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PAPER

PC Worm Detection System Based on the Correlation between User
Interactions and Comprehensive Network Behaviors

Jeongseok SEO†a), Student Member, Sungdeok CHA††, Bin ZHU†††, and Doohwan BAE†, Nonmembers

SUMMARY Anomaly-based worm detection is a complement to exist-
ing signature-based worm detectors. It detects unknown worms and fills
the gap between when a worm is propagated and when a signature is gener-
ated and downloaded to a signature-based worm detector. A major obstacle
for its deployment to personal computers (PCs) is its high false positive
alarms since a typical PC user lacks the skill to handle exceptions flagged
by a detector without much knowledge of computers. In this paper, we
exploit the feature of personal computers in which the user interacts with
many running programs and the features combining various network char-
acteristics. The model of a program’s network behaviors is conditioned on
the human interactions with the program. Our scheme automates detection
of unknown worms with dramatically reduced false positive alarms while
not compromising low false negatives, as proved by our experimental re-
sults from an implementation on Windows-based PCs to detect real world
worms.
key words: worm detection, personal computer security, Internet worm

1. Introduction

Ever since the “Morris worm” took the Internet down
in 1988, many worms (e.g., CodeRed, Nimda, Slammer,
Blaster, Sasser, Witty) [1]–[5] continue to inflict significant
damage. CodeRed v2, in 2001, infected nearly 400,000
hosts in just 14 hours and caused damage estimated at $2.6
billion [1]. Security experts fear that future worms would
spread faster [6]–[8], be more lethal, and become stealth-
ier than the past generations. While corporations often in-
stall several layers of defensive mechanisms (e.g., intru-
sion detection systems, honeypots, etc.) to protect them-
selves against the threat of Internet worms, “ordinary” PC
users who use Internet to perform routine but essential tasks
(e.g., e-banking, blogging, etc.) have insufficient protection
in place. They rarely possess technical knowledge on PC
security, yet many of their computers are always connected
to the Internet and store personal or sensitive information
(e.g., electronic banking statements, e-trading keys, etc.).
Even the latest anti-virus software and firewalls are ineffec-
tive in protecting a PC when a new worm is launched until
the worm signatures are updated.
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PC-based Worm Detection System, PC-WDS in short,
has the following design goals:

• Fully automated operation: PC-WDS must be capa-
ble of detecting previously unknown worms even when
no signatures are available, and its operation must be
fully automated. As Windows operating systems dom-
inate the PC market, we demonstrate the effectiveness
of the proposed design using Windows-based real In-
ternet worms.
• Low false positives: If “normal” programs frequently

used by users are incorrectly labeled as worms, users
would distrust PC-WDS and choose to uninstall it.
• Small overhead: If users notice their PCs running

noticeably slow after installing PC-WDS, they would
probably reject the system.

There exist diverse approaches to detect malware. For
example, Spitzner [9] and Provos [10] deployed multiple
honeypots to detect malicious behavior by integrating in-
formation collected by various sensors. Dagon et al. [11]
detected local scanning worms using multiple honeypots.
While clearly effective, such approaches do not adequately
protect PCs because typical users rarely possess the neces-
sary resources to deploy honeypots or technical knowledge
to manage them. Monitoring network traffic can also detect
worm propagation [12]. A surge of packets to unreachable
destinations is clearly abnormal, and Internet Storm Cen-
ter [13] analyzes logs from many Internet-related organiza-
tions. Riordan et al. [14] developed a system using multi-
ple monitors and virtual honeypot systems installed at var-
ious IBM-associated companies. EarlyBird system [15] au-
tomatically generates potential worm signatures by inspect-
ing traffic patterns and relationships between sources and
destinations addresses. Xia et al. [16] demonstrated how to
detect worms by analyzing packets with unused destination
addresses.

Unfortunately, research on worm detection on PC is
still immature. BINDER [17], based on the intuition that
worm-initiated network connections rarely have the trigger-
ing user inputs (e.g., mouse clicks and keyboard inputs),
uses time differences between network requests and the pre-
ceding user events as detection feature. It assumes that all
user-initiated network requests are normal, and the whitelist
allows users to designate “legitimate” daemons to reduce
false positives. While useful, BINDER’s detection fea-
ture is neither powerful nor flexible enough to detect new
worms. Attackers may attempt to evade detection by faking
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user events or infecting normal programs with worm code.
Should a user forget to include daemons in the whitelist,
false positives may occur. On the contrary, if worms some-
how manage themselves to be included in the whitelist,
BINDER system would become ineffective. More impor-
tantly, typical PC users may find BINDER difficult to use.

