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Scientists have made efforts to understand the beauty of painting art in their own languages. As digital image
acquisition of painting arts has made rapid progress, researchers have come to a point where it is possible to
perform statistical analysis of a large-scale database of artistic paints to make a bridge between art and
science. Using digital image processing techniques, we investigate three quantitative measures of images –
the usage of individual colors, the variety of colors, and the roughness of the brightness. We found a
difference in color usage between classical paintings and photographs, and a significantly low color variety of
the medieval period. Interestingly, moreover, the increment of roughness exponent as painting techniques
such as chiaroscuro and sfumato have advanced is consistent with historical circumstances.

H
umans have expressed physical experiences and abstract ideas in artistic paintings such as cave paintings,
frescos in cathedrals, and even graffiti on city walls. Such paintings, to convey intended messages, consist
of three fundamental building blocks: points, lines, and planes. Recent studies have shed light on inter-

esting mathematical patterns between these building blocks in paintings.
Artistic styles were analyzed through various statistical techniques such as fractal analysis1, the wavelet-based

technique2, the multi-resolution hidden Markov method3, the Fisher kernel based approach4, and the sparse
coding model5,6. Recently, these methods have also been applied to other cultural heritages such as literature7–10

and music11–14. Such quantitative analysis is called ‘‘stylometry,’’ which originates from literature analysis to
identify characteristic literary style9.

In this study, we add a new dimension to the body of stylometry studies by analyzing a large-scale database of
artistic paintings. With digital image processing techniques we quantify the change in variety of painted colors
and their spatial structures over ten historical periods of western paintings – medieval, early renaissance, northern
renaissance, high renaissance, mannerism, baroque, rococo, neoclassicism, romanticism, and realism – starting
from the 11th century to the mid-19th century. Digital images of the paintings were obtained from the Web
Gallery of Art15, which is a searchable database for European paintings and sculptures consisting of over 29,000
pieces ranging from the years 1000 to 1850. Most of the identifiable images contain information of schools,
periods, and artists, and are good quality in resolution to apply statistical analysis.

Here we focus on the following three quantities – the usage of each color, variety of painted colors, and the
roughness of the brightness of images. First, we count how often a certain color appears in a painting for each
period. From the frequency histogram, we find a clear difference between classical paintings and photographs.
Next, we measure a fractal dimension of painted colors for each period in a color space, which is analogically
considered to reflect the color ‘palette’ of that period. Interestingly, the fractal dimension of the medieval period is
lower than that of other periods. The detailed results and our inference are discussed in this section. Last, we
consider how rough or smooth an image is in the sense of its brightness. In order to quantify roughness of
brightness, a well-known roughness exponent measurement in statistical physics is applied. We find that the
roughness exponent increases gradually over the 10 periods, which is consistent with the historical circumstances
like the birth of the new painting techniques such as chiaroscuro and sfumato16–17 (Chiaroscuro and sfumato are
major painting techniques developed and widely used during the Renaissance period. Literally, the compound
word chiaroscuro is formed from the Italian words chiaro (light) and oscuro (dark), which refers to an artistic
technique to delineate tonal contrasts and voluminous objects with a dramatic use of light. Precursors of
chiaroscuro are Leonardo da Vinci (1452–1519) and Michelangelo Merisi da Caravaggio (1571–1610), and
Rembrandt van Rijn (1606–1669) is a representative artist well-known for his use of chiaroscuro. The Italian
word sfumato is derived from the Italian term fumo which literally means ‘‘smoke’’. Leonardo da Vinci mentioned
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sfumato as a blending of colors without lines or borders, in the
manner of smoke or beyond the focus plane. In other words, sfumato
is a painting technique to express gradual fade-out between object
and background avoiding harsh outlines.). Analyzing these three
properties, we propose new approaches to quantitatively analyze a
large scale database of paintings. Applying our method to the con-
troversial Jackson Pollock’s drip paintings, it is possible to infer that
his drip paintings are quite different from works of other painters.

