ rð Þ

XNσ

i

εiσ +
1
2
r2

0
@

1
Aφ 1ð Þ∗

iσ rð Þ
8<
: φKS

iσ rð Þ

+ φKS
iσ rð Þ�� ��2 vHFx, iσ rð Þ− �vHFx, iσ−�v

OEP
x, iσ

� �� �o
+ c:c:

ð16Þ

which can be solved iteratively.10,61 The most time-
consuming part in solving Eq. (16) is the evaluation of the

first-order orbital correction φ 1ð Þ∗
iσ rð Þ, because it demands

the summation over the whole orbital space [cf. Eq. (10)].
The KLI approximation assumes that

φKS
kσ

� ��Δv φKS
iσ

�� �
= 0 for all k 6¼ i: ð17Þ

Then the Eq. (16) becomes much simpler because φ 1ð Þ∗
iσ rð Þ

becomes zero:

vOEPx,σ rð Þ

≈
1

ρσ rð Þ
XNσ

i

φKS
iσ rð Þ�� ��2 vHFx, iσ rð Þ− �vHFx, iσ−�v

OEP
x, iσ

� �� �
:

ð18Þ

Finally, we define the KLI exchange-only potential vKLIx as
follows:

vKLIx,σ rð Þ≡ 1
ρσ rð Þ

XNσ

i

φKS
iσ rð Þ�� ��2 vHFx, iσ rð Þ− �vHFx, iσ−�v

KLI
x, iσ

� �� �
: ð19Þ

Note that the KLI exchange potential depends only on
the occupied orbitals. Onemaywonder that ignoring the entire
term in Eq. (10) appears a very crude approximation, butmany
previous studies with the KLI approximation have shown
astonishingly accurate results.21,22,62–64 In fact, the KLI
approximation can be considered as a mean-field approxima-
tion assuming a slowly varying density.65

Unlike Eq. (12), Eq. (19) can be readily solved.13–15 To this
end, we need to evaluate the orbital-averaged KLI potential

�vKLIx, iσ = φiσ vKLIx,σ

���
���φiσ

D E
. From Eq. (19)

�vKLIx, iσ =�v
S
x, iσ−

XNσ −1

j

Mjiσ �vHFx, jσ−�v
KLI
x, jσ

� �
, ð20Þ
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where �vSx, iσ = φiσ vSx,σ

���
���φiσ

D E
is the orbital-averaged value of

the Slater potential66

vSx,σ≡
XNσ

i

φiσ rð Þj j2
ρσ rð Þ vHFx, iσ rð Þ ð21Þ

and

Mjiσ≡
ð
dr

φjσ rð Þ�� ��2jφiσ rð Þj2
ρσ rð Þ : ð22Þ

The summation in Eq. (20) omits the term for j =Nσ because of
the asymptotic behavior of electron density as r!∞. Since
ρσ rð Þ� φNσσ rð Þ�� ��2 as r!∞, vKLIx,σ rð Þ can be written as

vKLIx,σ rð Þ� vHFx,Nσσ rð Þ− �vHFx,Nσσ−�v
KLI
x,Nσσ

� �
: ð23Þ

vHFx,Nσσ rð Þ goes to zero as r!∞ and thus we can choose that

vKLIx,σ rð Þ also goes to zero as r!∞. Then, Eq. (23) should
satisfy

�vHFx,Nσσ−�v
KLI
x,Nσσ = 0: ð24Þ

To evaluate�vHFx, jσ−�v
KLI
x, jσ for j < Nσ, Eq. (20) can be rearranged to

obtain a linear equation for �vHFx, jσ−�v
KLI
x, jσ:

XNσ −1

j

δji−Mjiσ
	 


�vHFx, jσ−�v
KLI
x, jσ

� �
=�vHFx, iσ−�v

S
x, iσ: ð25Þ

Brillouin's Theorem. For the HF ground state wavefunction,
|Ψ 0i, the Brillouin's theorem states that

Ψ 0 Ĥ
�� ��Ψ a

i

� �
= i ĥ

�� ��a� �
+
X
k

ikjjakh i

= i F̂
HF

���
���a

D E
= 0,

ð26Þ

where Ψ a
i

�� �
is the one-particle excitation wavefunction cre-

ated by replacing the ith occupied orbital of the ground state
determinant by the ath virtual orbital. However, for a KS
ground state determinant Brillouin's theorem does not hold,
because the KS orbitals are not the eigenfunctions of the Fock
operator.