In this paper, we describe the design of a PC-WDS
which extends sound ideas proposed in the BINDER sys-
tem with sophisticated features to improve detection accu-
racy while reducing false alarms. To demonstrate the ef-
fectiveness of PC-WDS, we launched real Internet worms
on a system running a newly installed Windows operating
system. We used worms collected by the China Honey-
pot project [18], and they played the role of previously un-
known worms in the experimental setting. Experimental re-
sults show that PC-WDS is highly effective in detecting new
worms.

The rest of our paper is organized as follows. Section 2
describes PC-WDS architecture with emphasis on how var-
ious features work together to achieve a powerful and flex-
ible worm detection environment. Section 3 shows the im-
plementation detail of PC-WDS including making normal
behavior profile and detecting Internet worms. Section 4
explains how effectiveness of PC-WDS is evaluated in a re-
alistic and representative setting. Section 5 concludes the
paper.

2. PC-WDS Architecture and Worm Detection Fea-
tures

Scanning of vulnerable hosts, the most apparent character-
istic of Internet worms is generation of a large number of
network connection requests, and many timeouts and “des-
tination unreachable” ICMP messages are likely to occur.
Brute-force application of such feature causes frequent false
positives because “normal” applications may also exhibit
similar behavior when the network is slow or the links are
broken. For example, Fig. 1 illustrates that the Blaster worm
and the Internet Explorer (IE) exhibit the failed network
connections and the user interactions such as mouse clicks
and keyboard inputs. While both behavior might be simi-

Fig. 1 Failed network connection requests caused by Blaster worm and
Internet Explorer (IE).

lar in terms of failed network connections, existence of user
triggered inputs separate the two.

Analysis of network activities in the context of preced-
ing user interactions is the key idea behind the worm detec-
tion technique used by BINDER and PC-WDS. In our ap-
proach, we monitor Window’s SendInput() API to determine
if events had really been generated by “genuine” hardware
interrupts [19]. This approach is effective if a worm runs
as a user level process. If the worm can somehow run in
the kernel mode, there is little PC-WDS can do because the
“bad guy” has already full control over the PC and can sim-
ply terminate any process of its choice including PC-WDS.
We assume that modern operating systems would provide
adequate, if still imperfect, process protection mechanism.

2.1 PC-WDS Architecture

The PC-WDS architecture, shown in Fig. 2, consists of the
following modules: data collector (event monitor), user in-
teraction analyzer, destination address analyzer, network
connection analyzer, port creation analyzer, and detection
engine. Data collector monitors user interaction (keyboard/
mouse) events, network packet events and Windows
process-related events. The user, network and system re-
lated events are transmitted to 4 core data analyzers to build
corresponding profiles, which are integrated and flagged by
detection engine.

2.2 Data Collection

Our monitoring agents collect the following activities:
(1) keyboard and mouse click events; (2) network communi-
cation events; (3) local port creations or destructions events.
To protect user’s privacy, our system records process ID,
event type, and timestamp but not the “content” (e.g., which
key was pressed). Data on network communications include
the source and destination IPs, ports, traffic direction (e.g.,
incoming or outgoing) and timestamp. Likewise, when lo-
cal ports are created or destroyed, process ID, process image
name, port number, action type (e.g., creation or destruc-

Fig. 2 PC-WDS architecture.
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Fig. 3 Time sliding windows for detection (each time windows are
randomly chosen in between lower bound and upper bound).

tion), and timestamp are recorded. Note that process im-
age name, as opposed to the process ID, is recorded because
multiple instances of the same program (e.g., IE) might be
running simultaneously.