Results
Chromo-spectroscopy. First we investigate how many different
kinds of color appear in a painting, and how often a certain color
is painted, which is similar to Zipf’s plot for word frequencies in
literature18. It is named as ‘‘chromo-spectroscopy.’’ A color is
considered to be like a word for a painter. As an example of
chromo-spectroscopy, Fig. 1a displays the fraction of each color
used in a painting in descending rank order. If each color is chosen
from a palette uniformly at random, the frequency of each color
would follow a binomial distribution for a random process (see
more detail in the supplement), and its rank plot would show an
inverse of its cumulative, i.e., the regularized incomplete beta
function19. This is because the rank plot is the inverse of its
cumulative density function (see black dots in Fig. 1a). However,
interestingly, the rank-ordered color-usage distribution (RCD)
shows a long tail distribution, which is different from the inverse
function of the regularized incomplete beta function (see Fig. 1a).

Figure 1b shows RCDs for 10 periods of European art history and
photographs. The RCD of a period represents how many colors are
used and how often a specific color appears during the period. All
periods of painting show a universal distribution curve, but the rank
of each color for each period is rather different. The RCD of photo-
graphs is similar to that of paintings at the beginning of a power-law
part but the exponential tail deviates significantly from paintings, as
shown in Fig. 1b. In order to clarify the difference of the tail section of
RCDs between paintings and photographs, we analyze RCDs of
images of photographs after applying several painting filters from
popular software. There are clear changes in the tail of the distri-
bution when only the oil painting filter is applied. An oil painting
filter usually consists of two parameters – range and level – which are
related to the size of an art paint brush and smearing intensity. It
seems these two parameters influence the shape of the exponential
tail of the RCD. Another interesting fact is that there is no clear

difference between RCDs of photographs and hyper-realism paint-
ings, which are extremely finely drawn with microscope and are hard
to distinguish from photographs with unaided eyes (see Figure S4b in
the supplement). This suggests that paintings are only quantitatively
distinguished from photographs by the tail section of the RCD. The
tail of RCD represents frequency of noisy colors or a level of details in
the image.

Fractal pattern and color palette. RCDs for all periods of paintings
show quite universal distribution curves. However, the most com-
monly painted color is different for each period. To characterize the
variety of colors more quantitatively, while ignoring its individual
frequency, we investigate the fractal pattern of the painted color in
the RGB color space for each period.

To examine the fractal characteristics of painted colors for each
period, we measure the box-counting dimension20 of the paintings in
the RGB color space and compare them with two iconoclastic artists:
Pieter Bruegel the Elder and Jackson Pollock. Each color used in the
painting is plotted on a point in the RGB color space. Based on
the definition of the box-counting dimension, we iteratively change
the length of box e from e51 to e532, and count the number of non-
empty boxes. A non-empty box indicates that corresponding colors
within the box are used in the painting at least once. If the distri-
bution of colors in the color space is homogeneous, the box counting
dimension is 3. In other words, if the box counting dimension is less
than 3, the distributions in the color space is heterogeneous and
fractal, which means some axes are preferred or the distribution is
composed of a preferred color scheme in the color space. In this
sense, measuring the box-counting dimension quantifies the spatial
uniformity or fractality of painted colors for each artistic period.

Figure 2a shows that the box-counting dimensions of paintings
from the 10 historic periods are in the range between 2.6 and 2.8
except for the medieval period. As Fig. 2b shows, only the box-
counting dimension of the medieval period is close to that of
Jackson Pollock’s drip paintings (below 2.4), where he used limited
colors intentionally. In addition, the box counting dimension for the
paintings of Pieter Bruegel the Elder is approximately 2.55. A low
box-counting dimension represents that there is a strong preference
in a small number of selected colors in the medieval age. That is, the
color palette in the medieval age is significantly different from the
other periods.

