
Add Drop Benes Network for

Low-Power Scalable Burst Packet Switching

Chankyun Lee and J.-K. Kevin Rhee

Dept. of Electrical Engineering,

KAIST,

Daejeon, South Korea

{ck.lee | rhee.jk }@kaist.ac.kr

Abstract— Optical fiber switch add-drop functions are

implemented to conventional Benes network. This paper

introduces novel network architecture, simple algorithm for add

drop Benes network with passive medium optical switches for

power efficient optical network. An analysis of the number of

elements of networks will follow.

Keywords- Rearrangeably nonblocking networks, Benes

Network, Green optical network, Passive optical network, Optical

communications.

I. INTRODUCTION

Benes network, which is a typical example of rearrangeably
nonblocking networks, has been widely studied for a long time
because of its unique characteristics – reconfiguration of some
of switches are required to form new input/output pair
connections and the total number of switch elements are far
less than that of a strictly nonblocking network [1][2][3][4].

Conventional Benes network, as a bufferless switch, cannot
handle the packet contention. Therefore, every different input
port, in the same time slot, should be destined to a different
output port. To resolve contentions, an add-drop function can
be inserted to a Benes network. We will introduce ADBN (Add
Drop capable Benes Network) with a little additional switch
elements. The proposed architecture can be utilized with low-
power fast passive-medium optical switches, such as an
electro-optic switch, for peta-scale future internet applications.
By combination of passive-medium switch Benes network with
a burst packet switching, the network can overcome the power
limit of peta-scale future internet.

II. ARCHITECTURE

Benes network consists of set of 2 2× switches. An N N×

Benes network is composed by two 2 2N N× Benes

networks in the inner stage and additional distribution networks
in the outer stages, based on recursive configuration.
Architecture of an 8 8× Benes network is shown in Fig. 1a. If

the total numbers of input ports are N , required stages for

Benes network are 22log 1N − and each stage is consisted of

2N switches. Therefore an N N× Benes network requires

2(log 1 2)N N − switch elements.

Add drop functions can be implemented in a conventional
Benes network. A simple method to realize add-drop functions

In
p

u
t P

o
rt

s

O
u

tp
u

t P
o

rt
s

(a)

In
p

u
t P

o
rt

s

O
u

tp
u

t P
o

rt
s

A
d

d
 P

o
rt

s

D
ro

p
 P

o
rt

s

(b)

In
p

u
t P

o
rt

s

O
u

tp
u

t P
o

rt
s

Drop Ports

Add Ports

(c)

Figure 1. Architecture of convention Benes network (a), 16 16× Benes

network for 8 8× add drop Benes network (b), and add drop Benes network (c)

(8N =)

is using some input ports as add ports and some output ports as
drop ports. Fig. 1b gives a schematic of an example to

This research was supported by the MKE(The Ministry of Knowledge

Economy), Korea, under the ITRC(Information Technology Research Center)

support program supervised by the NIPA(National IT Industry Promotion

Agency (NIPA-2009-C1090-0902-0006)).

This work was supported by the IT R&D program of MKE/IITA. [2008-

F017-02, 100Gbps Ethernet and optical transmission technology

development]

implement add-drop functions to Benes network by using
2 2N N× Benes network. To make an 8 8× add drop capable

Benes network, we can use a 16 16× Benes network, using

eight input ports as add ports and eight output ports as drop
ports. Using 2 2N N× Benes network for an N N× add-drop

Benes network requires 22 (log 2 1 2)N N − switch elements.

The suggested architecture of ADBN is shown in Fig. 1c,
switches in middle stages of conventional Benes network are
extended to four switch elements, to implement add-drop ports.
The architecture of an ADBN network is based on the Benes
network, under the recursive configuration. As the middle stage
is extended to four 2 2× switches, the corresponded number

of 2 2× switches in ADBN increases to 2(log 1)N N + .