In implementation detail, data collector has 3 agents
based on different sources from user, network and Windows
process behaviors. User behavior monitoring agent uses
SetWindowsHookEx() API to get low-level keyboard and
mouse input events [20]. Network agent records TCP/UDP
connections with Microsoft Research user mode cap-
ture miniport driver, and AllocateAndGetTcpExTableFrom-
Stack()/AllocateAndGetUdpExTableFromStack() APIs in
IPHLPAPI.DLL, understanding that which processes are us-
ing corresponding TCP/UDP connections [20]. In addition,
our process monitoring agent uses many system APIs in
KERNEL32.DLL and PSAPI.DLL, providing plentiful pro-
cess status information [20]. Data collector gathers all infor-
mation from 3 agents and feeds them to data analyzers.

Even if we developed very effective worm detectors,
malware writers eventually learn about the implementations
of our system and can evade our detector. To avoid de-
tection, the malware programs can remain dormant occa-
sionally over a period of monitoring time and remain “pa-
tient enough” to limit scanning activities in such a manner
that the anomaly score would never exceed the threshold
value. To prevent this failure of worm detection, we ran-
domly choose monitoring time intervals as shown in Fig. 3.
If the monitoring time interval is unpredictable, then it will
be difficult for the worms to evade detection. To make ef-
fective detection intervals without degraded accuracy, every
randomly-chosen interval is in between lower bound and up-
per bound as a detection time window.

2.3 Basic Detection Attribute 1: User Interaction Analysis

Output from the data collector is used to correlate network
events with user’s interactions. PC-WDS uses time differ-
ence to estimate the likelihood that a user’s interaction re-
ally triggered network connections. Likelihood of machine-
triggered activity, LM(E), is computed as follows:

LM(E) =

{ TE−TU

T DMAX
, if the most recent user event exists

1 , otherwise or LM(E) > 1

where TU refers to the timestamp of the most recent user
event preceding network event E, and TE means the time-
stamp of event E. T DMAX is the maximum time difference
which has been seen before between TU and TE . In other
words, LM(E) is assigned 1, which means that the network
event is assumed have been generated without a triggering

Fig. 4 Likelihood of machine-triggered activity for keyboard or mouse
click events triggering network events (LM(E2) > LM(E1)).

user event. Figure 4 shows that the value of LM(E2) is larger
than that of LM(E1).

T DMAX is the maximum delay considered possible be-
tween a user event and triggered network events ideally.
If T DMAX is too small, false positives would increase be-
cause PC-WDS have difficulty of differentiating “valid” and
user-initiated network requests from worm scanning activi-
ties. T DMAX , while not compromising low false positives,
continues to grow from lower bound of detection time win-
dow initially when bigger time difference will have been met
than existing one. When a user is busy at keyboard typing
or clicking, time difference would be pretty small. How-
ever, PC-WDS must be smart enough to understand that a
normal application (e.g., MSN messenger) might continu-
ally generate network connections in the absence of user in-
puts. If a user leaves messenger application running while
away from the terminal, as it is frequently the case, there
will be a series of network connections generated to check
if friends have just signed on, etc. Such behavior appears,
when analyzed using time difference feature in a naive man-
ner, like that of a worm. In the PC-WDS design, like the
BINDER system, we assume that a network event is less
likely to have been triggered by user input if the time differ-
ence increases. Such analysis is not a boolean decision in
nature, and lower probability value of user-triggered is as-
signed when time difference increases. To enable fully au-
tomated detection practically while not compromising low
false positives, we obtained data on all the time differences
between a network event and the most recent and preced-
ing user event observed by all the “normal” applications we
had tested in our experimental environment and explained in
experimental setting section. Statistical analysis, performed
with 99.97% confidence level, returned 1,354 seconds to be
exact, as not to exceed the maximum T DMAX value. In other
words, T DMAX value is keep growing during run-time oper-
ation of PC-WDS, when larger value happens than existing
one, but T DMAX value is not to exceed the maximum 1,354
preventing intolerable big change of the likelihood. There-
fore if the time differences are over 1, LM(E) is assigned 1
by our definition.

2.4 Basic Detection Attribute 2: Destination Address
Analysis

PC-WDS must accurately distinguish Internet worms from
“legitimate” system software (e.g., system daemons, self-
update software, or patch downloads) that does not require
explicit user inputs. In Microsoft Windows 2000 and XP, ex-
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amples include System, lsass.exe, services.exe, spoolsv.exe
and svchost.exe. Fortunately, behavior of typical daemons
and update software are different enough from that of worms
in that the former tends to establish network connections
with a relatively small number of predefined hosts. In ad-
dition, connections are attempted periodically, and the list
of remote hosts changes infrequently.