One can find the reason why the box counting dimensions for the
medieval age and Jackson Pollock are different from others in the

Figure 1 | Rank-ordered color-usage distributions for an image and periods. (a) Fraction distribution of each color in a descending rank order for the art

work of German painter Johann Erdmann Hummel (1769-1852), ‘‘Schloss Wilhelmshöhe with the Habichtswald’’ (This image is out of copyright.).

The horizontal axis indicates the rank of a color in frequency and the vertical axis denotes the proportion of a color in an image. The most (least) used

color is located at the leftmost (rightmost) position on the horizontal axis. The black dots represent color choices from the same palette uniformly at

random. (b) Rank-ordered color-usage distributions (RCDs) of the 10 periods and photographs. Note that the distribution of photographs clearly shows

a different tail. Inset: RCD for the neoclassicism period. The displayed color corresponds to its rank. Note that the fraction is normalized by the image size

and the number of paintings in each period.
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historical facts. First, specific rare pigments were preferred for polit-
ical purposes and religious reasons in the medieval age despite their
expensive cost. Second, no technique of physical mixing between
different pure colors was used in that period due to the tendency
to emphasize the purity of colors and materials themselves. Artists
recoated on a colored canvas to represent various colors in the mid-
dle age. The drip paintings of Jackson Pollock are also formed from
recoating each single color dripping pattern on other layers, and the
number of used colors is smaller than other western paintings before
20th century. Furthermore, oil colors and color mixing techniques
were not fully developed until the Renaissance age. The introduction
of new expression tools, like pastels and fingers, and painting tech-
niques, such as chiaroscuro and sfumato, made much more colorful
and natural expressions possible after the Renaissance period21. The
difference of fractal dimensions between the medieval and other
periods quantitatively may quantitatively reflect the historical facts
and the painting technical difference in art history.

Spatial renormalization and fixed point analysis. In the RGB color
space, each painting has its own set of scattered color pixels. In order
to analyze the characteristics of color usages, considering the variety
of color in the paintings, we define three representative points in the
RGB color space. First, center of usage frequency in the color space
may be compared to center of mass in physics. One can calculate
center of usage frequency (CM) in the color space with the usage
information and spatial position of colors such as the center of mass
of physical objects. Second, iteratively resizing a painting is necessary
to get the fixed point of the painting borrowed from real space
renormalization concept in physics. Repeatedly resizing a painting,
a painting eventually becomes one pixel. That is the fixed point of the
painting (FP). The third fixed point of the randomized painting
(SFP) is the same as mentioned in the second one except for
shuffling the pixels of the painting. If the spatial information of the
scattered color is irrelevant, FP and SFP would not be significantly
different. Note that center of mass point of a shuffled image (SCM) is
the same as the original CM. Then, two vectors d1 (d2) pointing from
CM to FP (SFP) can be compared to quantify the randomness of the
spatial arrangement of the colors in paintings. If d1 and d2 are similar,
the used colors in a painting are not diverse or the spatial
arrangement of the colors in a painting is close to random. Figure
3c suggests that the color arrangement of Jackson Pollock’s drip
paintings is quite different from other paintings, showing that

Pollock’s art work is quite random, especially in the spatial
arrangement of colors. On the other hand, the two fixed points of
Pieter Bruegel the Elder’s paintings are far away each other.

Surface roughness and brightness contrast. Though we mainly
focus on the usage of colors, ignoring its spatial arrangement over
the first two subsections, spatial correlation of colors is also
important to understand the artistic style of the paintings, as
shown in previous RG analysis, because a painting is a
composition of colors in the proper place. The spatial arrangement
of colors makes various artistic effects possible. For example,
contrast, as one of the artistic effects, is an important element to
express shape and space in two dimensional fine arts. Among
various types of contrast, brightness contrast is the most important
in art history due to the cultural background of Europe which usually
adopts the contrast of light and darkness as a metaphorical
expression. In this subsection, taking both the color information of
pixels and their spatial arrangement into account, we examine the
prevalence of brightness contrast in European paintings over 10
artistic periods.