As shown in Eq. (5), the difference between F̂
HF

and the
exchange-only ĤKS is in their exchange parts and thus

i F̂
HF

���
���a

D E
in Eq. (26) can be written as

i F̂
HF

���
���a

D E
= i Ĥ

KS
���

���a
D E

+ i v̂HFx − v̂KSxσ
�� ��a� �

= i v̂HFx − v̂KSxσ
�� ��a� �

:
ð27Þ

The KLI approximation assumes that the last term in Eq. (27)
is zero as in the case ofEq. (17). Therefore, Slater determinants
made up of KS orbitals obey Brillouin's theorem within the
KLI approximation.

Implementation and Calculation Details

We implemented theKLI exchange potential in Eq. (19) in our
DFT code using Lagrange-sinc functions as a basis set.59

Lagrange functions are a set of localized real-space basis func-
tions that satisfy orthonormality and cardinality.67–69 Using
Lagrange functions as a basis set, only the diagonalmatrix ele-
ments of a local potential (e.g., vKLIx ) are nonzero due to the
cardinality:

Li V
KLI
x

�� ��Li0� �
=
ð
L∗i xð ÞVKLI

x xð ÞLi0 xð Þdx=VKLI
x xið Þδii0 , ð28Þ

where Li(x) is a Lagrange function localized on the ith
Lagrange mesh point.
TheKLI potential is calculated using theEqs. (6), (19), (21),

(22), and (25). To perform the integral for the Coulomb poten-
tial (1/r12) in Eq. (6), we employed the interpolating scaling
function method,70,71 which replaces the Coulomb potential
by the integration of a Gaussian function as

ð
dr0

φ∗
μσ r0ð Þφνσ r0ð Þ

r−r0j j

=
2ffiffiffi
π

p
ð∞

0
dt
ð
dr0φ∗

μσ r0ð Þφνσ r0ð Þe− t2 r−r0ð Þ2

=
2ffiffiffi
π

p
X
a

wa

X
i

Fx,a
i0i

X
j

Fy,a
j0j

X
k

Fz,a
k0k dijk ,

ð29Þ

where Fx,a
i0i , F

y,a
j0j , and Fz,a

k0k are called the Poisson matrix ele-

ments, e.g.,

Fx,a
i0i =

ð∞

−∞
e− t

2
a xi0 −xð Þ2Li xð Þdx

and dijk,wa, and ta are the coefficients of Lagrange functions, a
weight factor, and a quadrature point of the Gaussian integral,
respectively. In the evaluation of Eqs. (6), (21), and (22), van-
ishing of the electron density or orbitalsmay cause a numerical
problem.16 Thus, we use vHFx, iσ rð Þφ∗

iσ rð Þ instead of vHFx, iσ rð Þ.
Also, the KLI exchange potential at a remote region where
the spin density is <10−10 a.u. is approximated as16

vKLIx,σ rð Þ≈ −
1
Nσ

ð
dr0

ρσ r0ð Þ
r−r0j j : ð30Þ

Inwhat follows, we compare the orbital energies and shapes
of four small molecules (H2, N2, CO, and CH4) obtained from
the KLI, HF, PZ-LDA,72–74 and PBE75 methods. Their geo-
metries were obtained from Ref. 76. We used the Gaussian
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09 package for calculations using the cc-pVDZ and aug-cc-
pVQZ basis sets.77 For KS-DFT calculations, we also used
our code with the Lagrange-sinc basis set59 and norm-
conserving pseudopotentials.78 For details of our code, refer
to Ref. 59. For KLI calculations, we adopted the pseudopoten-
tials generated at the PBE level. For the Lagrange-sinc basis
set, we used a spherical-shaped simulation box of 10 bohr
radiuswith a scaling factor h = 0.20 or 0.25 bohr. To accelerate
the SCF convergence, we use a potential mixing scheme in
DFT calculationswith theKLI potential.We useVESTAwith
the isovalue of 0.02 to draw molecular orbitals.79

Results and Discussion

Comparison ofOrbital Energies. To elucidate the feature of
KLI orbitals, we first compare the orbital energies of N2 com-
puted from KLI with those from the other methods. Figure 1
shows the results. First of all, the KLI-occupied orbital ener-
gies are close to those ofHF. In particular, the highest occupied
molecular orbital (HOMO) energy should be equal to that of
HF if the same basis set is used for both KLI and HF [see
Eq. (24)], though in Figure 1 there is a slight deviation
(0.0156 a.u. in the case of HF with aug-cc-pVQZ). In fact,
the KLI and HF HOMO energies for other molecules (H2,
CO, and CH4) show even smaller deviations (0.003–0.004
a.u.). Therefore, as in HF, the KLI HOMO energy can be a
good approximated ionization energy. Note that the 3σg
orbital should be the HOMO of N2, but HF assigns 1πu as
the HOMO. This is a well-known limitation of HF.80–82