Destination address analyzer computes the degree of
destination address diversity based on such intuition. PC-
WDS maintains the list of unique addresses each program
image most recently communicated with. Addresses are
maintained in the LRU (least recently used) manner. Desti-
nation address analyzer computes Ratio of New Destination
Address (RT (ENDA), for short) as follows:

RT (ENDA) =
|DANew|∣∣∣DAPro f ile

∣∣∣
where ENDA refers to event E whose destination address is
never seen before, Destination Address = {Destination IP,
Destination Port}, DAPro f ile = {Destination Address |Histroy
of Destination Address} and DANew = {Destination Address
|Destination Address � DAPro f ile}.

Generally if |DAPro f ile|, the number of distinct desti-
nation addresses PC-WDS maintains for each program, is
too small, PC-WDS would incorrectly interpret repeated re-
quests to destination addresses as new, and normal programs
might be incorrectly classified as a worm. This is particu-
larly the case with P2P software. In PC-WDS design, profile
size must be large enough not to classify P2P software as
worms but small enough to keep system overhead (e.g., data
structure) at a reasonable level. For the practical operation
of PC-WDS, profile storage limit 10,000 was adequately
chosen because: (1) P2P software (e.g., emule.exe and utor-
rent.exe) communicates with a large number of hosts si-
multaneously, and (2) sufficient safety margins were added
to reduce false positives while not compromising detection
accuracy. The bigger profiles we use, the more correctly
the attempted destination address patterns might be calcu-
lated. However, with larger profile storage size than 10,000,
we found that we didn’t get the more accurate detection
rate. Moreover, if worms try to avoid detection by scanning
less than 10,000 hosts, security threat posed by such worms
would be practically insignificant.

If all of the attempted destination addresses are new for
the randomly given duration, ratio of new destination ad-
dress would be 1. Figure 5 illustrates that worms and other
applications had big difference in the diversity of destination
addresses. While clearly useful, this feature alone is not as
effective as it appears. For example, “sneaky” worms may
attempt to avoid detection by periodically revisiting destina-
tion addresses with the sole purpose of defeating PC-WDS.
Therefore, PC-WDS uses more sophisticated features to im-
prove detection accuracy while reducing false alarms.

Fig. 5 Diversity of destination addresses.

2.5 Basic Detection Attribute 3: Network Connection
Analysis

Network connection patterns determine effectively whether
there are worms running on PC or not. PC-WDS analyzes
failed network connections because worms are much more
likely to generate a large number of unsuccessful network
connections. Computation of anomaly score is repeated
at every random time interval: 1) average likelihood of
machine-triggered activity for every event of failed network
connections and 2) ratio of failed network connections for
each sliding time window:

1) AVG(LM(EF)) = Average of LM(EF)

2) RT (EF) = Ratio of Failed Network Connection

where EF refers to event E whose network connection trial
is failed.

Rationale is that (1) much failed request must con-
tribute enough to ratio of failed network connections; and
(2) non-user interaction behaviors used also contribute
enough to average LM(EF). However longer monitoring
time intervals may get more events than shorter one. To
prevent this unfairness, we use an average value.

2.6 Basic Detection Attribute 4: Port Creation Analysis

The other feature involves patterns on local port creation and
the likelihood that they have been triggered by user events.
Although Blaster worm and Internet Explorer created simi-
lar number of local ports (see Fig. 1), anomaly scores must
show big difference. PC-WDS uses the following formula:
1) average likelihood of machine-triggered activity for ev-
ery event of port creations and 2) average number of port
creations for each sliding time window:

1) AVG(LM(EP)) = Average of LM(EP)

2) AVG(N(EP)) = Average Number of Port Creation

where EP refers to event E whose network port opens to
make a connection. Average number can be calculated by
dividing each time interval of sliding windows to prevent
unfairly biased anomaly score in long time window.
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A large number of unsuccessful network connections
and port creations are apparent characteristic of Internet
worms above mentioned in Sects. 2.5 and 2.6. However, de-
ployment of sole feature is not effective because it’s too sim-
ple and can be evaded easily. In experimental results section,
we will evaluate the deployment of sole feature. Therefore
PC-WDS uses comprehensive approach to combine user in-
teractions and network based detection features.