To quantify brightness contrast, we utilize the two-point height
difference correlation (HDC) and its roughness exponent a, the slope
of HDC curve in a double logarithmic plot of the surface growth
model in statistical physics22. First we get the brightness in grey-scale
from the RGB color information through a weighted transformation
(see Methods), and define a ‘‘brightness surface’’ of an image by
adopting the brightness of a pixel as a height at that position of the
image as shown in Fig. 4a and b. A three-dimensional surface, like a
deep-pile carpet, is obtained from the 2-dimensional painting, where
the HDC is calculated as a function of distance r. This method is
widely used in condensed matter and statistical physics to analyze the
roughness of a growing surface, for example a semiconductor surface
grown by chemical deposition22. For comparison, a shuffled image,
by changing a pixel’s position randomly, is analyzed together.

As shown in Fig. 4a and b, since the brightness of a point is defined
as its height, the height difference between two points represents the
brightness difference. The two-point HDC of a randomly shuffled
painting is displayed in blue dots in Fig. 4c and d for comparison. The
slope a for randomized images is 0 since there is no spatial correla-
tion any more. Figure 4d shows an example of Jackson Pollock’s drip
painting, which is hard to distinguish from randomly shuffled paint-
ing when only the spatial correlation is considered. The roughness

Figure 2 | Box-counting dimension and its tendency. (a) The results of box-counting dimension over the 10 artistic periods display a significant

difference of the medieval period from the other periods. Error bars indicate the standard deviation. (b) The number of boxes to cover the color space

versus box size. The fractal dimension in the color space of Jackson Pollock’s drip paintings is measured around 2.35, similar to that of medieval paintings

(see also Figure S5 in the supplement), but dissimilar to that of another iconoclastic artist Pieter Bruegel the Elder.

www.nature.com/scientificreports
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exponent of Jackson Pollock’s drip painting is very small comparing
to that of other European paintings.

Since HDC describes the spatial correlation between color pixels
on a surface as a function of distance, the slope of the HDC function,
i.e., the roughness exponent a, denotes the average brightness differ-
ence according to the contrast effect. Figure 5a shows that the rough-
ness exponent a gradually increases over the 10 artistic periods,
which is consistent with historical circumstances. First, the increas-
ing tendency of a is related to changes in painting techniques and
genres, such as from portraits to landscape. In the history of western
art, many new painting techniques were developed and spread dur-
ing the Renaissance period. For example, chiaroscuro, which is one of
the canonical painting modes in the Renaissance period16, charac-
terizes strong contrasts between light and shade. The roughness
exponent and the HDC capture the level of brightness and relative
spatial position. Hence, a roughness exponent a of a painting could
be a quantitative indicator of a chiaroscuro technique, and its increas-
ing tendency over artistic periods reflects the spread of the chiaro-
scuro technique over the continent21. In addition, the Renaissance art
movement led that painting genres became more diverse. Therefore,
more portraits and landscape paintings were encouraged. Large
objects in paintings such as a torso, i.e., the upper body of portraits,
or mountains and sky in landscapes decrease the brightness differ-
ence in a short distance, but makes the increment of the HDC bigger
as distance increases21. Therefore, the historical renovation of paint-
ing techniques and the diversification of painting genres are clearly
captured in an increasing tendency of the roughness exponent a.

Another example, sfumato is another major painting mode
developed in the Renaissance period to express a vanishing or shad-
ing around objects in a painting17. Smoothing the edges of objects in a

painting makes the variance of brightness decrease because it doesn’t
allow abrupt changes at the boundary. In this case, image entropy23

would be a good measurement for the sfumato technique, which
indicates the variance of brightness in a specific locale. Since the
variance is inversely proportional to homogeneity, the image entropy
describes the level of local homogeneity of brightness in a painting.