 ‘Drop’ function can be used for packet-drop to local
networks and resolving the contentions in Benes network.
Similarly, ‘add’ function is required for added packet from
local networks or other switches. Due to the add-drop ports,
add-drop functions can work with a normal switch operation,
simultaneously.

III. ALGORITHM

We proposed the ADBN architecture which has a relatively
small amount of additional 2 2× switch elements. Less
number of switch elements per ports brings cost/power
efficiency, however it also brings less freedom of the physical
path from input/add ports to output/drop ports than that of
conventional Benes network. Essentially, the Benes network
requires an operation algorithm because it is not a strictly-
nonblocking network. The low degree of freedom of the
physical path requires a stricter algorithm than that of
conventional Benes network for favorable operation of ADBN.

Fortunately, many algorithms for Benes network have been
developed in the past [5][6][7]. Among them, one algorithm
called looping algorithm is widely adopted because of
simplicity and originality [5]. Likes Benes network itself, a
looping algorithm also running under a recursive concept.

We suggest an algorithm for the ADBN, called ADLA
(Add-Drop Looping Algorithm). The basic concept of ADLA
is based on the looping algorithm. The ADLA consists of four
steps - sorting, scheduling for non-contended packets,
scheduling for drop packets, and scheduling for add packets. In
the following, we will introduce ADLA step by step.

A. Sorting

Each packet has its own destination output ports. If more
than two packets have same destination output ports, it will be
considered as contention because one output port is available
for only one input port. The ADLA sorts out contend packets
and arranges them to the last. For example of ADLA for an
8 8× ADBN, packets are designed with an input port and a

destination output ports as table I. In this example, the packets
with input port 1 and 2, input port 3 and 4, and input port 6 and
8 are under the contention. An output port is available for only
one packet, other packets are assumed as contend packet and
have to be dropped. Result of sorting is shown in Table II.

TABLE I. BEFORE SORTING

Input 6 3 1 8 2 7 4 5

Ouput 3 7 6 3 6 5 7 1

TABLE II. AFTER SORTING

Input 6 3 1 7 5 8 2 4

Ouput 3 7 6 5 1 drop drop drop

B. Non-contended packet

After sorting the packets, the ADLA makes connection for
the non-contended packets. Connections for non-contended
packets are done by conventional looping algorithm. The
looping algorithm determines switches states for connection
from an input port to a destination output ports. Result of
switches states after schedule non-contended packets is shown
in Fig. 2a.

C. Drop packet

The packets can be dropped through 2log 1N + stage in the

ADBN. When the total numbers of the packets to be dropped

are n , n 2 2× switch elements in 2log 1N + stage will under

the idle state. And thus, one of two 2 2× switches in 2log N

stage, which is connected with the idle state switch in

2log 1N + stage, also will under the idle state. ADLA

schedules the contend packets to reach the idle state switch in

2log N stage and determines the switch state in 2log N stage

to reach the non-idle state switch in the 2log 1N + stage. If all

of two 2 2× switches in 2log 1N + stage which are connected

with an idle state switch in 2log N stage are under idle state,

ADLA determines the state of switch in 2log N stage to reach

one of idle 2 2× switch in 2log 1N + stage randomly. State of

non-idle switches in 2log 1N + is already determined by non-

contend packets. Therefore, new packets are always connected
to the drop ports. After schedules the drop packets, switches
states are shown in Fig. 2b.

D. Add packet

The packets can be added at the add ports. If a destination
output port of the add packet is occupied by non-contended
packet during the previews steps, add packet cannot be added.
In this reason, it is needed to check whether the output ports of
add packets are occupied or not, before schedules for the add

packets. The odd orders of switches in the 2log 1N + stages

can reach the 1 ~ 2N output ports only. Similarly,

2 1 ~N N+ output ports are available for even orders of

switches in the 2log 1N + stages. Therefore, before schedules

the add packets, it is needed to check destination output ports

of add packet. If it is in the1 ~ 2N , this add packet will be

scheduled to reach the odd order idle switch in the 2log 1N +

stages. If an add packet has the destination output port

between 2 1 ~N N+ , it will be scheduled to pass the even

orders idle switch in the 2log 1N + stage. Switches in the

2log N stage are selected automatically to reach 2log 1N +

stage, add ports are also selected to reach the 2log N stage.