3. Implementation

3.1 Noise Filtering

To reduce the effect of outliers such as sudden increases and
decreases of anomaly scores, a moving average filter is ap-
plied based on detection sliding windows. The moving av-
erage filter removes high-frequency noise from the analysis,
resulting in more smooth patterns. While calculating the av-
erage of its neighboring detection windows in size 2k + 1,
each anomaly score of window in detection (i) is calculated
into AS f (i) as follows:

AS f (i) =
AS (i − k) + · · · + AS (i) + · · · + AS (i + k)

2k + 1

The window size determines the smoothness of the
anomaly score changes. For examples, the larger k is, the
smoother the curve is, however we may lose the sensitive
detection of Internet worms. If the small k we use, the detec-
tor is sensitive about anomaly score fluctuations but likely
to result in false positives. The impact of window size k
associated with the detection accuracy will be evaluated in
experimental results section.

3.2 Learning Normal Behavior Profile

Support Vector Machine (SVM, for short) has been suc-
cessfully used in many applications including various re-
search areas as a maximal-margin classifier [21], [22]. Some
anomaly detection systems have been based on SVM [23]–
[25], primarily because SVM has shown outstanding perfor-
mance for various research experiments. Therefore we have
carried out researches to make normal behavior profile while
on decreasing the number of false alarms of worm detection
by using comprehensive features based on SVM.

Scholkopf et al. [26] proposed one-class SVM, which
only uses training examples from one-class, instead of mul-
tiple classes. In training phase, the one-class SVM first
maps training data into a high dimensional feature space via
a kernel function, and finds the maximal margin hyper-plane
that best optimizes a radius of the training data sphere in a
high dimensional feature space. One-class SVM approach
uses unsupervised learning of normal behaviors for detect-
ing outliers as Internet worms; that means one-class SVM
does not require labeled data for unknown worms but only
requires normal application behaviors that a user practically
installed in his/her desktop. It is almost impossible to get all
labeled data of future and unknown Internet worms.

In this work we use the LIBSVM 3.12 [27] for our
experiments. The following 6 features as an input feature
vector of SVM are used for normal behavior profile of PC-
WDS:

< AS f (AVG(LM(EF))), AS f (RT (EF)),
AS f (AVG(LM(EP))), AS f (AVG(N(EP))),
AS f (AVG(LM(ENDA))), AS f (RT (ENDA)) >

(1)

Normal behavior profile includes likelihood of
machine-triggered for failed network connections, port cre-
ations and new destination addresses, in which a moving av-
erage filter scheme is applied and average values are used. In
addition, ratio of failed network connections and new desti-
nation addresses and average number of port creations with
a moving average filter are profiled. As we already dis-
cussed in detection attributes, all scores are increasing to
contribute enough to generate anomaly scores for Internet
worms. In experimental evaluation section, we will discuss
more details about training data for normal behavior profile
and test data to evaluate our worm detection system.

3.3 Detecting Internet Worms

To detect Internet worms in PC-WDS, we use one-class
SVM. SVM Learner can make a normal behavior profile
of legitimate applications with comprehensive features in
Eq. (1). This normal profile has no prior knowledge (e.g.,
signature) of worms and only behaviors of normal applica-
tions. SVM Classifier can detect outliers as Internet worm
behaviors with this normal profile. Figure 6 shows the im-
plementation detail of our integration and detection engine
in PC-WDS architecture. The voting engine decides if con-
secutive results of SVM Classifier are to be considered as
being anomalous. If the number of consecutive abnormal
results exceeds threshold value, the current program is con-
sidered as Internet worm finally. The voting engine is de-
signed to reduce false alarms due to the marginal error of
SVM one-class model robustness to make the best gener-
alization. To evaluate the effectiveness of our worm detec-

Fig. 6 Implementation detail of integration and detection engine in
PC-WDS architecture.
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tion features and generic PC-WDS performance, we use a
threshold value of 1 as the number of consecutive abnormal
results in our experimental evaluation; that means experi-
mental result shows the direct result of SVM classifier.