Figure 5b shows that the image entropy H increases up to
Neoclassicism and then decreases, which is somewhat different from
the roughness exponent since the image entropy only considers the
complexity of the color gradient around a pixel locally comparing to
the fact that the roughness exponent also consider the color bright-
ness difference of remote distance. We think that the different beha-
viors of these two measures may reflect the tendency that the
chiaroscuro technique is still developing but the sfumato declines.
It may be rejecting mysterious expression and respecting the realistic
one.

Discussion
From the analysis of a large-scale European painting image archive,
we display that chromo-spectroscopy of 10 art historical periods
shows a universal distribution curve which distinguishes art paint-
ings from photographs. Additionally, fractal analysis allows us to
rediscover the expansion of the color palette after the medieval per-
iod, which is consistent with the fact that the color palette of the
medieval age was relatively narrow comparing to other periods
because of historical circumstances. Furthermore, we measure the
roughness exponent and image entropy of brightness surfaces over
the 10 art historical periods. We find that these mathematical mea-
surements quantitatively describe the birth of new painting tech-
niques and their increasing use. Our approaches successfully

Figure 3 | Spatial renormalization of original and shuffled images. (a) An example of transforming an image into a fixed point. (Figure 1a also contains

the image which is out of copyright.) (b) An illustrative example of the center of mass (CM), the fixed point (FP), and the shuffled fixed point (SFP) in

RGB color space. (c) Norm of difference of d1 and d2 over 10 periods and comparison with Pollock’s drip paintings and Pieter Bruegel the Elder’s

paintings. (d) Norm of cross product of d1 and d2 over 10 periods and comparison with Pollock’s drip paintings and Pieter Bruegel the Elder’s paintings.

www.nature.com/scientificreports
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provide quantitative indicators reflecting historical developments of
artistic styles. Applying them, it is possible to deduce that the Jackson
Pollock’s drip paintings are not typical art work, of course, these are
still controversial in the art world.

There are several limitations of our approaches and we provide
suggestions for future works. First, although the database is quite
large, our dataset does not cover all paintings of the 10 art historical
periods. In this reason, it is possible that there exist sampling bias in

Figure 4 | Constructing brightness surfaces and measuring roughness exponents. (a) and (b) Illustrative examples of brightness surfaces. The brightness

of each point is considered as its height. (c) An example of a two-point HDC function G(r) on the brightness surface of an image in the inset,

a panel painting of Italian painter Taddeo Gaddi (1348–1353) titled ‘‘St John the Evangelist Drinking from the Poisoned Cup’’ (This image is out of

copyright.). The horizontal axis indicates the distance r, where a unit is a pixel, between two distinct points on the surface. Red points show the HDC of an

original image and blue ones represent that of a randomized image. The slope is approximately 2a,0.28. (d) The HDC function for an image shown in the

inset, painting of American painter Jackson Pollock (1912–1956) titled ‘‘Number 20, 1948, 1948’’ (This image is reproduced by permission of the Artists

Rights Society and Society of Artist’s Copyright of Korea, E 2014 The Pollock-Krasner Foundation/ARS, NY - SACK, Seoul), showing no difference from a

randomly shuffled image only except for short distance less than 10 pixels, which is less than 1% of the image width.

Figure 5 | The trend of roughness exponents and image entropies. (a) The trend of roughness exponents over 10 art historical periods shows increasing

behavior. (b) Statistical tendency of image entropy values of brightness surfaces over the periods; error bars indicate the standard error of the mean.

www.nature.com/scientificreports
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our results which we have not yet figured out. For better statistics,
analyzing much bigger (higher resolution) images such as the
Google Art Project24 will give us more concrete insight for artistic
style. Another possible error is unintended color distortion while
converting original paintings into digital images, which may cause
color information loss or bias. Even though we have checked that
our results are not significantly changed from artificial color qual-
ity reductions, we could not follow all possible distortion effects. It
is also true that present colors in the paintings are different from
the original ones when they were completed. Old paintings are
hard to preserve and usually suffer from degradation of physical
materials of paintings such as oxidation and corrosion. These are
big remaining issues not only for this study but also for all stylo-
metric analyses in arts. Nonetheless, we expect that our quantitat-
ive study would be helpful to bridge the gap between art and
science.