 For example, assume that there are 4 packets wait to add,
destination output ports are {8, 2, 3, 4}. But output port 3 is
occupied by input 6. Therefore {8, 2, 4} can be added and only

8 is in the 2 1 ~N N+ . By ADLA, it is scheduled to pass the

even order idle switch in 2log 1N + stage and others for odd

order idle switches. After the add function, the result of
switches states are shown in Fig. 2c.

In
p

u
t P

o
rt

s

O
u

tp
u

t P
o

rt
s

IDLEIDLE
IDLE IDLE

IDLE

IDLE

Drop Ports

Add Ports

: Non-contend packet

 (a)

In
p

u
t P

o
rt

s

O
u

tp
u

t P
o

rt
s

IDLEIDLE
IDLE

Drop Ports

Add Ports
: Drop

 (b)

In
p

u
t P

o
rt

s

O
u

tp
u

t P
o

rt
s

Drop Ports

Add Ports : Add

 (c)

Figure 2. Switches states after step 2, for non-contended packets (a), step 3,

for drop packets (b), and step 4, add packets (c) (8N =)

IV. ANALYSIS

Section II explains some methods for add drop function-
able Benes network – 2 2N N× Benes network and ADBN.

When compared with conventional N N× Benes network, the

ADBN requires only 3/2 N additional 2 2× switches. This
overhead is relatively very low when compare with that of
2 2N N× Benes networks. The comparisons of number of

2 2× switch elements are shown in Fig. 3.

0

100

200

300

400

500

600

700

800

900

8 16 32 64

T
o

ta
l 2

x
2

 s
w

it
c
h

 e
le

m
e
n

ts

Number of inputs (N)

Benes

2N Benes

ADBN

Figure 3. Comparisons of number of required 2 2× switch elements with

various types of network – Conventional Benes network, 2 2N N× Benes

network to implement N N× add drop enable Benes network, and suggested

ADBN.

V. CONCLUSION

In this paper, we suggest the noble architecture of add drop
capable Benes network with small amount of additional 2 2×
switch elements. For operation of the ADBN, simple algorithm
called ADLA is introduced with examples. Power efficiency of
ADBN is described by number of switch elements comparison
of Benes networks and ADBN.

VI. REFERENCES

[1] H. Scott Hinton, J. R. Erickson, T. J. Cloonan, F. A. P. Tooley, F. B.
McCormick, and A. L. Lentine, “An Introduction to Photonic Switching
Fabric,” Plenum Press, New York, 1993.

[2] C. Clos, "A study of non-blocking switching networks,” Bell Syst. Tech.
J., vol. 32, pp. 406-424, Mar. 1953.

[3] V. E. Benes, “Permutation groups, complexes, and rearrangeable
connecting networks,” Bell Syst. Tech. J., vol. 43, pp. 1619 – 1640, July
1964.

[4] V. E. Benes, “Optimal rearrangeable multistage connecting networks,”
Bell Syst. Tech. J., vol. 43, pp 1641 – 1656, 1964.

[5] D.C. Opferman and N.T. Tsao-Wu, “On a class of rearrangeable
switching networks-park I: Control algorithms,” Bell Syst. Tech. J., vol.
50, pp. 1579-1600, 1971.

[6] D. Nassimi and S. Sahni, “Parallel algorithms to set up the Benes
permutation network,” IEEE Trans. Computers, vol. 31, no. 2, pp.148-
154, Feb. 1982.

[7] K.Y. Lee, “On the rearrangeability of (2log 1N −) stage permutation
networks,” IEEE Trans. Computers, vol. 34, no.5, pp. 412-425, May
1985.