4. Experimental Evaluation of PC-WDS

4.1 Experimental Setting

To measure the effectiveness of PC-WDS, we collected data
for 28 days from 10 “ordinary” PC users who use Microsoft
Windows on Pentium 4 or higher processors equipped with
main memory ranging from 512 MB to 4 GB. Other than
installing PC-WDS, no parameter settings or tunings were
applied. There were no constraints enforced on the par-
ticipants. For example, users installed new software dur-
ing experiment if needed. Table 1 illustrates the number of
applications, ranging from 34 to 65, each participant used.
Because some applications (e.g., Outlook, IE, Messengers,
etc.) are popular with many users, the number of applica-
tions is 152.

When performing an experiment on worm detection,
we used PCs that had newly installed therefore worm-
free Windows XP operating system. Each worm was re-
leased for 24 hours, and data collection was performed.
We repeated the process of installing a clean Windows XP
and launching a worm. It must be emphasized that PC-
WDS has no prior knowledge of worms used in the ex-
periment. It detects presence of worms based solely on
observed normal program behaviors. In our experiment,
23 real world worms are exploited to prove our detection
capability: Win32/Adload, Win32/Agobot, Win32/Blaster,
Win32/Bobax, Win32/Dabber.B, Win32/Deadhat, Win32/
Doomjuice, Win32/Forbot, Win32/IRCBot.Gen, Win32/IRC
Bot.worm.variant, Win32/Korgo, Win32/Nachi, Win32/Nan
spy, Win32/Nimda, Win32/Parite, Win32/Prex.R, Win32/Sd
Bot, Win32/Shorty, Win32/Spybot.8pa!, Win32/Svoy.A!,
Win32/Tenga, Win32/Valla, Win32/Xema.

As it is impractical to describe the analysis of the be-
haviors of all 152 applications against all the worms in this
paper, we choose five most frequently used applications as
well as five best-known Windows-based worms as represen-
tatives to interpret and evaluate our worm detection system,
as shown in Table 2. In addition, we choose five system dae-

Table 1 Number of “normal” applications used by 10 participants.

Number of different applications
User 1 55
User 2 46
User 3 35
User 4 42
User 5 65
User 6 46
User 7 38
User 8 45
User 9 34

User 10 42
Total User 152

mons and automatic update programs as representative sam-
ples. We denote each as U1 through U5 (user applications),
W1 through W5 (worms), and M1 through M5 (updates or
daemons). We include 5 Windows-based worms of repre-
sentative samples based on their scanning strategy [16], [28]
as shown in Table 3. However we cannot exploit Linux
worm because it’s not working on Windows system. Like-
wise, because of the absence of real Windows-based worm,
some of scanning strategy cannot be tested.

To make the SVM profile of legitimate applications
which can effectively distinguish Internet worms from nor-
mal applications, SVM Learner developed profiles based on
several different hours of normal operation for each user.
After training, SVM Classifier tests all remaining behaviors
of applications and real Internet worms running on PCs, and
triggers outliers as Internet worm. The result based on each
normal profile can be shown in experimental results section.

4.2 Experimental Results

When failed network connection patterns are solely ex-
amined in computing anomaly score without noise filter
scheme, PC-WDS accurately detected three worms (W2,
W4, and W5) (see Fig. 7). Two worms, Blaster (W1) and
Nimda (W3), successfully evaded detection because they
experienced relatively low rate of failed network connec-
tions. As expected, all user applications demonstrated high
likelihood of user-triggered interactions. System daemons
M2 and M5 resulted in receiving higher anomaly scores than
user applications or other daemons. System (M2) issued
many UDP data packets to local sub-network (netbios ser-
vices) without receiving any response. Likewise, Microsoft
iSCSI discovery service, M5, periodically made failed net-
work connections during the experiment. Therefore, worm
detection based solely on failed network connection is inac-
curate.

Table 2 Five most popular entries in each category.

User System Daemons & Worms running
Applications Automatic Update on Windows

nateonmain.exe U1 spoolsv.exe M1 Win32/Blaster W1
outlook.exe U2 System M2 Win32/Spybot.8pa! W2
iexplore.exe U3 svchost.exe M3 Win32/Nimda W3
msnmsgr.exe U4 acaas.exe M4 Win32/Nachi W4
nophishing.exe U5 iscsiexe.exe M5 Win32/Svoy.A! W5

Table 3 Different scanning strategies and representative samples of
worms.