Methods
Source of dataset and statistics of paintings. In this study, we analyzed the digital
images of European paintings in the Web Gallery of Art which exhibits artworks
ranging from 11th century to mid-19th century15. The European paintings are
classified into 10 art historical periods: medieval, early renaissance, northern
renaissance, high renaissance, mannerism, baroque, rococo, neoclassicism,
romanticism, and realism. We filtered non-painting images, such as sculptures,
miniatures, illustrations, architecture, pottery, glass paintings, and wares. The
number of refined images for each period is summarized in SI Table S1. In total we
have analyzed 8,798 painting artworks. As shown in Fig. S1, over 94% of images are
larger than 700 3 700 pixels and the largest one is 1350 3 1533. Therefore, the quality
of the images is good enough to perform a statistical analysis. Furthermore, in order to
discuss the difference between paintings and photographs, two more datasets are
collected for hyper-realism and photographs. We collected 105 hyper-realism images
from hyper-realism artists’ web sites25–31, the largest one is 2974 3 1954, and the two
sets of photographs from the official Instagram site of National Geographic32 and the
online photo gallery of a Korean portal site33.

Box-counting dimensions. In order to investigate the fractal patterns of painted
colors in the RGB color space, we measured box-counting dimensions20. The box-
counting dimension is defined as the following:

dbox(e):{ lim
e?0

log N(e)

log (e)
, ð1Þ

where N(e) is the number of non-empty boxes and the side length of each box is e. A e
value represents the color quality in a digitized unit, for example, e51 corresponds to
2563 possible colors in 24-bit RGB color system and e532 is associated with 83

possible colors in 8-bit RGB color system. Each e value corresponds to log2(256/e)3-bit
RGB color system. Changing e532, 16, 8, 4, 2, and 1 (see Figure S6 in the supplement)
and examining N(e) for each e, we measured dbox(e).

Gray-scale transformation. To consider brightness surfaces of images, we converted
digital color images into grayscale images using the following weighted filter:

Igray{scale~0:3008|Rz0:5898|Gz0:1094|B , ð2Þ

where R, G, and B are the red, green, and blue intensities of a pixel, and Igray-scale is the
brightness of a certain color, which is interpreted as a height on the image. The reason
for the difference in weighting values is due to the color sensitivity of a human eye34,
and there exist several other weighting filters for R, G, and B intensities for specific
purposes. However, there was no significant difference in the results with different
filters.

Two-point height difference correlation function. To measure the roughness
exponents of brightness (height) surfaces, a two-point height difference correlation
(HDC) function is calculated22. The definition is

G(r)~ h(~xz~r){h(~x)½ �2~ 1
Nr

X
~x,j~rj~r

h(~xz~r){h(~x)½ �2 , ð3Þ

which follows the simple scaling form, G(r) , r2a, for small r, and where r is a distance
between two pixel points, the over-bar represents the spatial average at a fixed
distance r for all possible points, Nr is the number of possible pairs at a distance r, h(x)
is the height at a point x (0 # h(x) # 255), and a is the roughness exponent. The
roughness exponent was measured in a double-logarithmic plot of G versus r, where
the fitting range was used from ra510 to rb, where the HDC saturates to the same
value both for the original and randomized paintings. It approximately corresponds
to 30% of the image width and a square root of 9% of the image area.