In contrast, the KLI virtual orbital energies are much lower
than those of HF. It has been known that virtual orbital ener-
gies of HF correspond to the electron affinity (i.e., Koopmans’
theorem), which causes that an electron in a virtual orbital
tends to formanunbound state due to the strong repulsion from
theN electrons in the occupied orbitals, as depicted inFigure 1.
However, KS orbitals do not satisfy Koopmans’ theorem and
also both occupied and virtual orbitals share the same KS
potential that ismade from the electron density of the occupied
orbitals. Thus, electrons in a virtual orbital see N – 1 electrons
as those in the occupied orbitals. Consequently, the energy
gaps between the KS occupied and virtual orbitals are close
to the corresponding optical excitation energies. Indeed, the
KLI transition energies fromHOMO to 1πg and to 4σg are very
close to corresponding experimental values, respectively, as
shown in Figure 1. Note that PBE also produces unbound vir-
tual orbitals like HF. We also compared PZ-LDA results, and
they are very close to the PBE results (themaximumdifference
of orbital energies is 0.0098 a.u.). This is because of the shal-
lowLDA/GGAexchange-correlation potentials due to the SIE
(e.g., see Figure 2).6,83

Interestingly, the PBE-occupied orbital energieswith a con-
stant downshift are similar to the KLI values as already
reported.6,83–86 Their virtual orbital energies still show signif-
icant deviation and it gets worse as the orbital energy
increases. This can be understood as follows. In the region
of valence electrons, LDA/GGA potentials have similar

curvature to that of KLI, leading to the relatively small energy
difference for the occupied orbitals. In a remote region, the
LDA/GGA potentials decay exponentially, while the KLI
potential shows−1/r asymptotic tail (e.g., see Figure 2), result-
ing in large energy differences for virtual orbitals.
Basis Set Dependence of Virtual Orbitals. In Figure 1, HF
virtual orbital energies ofN2 are strongly dependent on the size
of basis set. Those orbitals form unbound states, as mentioned
above, and thus tend to be delocalized as long as the given
basis set allows. Table 1 shows such examples. HF orbitals
of N2 computed from aug-cc-pVQZ are much more diffuse
than the corresponding orbitals from cc-pVDZ, as the former
contains diffuse functions whereas the latter does not. In the
case of 4σg, even their geometries are qualitatively different.
As a result, the orbital energieswith cc-pVDZ aremuch higher
than thosewith aug-cc-pVQZ. Similar tendency is observed in
PBE unbound orbitals (4σg and 3σu), but the bound virtual
orbital 1πg of PBE shows no significant change. In fact, the

Figure 1.Orbital energies of N2. The dotted lines connect the orbitals
with the same symmetry, while the dashed line denotes the KLI
HOMO energy. Because the energy order of HF orbitals is different
from that of KS orbitals, we exclude some ofHF virtual orbitals. PBE
(shifted) indicates the orbital energies with constant downshift. For
comparison, selected experimental singlet excitation energies are
present with respect to the KLI HOMO energy.88 All the KS orbital
energies have been calculated using the Lagrange- sinc basis set with
the scaling factor of 0.25 bohr.
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shape of unbound orbitals is entirely determined by the basis
set size, because they have plane-wave-like nature. Ifmore dif-
fuse functions are added to a given basis set, the resulting orbi-
tals will be more delocalized and accordingly their energies
become closer to zero.