Victim discovery method Internet Worm
Sequential Win32/Blaster.Worm W1

Win32/Svoy.A!Worm W5
Random Win32/Spybot.8pa!Worm W2
Local (subnet) Win32/Nimda.Worm W3

Win32/Nachi.Worm W4
Win32/Svoy.A!Worm W5

Selective random Linux/Slapper.Worm
Routable, Divide-conquer, No such worms
Hybrid or Permutation reported yet
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Fig. 7 Classification of 15 programs by the network connection patterns
(without noise filter scheme).

Fig. 8 Classification of 15 programs by the average number of port
creation (without noise filter scheme).

Worm detection based on the port creation pattern is
also imperfect. Figure 8 indicates that PC-WDS missed
Spybot.8pa! worm, labeled W2, which created only 0.8
ports every minutes to avoid detection at the cost of slower
scanning and infection. This is another reason that more
comprehensive features need to be applied in a flexible man-
ner to accurately detect unknown worms.

Figure 9 shows the effect of noise filtering applied. As
the window size becomes growing, the curves of anomaly
score have been smoothly changed. Noise filter scheme re-
moves such sudden spikes of anomaly score effectively and
reduces false positive alarms for worm detection.

To evaluate the detection performance with a noise fil-
tering scheme, Fig. 10 shows total pinpoint accuracy of 28
days operation of 152 normal applications and 24 hours op-
eration of 23 Internet worms. In our experiment, one-class
SVM uses radial basis kernel function and gamma and nu
parameters are configured based on 10-fold cross valida-

Fig. 9 Anomaly score (number of port creation) trend with and without
noise filtering applied (Internet Explorer and Win32/Nachi worm).

Fig. 10 Noise filter effect.

tion with LIBSVM 3.12 [27]. As the window size K be-
comes growing, generally total pinpoint accuracy of PC-
WDS is increasing. With K = 3, the pinpoint accuracy ex-
ceeds 99.9%, which reasons that low false positive alarms
are shown. When K is increasing from 4, pinpoint accuracy
slightly increases but it’s already exceeding 99.9%. With the
large K, learning data may be too much abstracted and diffi-
cult to make separable between normal and worm behaviors.
Additionally with the large K, SVM marginal errors are also
growing.

Figure 11 shows that 3 scatter matrix diagrams of
whole training and testing data including 152 normal ap-
plications and 23 Internet worms, when the nose filter pa-
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Fig. 11 Scatter matrix of raw data (gray rectangles for normal application and white circles for
Internet worm).
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rameter K is 3. Gray rectangles represent normal applica-
tion and white circles do Internet worms respectively. The
larger size rectangle and circle show more frequency of data.
The features of AS f (AVG(LM(EF))), AS f (AVG(LM(EP))),
AS f (AVG(LM(ENDA))) well explain the different behaviors
of Internet worms from those of normal applications in fea-
ture space. In scatter matrix, small part of normal applica-
tions is located in the middle of Internet worms, and some of
Internet worms and normal applications overlap each other.
That is the reason why the false alarms occur. However, one-
class SVM maps the aforementioned 6 features into a high
dimensional feature space and successfully makes normal
profile which shows dramatic good performance. In next
chapter, we evaluate PC-WDS performance and how each
of 6 features is significant to increase detection performance
and reduce false alarms.

4.3 PC-WDS Performance and Significance of Each De-
tection Features

Table 4 shows the overall performance of PC-WDS. 6 fea-
tures for detecting Internet worms and one-class SVM per-
fectly classify Internet worms (with 0 false negative alarm)
and successfully reduce false positive alarms.

To evaluate each of 6 features, which are highly useful
or which may be useless, we have another experiment. We
assume that elimination of useless detection feature may en-
hance overall performance; however lack of significant fea-
ture may decrease overall detection performance. We apply
the technique of deleting one feature at a time to evaluate
6 worm detection features and explain how the features are
important ones for Internet worm detection using one-class
SVM [29].

Table 5 shows the performance results of deleting one
feature, and comparing Tables 4 and 5, it explains that:

• With 6 detection features PC-WDS detects all 23 In-
ternet worms without false negative alarm, and makes
0.08% of false positive alarms.
• All of 6 detection features play an important role in

detecting Internet worms and reducing false alarms.
• The most important features for detecting Internet

worms are Ratio of New Destination Address and Like-
lihood of Machine-triggered for Failed Network Con-

Table 4 Overall performance of PC-WDS (with 6 detection features).