Image entropy. Entropy of a gray-scale image23, is given by the following equation:

H~{
X

x

p(x) log
p(x)

m(x)
, ð4Þ

where p(x)5h(x)/S, h(x) is the height at a point of the brightness surface (0 # h(x) #

255) and S is the sum of all height values in the image for normalization. A weighting
factor m(x) is given by m(x)511s2(x), where the local height variance

s2(x)~
1
9

X
y

h(y){
1
9

X
y

h(y)

" # 2

is calculated only over for its surrounding

neighbor pixels and itself at a position x. Since this image entropy depends on an
image size, all images are resized to 500 3 500 pixels by Lanczos algorithm before
measuring the image entropy.

1. Taylor, R., Micolich, A. & Jonas, D. Fractal analysis of Pollock’s drip paintings.
Nature 399, 422 (1999).

2. Lyu, S., Rockmore, D. N. & Farid, H. A digital technique for art authentification.
Proc. Natl. Acad. Sci. U.S.A. 101, 17006–17010 (2004).

3. Johnson, C. R. Jr. et al Image processing for artist identification–computerized
analysis of Vincent van Gogh’s painting brushstrokes. IEEE Signal Proc. Mag.
Special Issue on Visual Cultural Heritage. 25, 37–48 (2008).

4. Bressan, M., Cifarelli, C. & Perronnin, F. An Analysis of the relationship between
painters based on their work. 15th IEEE Int. Conf. Image Proc. 113–116 (2008).

5. Olshausen, B. A. & DeWeese, M. R. Applied mathematics: The statistics of style.
Nature 463, 1027–1028 (2010).

6. Hughes, J. M., Graham, D. J. & Rockmore, D. N. Quantification of artistic style
through sparse coding analysis in the drawings of Pieter Bruegel the Elder. Proc.
Natl. Acad. Sci. U.S.A. 107, 1279–1283 (2010).

7. De Morgan, S. E. Memoir of Augustus de Morgan, by his wife Sophia Elisabeth de
Morgan, with Selection of his Letters (Longmans, London, 1882).

8. Lutostowski, W. The Origin and Growth of Platos Logic (Longmans, Green,
London, 1897).

9. Holmes, D. I. & Kardos, J. Who was the author? An introduction to stylometry.
Chance 16, 5–8 (2003).

10. Hughes, J. M., Foti, N. J., Krakauer, D. C. & Rockmore, D. N. Quantitative patterns
of stylistic influence in the evolution of literature. Proc. Natl. Acad. Sci. U.S.A. 109,
7862–7686 (2012).

11. Manaris, B. et al. Zipf’s law, music classification, and aesthetics. Comput. Music J.
29, 55–69 (2005).

12. Huron, D. The ramp archetype: A study of musical dynamics in 14 piano
composers. Psychol. Music 19, 33–45 (1991).

13. Casey, M., Rhodes, C. & Slaney, M. Analysis of minimum distances in high-
dimensional music spaces. IEEE Trans. Speech Audio Proc. 16, 1015–1028 (2008).

14. Sapp, C. Hybrid numeric/rank similarity metrics for musical performances. Proc.
ISMIR 99, 501–506 (2008).

15. Krén, E. & Marx, D. Web Gallery of Art, image collection, virtual museum,
searchable database of European fine arts (1000-1900) http://www.wga.hu/ (1996)
Date of access 09/05/2009

16. The National Gallery, London: Western European painting 1250–1900 http://
www.nationalgallery.org.uk/paintings/glossary/chiaroscuro Date of access 03/04/
2013.

17. Earls, I. Renaissance Art: A Topical Dictionary (Greenwood Press, 1987).
18. Zipf, G. K. Human Behaviour and the Principle of Least Effort: An Introduction to

Human Ecology (Addison-Wesley Press, Cambridge, 1949).
19. Abramowitz, M. & Stegun, I. A. Handbook of Mathematical Functions: with

Formulas, Graphs, and Mathematical Tables (Dover Publications, New York,
1965).