Grid-based basis sets such as the Lagrange-sinc functions
can readily describe diffuse functionswithout additional costs.
Table 1 also shows virtual orbitals computed from the
Lagrange-sinc basis set. The PBE 1πg and 3σu orbitals from
theLagrange-sinc basis set have slightly different shapes com-
pared to those from aug-cc-pVQZ. However, 4σg from the
former is more diffuse along the perpendicular direction to
the bond axis, while that from the latter is more diffuse along
the parallel direction to the bond axis. We suspect that such a
difference is due to undesirable constraints of aug-cc-pVQZ,
because the Lagrange-sinc basis set has been known to be
complete.67–69

In the case of KLI, all the three orbitals form bound states.
Therefore, theymust be less sensitive to the basis set size com-
pared to the HF and PBE cases, which apparently helps to
enhance computational efficiency for MC methods demand-
ing many virtual orbitals. In fact, we checked convergence
of KLI orbitals with different scaling factors of the
Lagrange-sinc basis set. For example, the orbital energy
change was less than 0.0013 hartree as the scaling factor h
decreases from 0.25 to 0.20 bohr, i.e., the basis set size
increases almost twice.
Asymptotic Behavior of the KLI Potential. Figure 2 com-
pares the PZ-LDA exchange-correlation potential and theKLI
exchange potential for a H2 molecule. The LDA potential
decays exponentially at a remote region, while the KLI poten-
tial follows a correct −1/r behavior. We note that the nuclei

Figure 2.Comparison of the PZ-LDAexchange-correlation potential
and the KLI exchange potential for H2. The dotted lines indicate the
asymptotic behavior of the corresponding potentials. The decay con-
stant α of the LDA asymptotic potential was determined from the

HOMO energy as α≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ϵHOMO=9

p
.3,6,89

Table 1. Selected virtual orbitals of N2. Scaling factor h of the Lagrange-sinc basis set is given in bohr.

1πg 4σg 3σu

HF aug-cc-pVQZ

HF cc-pVDZ

PBE aug-cc-pVQZ

PBE cc-pVDZ

PBE Lagrange-sinc (h = 0.25)

KLI Lagrange-sinc (h = 0.25)

KLI Lagrange-sinc (h = 0.20)
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attractive potential is completely screened by the Hartree
repulsive potential at a remote region, so that only the
exchange-correlation potential remains there. As a result,
LDA forms a shallow potential, leading to unbound virtual
orbitals, whereas KLI provides an attractive potential to form
the correct Rydberg states.
Figure 3(a) shows the occupied and virtual orbitals of H2

computed from theKLI potential. Note that all the virtual orbi-
tals are bound states with negative eigenvalues. Interestingly,
theKLI orbitals look like the hydrogen atomic orbitals, though
their degeneracies no longer remain. This shows that the KLI
exchange potential removes the SIE and hence an electron at
the remote region sees a single positive charge of nuclei
screened only by the other electron, resulting in atomic-
orbital-like Rydberg states. In contrast, HF gives only a
single bound state that is the occupied orbital, as shown in

Figure 3(b). Though the HF results also have hydrogen-like
orbital shapes, there are also peculiar orbitals such as the left
onewith 0.047 hartree and the onewith 0.327 hartree. This can
be understood from the fact that unbound orbitals try to incor-
porate plane-wave-like nature within the given basis set. We
expect that if a larger basis set is used, more peculiar orbitals
will appear.
Excitation Energy. The energy gaps between occupied and
virtual orbitals are often regarded as the zeroth-order approx-
imation of optical excitation energies for further excited state
calculations. In particular, the transition energy from the
HOMO to the lowest unoccupied molecular orbital
(LUMO) is often used to estimate the lowest excitation of a
givenmolecule. Table 2 compares theHOMO–LUMOenergy
gaps of small molecules computed from various methods and
their corresponding experimental values. We used aug-cc-
pVQZ for HF calculations, while the Lagrange-sinc basis
set with the scaling of 0.25 bohr were used for DFT calcula-
tions. We note that the HF energy gaps are much larger than
those from bothKS results and experiments, which is because,
by virtue of Koopmans’ theorem, the HF energy gaps corre-
spond to the fundamental gaps rather than optical excitation
energies.
Unlike HF, however, a KS energy gap can be considered as

the optical excitation energy. As discussed in the previous sec-
tions, LDA and GGA functionals produce upshifted orbital
energies with respect to KLI results and thus they are likely
to produce unbound virtual orbitals. An upshifted LUMO
may be unnaturally diffuse so that it has a smaller SIE than
the correspondingHOMO, leading to a small HOMO–LUMO
energy gap. In particular, if it forms a unbound state, its energy
is highly sensitive to the size of the basis set and thus the
energy gap is meaningless. The results in Table 2 clearly show
such a tendency. KLI gives larger energy gaps for all themole-
cules than LDA and PBE do, and its results are closer to the
experimental values.87 In the case of H2, its LUMO from
PZ-LDA/PBE is unbound and its HOMO–LUMO energy
gap is much smaller than the KLI and experimental values.
We also investigated the effect of combiningKLI exchange