False positive ratio Worm detection ratio False negative ratio
0.08% 100% 0%

Table 5 Deletion of one feature at a time.

Feature deleted False positive Worm detection False negative
ratio ratio ratio

AS f (AVG(LM(EF ))) 0.18% 99.80% 0.20%
AS f (RT (EF )) 25.72% 100% 0%
AS f (AVG(LM(EP))) 32.62% 100% 0%
AS f (AVG(N(EP))) 0.17% 100% 0%
AS f (AVG(LM(ENDA))) 3.23% 100% 0%
AS f (RT (ENDA)) 29.88% 87.10% 12.90%

nection.
• The most important features for reducing false positive

alarms are Likelihood of Machine-triggered for Port
Creation, Ratio of New Destination Address and Ra-
tio of Failed Network Connection.

5. Conclusion

5.1 Possible Attacks on PC-WDS or Evasion Strategies

Worm developers are certainly technically savvy enough to
understand the likely strategies used by worm detection soft-
ware including PC-WDS, and they would surely do what-
ever they can to avoid or delay detection. We discuss likely
scenarios and how design of PC-WDS deals with such at-
tempts.

• Fake (e.g., software-generated) user events: As dis-
cussed earlier, monitoring of SendInput() API can tell
if user events are “authentic”, and current implementa-
tion of PC-WDS has such feature built-in. If a worm
can run in the kernel mode, PC-WDS offers no protec-
tion. Additionally most of the recent operating systems
provide access control mechanisms enough to access
system resources based on object authentication poli-
cies such as SELinux [30] or sandbox, which are be-
yond our discussion in this paper.
• Fake destination addresses: Sneaky worms may use

covert channels or proxy servers to perform scanning
so that the same destination addresses appear repeat-
edly. Ratio of new destination addresses would then
become low and the associated anomaly score low-
ered as well. To defeat such attempts, PC-WDS’s
data collection module analyzes SOCKS and Microsoft
ISA proxy protocols to identify the real destination
addresses. Unless a worm developer invents his or
her own proprietary proxy protocol and communicates
with a special proxy server using one’s own encryp-
tion algorithm, fake destination addresses does not
work. While theoretically imperfect, PC-WDS pro-
vides a strong enough deterrent.
• “Controlled attacks to maintain anomaly score below

the threshold value”: Worm developers may take detec-
tion algorithm of PC-WDS into consideration so that
worms remain “patient enough” to limit scanning ac-
tivities in such a manner that the anomaly score would
never exceed the threshold value. PC-WDS will fail to
detect such worms. However, worms would be forced
to spread themselves at a much slower speed than de-
sirable. Win32/Spybot.8pa!Worm, for example, made
only 0.8 scanning attempts per minute. But, it may scan
much too slowly to avoid detection by PC-WDS. Such
worms do not pose serious threat. Furthermore, cur-
rent design of PC-WDS demonstrated that it is effective
enough to detect most of nasty and real worms.
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5.2 Concluding Remarks

PC-WDS is a fully automated system to detect Internet
worms. It does not require signatures, and empirical evalua-
tion performed on real Internet worms clearly demonstrated
that PC-WDS is effective. It extends relatively simple worm
detection feature used in the BINDER system so that diver-
sity of destination addresses and the patterns on port cre-
ations are analyzed in the context of the likelihood of them
being initiated by user events. Users need not worry about
configuration or parameter tuning, and performance over-
head is practically negligible.

Contribution of PC-WDS is significant in that it pro-
vides adequate protection to users who do not possess tech-
nical knowledge on computers or security. While it is the-
oretically possible for worm authors to perform scanning,
only a small number of network connections are allowed be-
fore it is detected by PC-WDS. Furthermore, it is a daunting
technical challenge to develop worms that can successfully
perform scanning activities while managing to avoid detec-
tion.

While current design of PC-WDS does not guarantee
that it can detect all types of unknown worms in all cir-
cumstances, experiments results conducted using real-world
worms were positive enough to convincingly demonstrate its
capability. “Ordinary” users badly need adequate protection
against worms, and PC-WDS provides adequate protection
at almost no cost (e.g., CPU or memory requirements).
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