20. Gouyet, J. F. & Mandelbrot, B. Physics and Fractal Structures. (Springer-Verlag,
New York, 1996).

21. Gage, J. Color and Meaning: Art, Science, and Symbolism (University of California
Press, Berkeley, 2000).

22. Barabási, A. L. & Stanley, H. E. Fractal Concepts in Surface Growth (Cambridge
University Press, Cambridge, 1995).

23. Brink, A. D. Using spatial information as an aid to maximum entropy image
threshold selection. Pattern Recogn. Lett. 17, 29–36 (1996).

24. Google Inc. Google Cultural Institute http://www.google.com/culturalinstitute/
project/art-project (2011) Date of Access 14/02/2011

25. Jacques Bodin gallery http://www.jacquesbodin.com/ Date of Access 07/04/2010.
26. Roberto Bernardi http://www.robertobernardi.com/ Date of Access 07/04/2010.
27. Raphaella Spence http://www.raphaellaspence.com/ Date of Access 07/04/2010.
28. Hubert de Lartigue Accueil http://www.hubertdelartigue.com/ Date of Access 07/

04/2010.
29. Gus Heinze on artnet http://www.artnet.com/artist/26318/gus-heinze.html Date

of Access 07/04/2010.
30. Bernardo Torrens http://www.bernardotorrens.com/ Date of Access 07/04/2010.
31. The Hyperrealism Paintings by Denis Peterson http://www.denispeterson.com/

Date of Access 07/04/2010.
32. National Geographic official Instagram. http://instagram.com/natgeo (1999) Date

of access 20/08/2014

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 7370 | DOI: 10.1038/srep07370 6

http://www.wga.hu
http://www.nationalgallery.org.uk/paintings/glossary/chiaroscuro
http://www.nationalgallery.org.uk/paintings/glossary/chiaroscuro
http://www.google.com/culturalinstitute/project/art-project
http://www.google.com/culturalinstitute/project/art-project
http://www.jacquesbodin.com
http://www.robertobernardi.com
http://www.raphaellaspence.com
http://www.hubertdelartigue.com
http://www.artnet.com/artist/26318/gus-heinze.html
http://www.bernardotorrens.com
http://www.denispeterson.com
http://instagram.com/natgeo


33. Naver, officially launched in 1999, was the first Korean portal site to develop its
own search engine. http://www.naver.com/ (1999) Date of access 20/07/2009

34. Pratt, W. K. Digital Image Processing (John Wiley & Sons, New York, 1991).

Acknowledgments
This work was supported by the National Research Foundation of Korea (NRF) Grant
funded by the Ministry of Science, ICT & Future Planning (No. 2011-0028908).

Author contributions
D.K. designed and performed research, analyzed data and wrote the paper; S.-W.S. designed
and performed research, and wrote the paper; H.J. designed research and wrote paper. All
authors discussed the results and commented on the manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/
scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Kim, D., Son, S.-W. & Jeong, H. Large-Scale Quantitative Analysis
of Painting Arts. Sci. Rep. 4, 7370; DOI:10.1038/srep07370 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International License. The images or other third party material in
this article are included in the article’s Creative Commons license, unless indicated
otherwise in the credit line; if the material is not included under the Creative
Commons license, users will need to obtain permission from the license holder
in order to reproduce the material. To view a copy of this license, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 7370 | DOI: 10.1038/srep07370 7

http://www.naver.com
http://www.nature.com/scientificreports
http://www.nature.com/scientificreports
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	mailto:<?show +pmkset 
	mailto:<?show +pmkset 
	mailto:<?show +pmkset 
	mailto:<?show +pmkset 
	Title
	Figure 1 Rank-ordered color-usage distributions for an image and periods.
	Figure 2 Box-counting dimension and its tendency.
	Figure 3 Spatial renormalization of original and shuffled images.
	Figure 4 Constructing brightness surfaces and measuring roughness exponents.
	Figure 5 The trend of roughness exponents and image entropies.
	References