and PZ-LDA or PBE correlation energies on the energy gaps.
Both cases yield similar results with the KLI exchange-only
case. ForCH4, the results of the combinedmethods appear bet-
ter than that of KLI. However, it does not mean that the PZ-
LDA or PBE correlation functionals are good counterparts
of the KLI exchange because no error cancelation between
them is expected.
In this way, KLI enables us to obtain good approximated

excitation energies as compared to the HF or conventional
DFT methods. To further improve the KLI results, one may
need to devise a correlation functional at the same level or
to use them for post-HF-like calculations. For the latter case,
Brillouin's theorem may be used for KLI orbitals. As the KLI
exchange potential has been derived to effectively incorporate
theHF exchange energy, we examine to what extent KLI orbi-
tals satisfy Brillouin's theorem. To this end, we compare the
KS total energy and the ground state energy from CIS

Figure 3. Occupied and virtual orbitals of H2. (a) KLI results (h =
0.25 bohr). (b) HF results (aug-cc-pVQZ). The numbers indicate
the eigenvalues of corresponding orbitals in hartree. The dotted line
denotes the zero energy level.
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calculations, as shown in Table 3. The results were produced
by our code with the scaling factor of 0.25 bohr. In CIS calcu-
lations, we include 15 orbitals, which are all valence orbitals,
and several lowest virtual orbitals. For comparison, we used
both PBE and KLI orbitals.
In the case ofKLI,EKS is exactly the same asE0, because the

total KS energy of KLI must be identical to the HF energy
computed from KLI orbitals as follows:

EKLI
KS φif g½ �=

X
i

i T̂
�� ��i� �

+
ð
drvext rð Þρ rð Þ

+
1
2

ð ð
drdr0

ρ rð Þρ r0ð Þ
r−r0j j +EKLI

x φif g½ �

=EHF
0 φif g½ �,

ð31Þ

where the last equality comes from thatEKLI
x =EHF

x . Therefore,
the CIS correction of KLI to the ground state is negligible
within 10−3 hartree, as can be seen from Table 3. In contrast,
EKSofPBE is significantly different fromE0, becauseKSorbi-
tals are not the eigenfunctions of the corresponding Fock oper-
ator. However,E0 of PBE is also very close toECIS. This result
shows that Brillouin's theorem is valid for CIS calculations
using KLI orbitals on the order of 10−3 hartree.

Conclusion

We implemented theKLI version of EXXpotential in ourDFT
code, which allowed us to obtain the self-interaction free
molecular orbitals. We performed DFT and HF calculations
for small molecules and compared the energies and shapes
of the resulting orbitals with each other. For occupied orbitals,
KLI gives similar energies and shapeswith those ofHF. In par-
ticular, theKLI exchange potential has the correct−1/r asymp-
totic behavior and thus its HOMO energy obeys Koopman's

theorem like HF. For virtual orbitals, however, KLI orbitals
have a physically different meaning from the HF orbitals.
The former gives an approximated optical excitation energy,
while the latter gives an approximated electron affinity. There-
fore, KLI virtual orbitals are likely to form bound states with
negative eigenvalues and so relatively less sensitive to the size
of basis set, whereas HF virtual orbitals tend to be diffuse as
much as the basis set allows.
LDA and GGA functionals have shallow and upshifted

exchange-correlation potential with exponentially decaying
asymptotic behavior. As a result, their orbital energies with
small eigenvalues are almost upshifted with respect to the
KLI results, but those with high eigenvalues form unbound
states like HF. The KLI HOMO–LUMO energy gaps show
better excitation energies than the other methods. Combining
the KLI exchange with the LDA or GGA correlation func-
tionals results in similar energy gaps with the KLI-only case.
We expect that orbital-dependent correlation functionals (e.g.,
the OEP potential for correlation energy32–37) may improve
the results.
We note that the ground state energy from CIS calculations

usingKLI orbitals is equal to theKS total energy ofKLIwithin
10−3 hartree. Therefore, Brillouin's theorem is approximately
valid to a Slater determinant made of KLI orbitals. Conse-
quently, KLI orbitals provide accurate zeroth-order approxi-
mation for electronic excitation energies and thus their
Slater determinant forms a good reference to construct
many-electronwavefunctions through the configuration inter-
action expansion. At present, we are developing MCmethods
in the basis of KLI orbitals as a new promising approach for
high-level quantum calculations.
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