Automatic Program Synthesis for Mechanical Systems Dynamic Simulation

Dae Sung Bae', Tag Gon Kim, " and Hyoung J hangTJr

TDept of Mechanical Engineering TTDcpt of Electrical and Computer Engineering
The University of Kansas
Lawrence, KS 66045

ABSTRACT

Dynamic simulation of a mechanical system is to analyze
dynamic motions of the system. In such simulation, a general
purpose dynamic program is widely used to formulate the
equations of motion with the Cartesian coordinate. The
general purpose dynamic program has overhead in com-
putation time and difficulties in maintenance and extension.
This paper describes a methodology for automatic program
synthesis for dynamic simulation of mechanical systems.
The methodology employs system-theoretic representation
scheme, which separates structural specification of a
simulation model from behavioral one, to synthesize a
simulation model in a hierarchical, modular form. A
prototype software system implementing the methodology
called APSYS is presented along with an example of a
tractor system simulation.

1. INTRODUCTION

Dynamic simulation of a mechanical system is to analyze
dynamic motions of the system. In such simulation, a set of
differential algebraic equations representing the dynamics
of a system must be formulated and solved. Since various
mechanisms are to be analyzed, the solution algorithms
must be flexible enough to add and/or modify modules to
adopt new formalisms.

To formulate a set of differential equations of motion for
the system, a coordinate system needs to be defined. There
are basically two coordinate systems: the Cartesian and
relative coordinate systems. The Cartesian coordinate
defines a maximum number of generalized coordinates [1];
the relative coordinate defines a minimum number of
generalized coordinates, resulting in a smaller dimension of
equations [2].

A major advantage of employing the Cartesian coor-
dinate approach in modelling a dynamic system is that it is
relatively easy to formulate and implement the equations.
Employing the relative coordinate approach has an ad-
vantage in computation time, but is more complicated and
difficult in formulating the equations. Moreover, modelling
within the relative coordinate system is often susceptible to
programming errors.

Because of the larger dimensional equations in Car-
tesian coordinate and a long sequence of conditional state-

ments, the general purpose dynamic program has overhead
in computation time. In addition to such overhead, it is
difficult to maintain and extend the general purpose pro-
gram due toits limitations inherited from its implementation
languages such as Fortran.

This paper describes a methodology for automatic pro-
gram synthesis which frees the developer from writing con-
trol code into the solution algorithm. The methodology
synthesizes a simulation model in a hierarchical, modular
form by means of combining structural specification with
functional modules for a dynamic system. To do so, we
employ system-theoretic representation scheme that
separates structural specification of a simulation model
from behavioral one [3]. The methodology is similar to that
used in [4] which deals with discrete-event systems while this
paper deals with continuous systems.

Section 2 describes model formulation. Section 3
presents graph theoretic representation of mechanical sys-
tems. Sections 4 and 5 discuss the methodology for automat-
ic synthesis of simulation programs and its prototype
implementation called APSYS writtenin C™ ™, respective-
ly. Section 6 demonstrates the efficiency of our approach
through an example of a tractor system simulation within
APSYS followed by conclusions in section 7.

2. MODEL FORMULATION

2.1 Relative Coordinate Kinematics

A pair of coupled bodies are shown in Fig. 1, with general
relative motion. The X-y’-z’ and x"-y"-z" reference frames
are the body and joint reference frames, respectively. Since
relative motion between two bodies is represented by rela-
tive motion of two joint reference frames, the relative
generalized coordinates are defined between two joint ref-
erence frames.

Since the velocity equations in the relative coordinate
formulation are expressed in terms of the Cartesian general-
ized coordinates, the Cartesian position must be identified.
The centroid of body j in Fig. 1 1s isolated by the vector

rj=ri+Sij + dij- sji M
The orientation matrix of body j is obtained by three sequen-

tial transformations starting from the orientation matrix of
body i as

Aj = Aj Gjj A"jj CjiT @)
where Cij, A"ij, and Cjj are transformation matrices between
x’i - y,l _ Z’i and X"ij z ylli. - Z"ij , x"ij R Y"ij _ Z"ij an('i X"ji ~ Y"ji _
Zji,and Xj - yj- Zjand X'ji -y'i - 2'i , respectively.

Fig. 1. A Pair of Contiguous Bodies.

The Cartesian velocities are required to perform the
acceleration analysis. The Cartesian velocity of a rigid body
consists of the translational velocity F; and the angular
velocity ;. These velocities may be written in a vector form
asyYj = [l"iT, a)iT]T. The Cartesian velocity of body j is
obtained by taking differentiations of Egs. 1 and 2 as

Y, - BinYi + By ®)

wh?re detailed expressions of Bijl and Bijz are defined in
Ref. 5.

Itmust be noticed from Egs. 1, 2, and 3 that the Cartesian
position, orientation, and velocity of body j are expressed in
terms of those of body i and the corresponding relative
quantities

2.2 Cut Constraint Equations

Geometric characteristics of a cut joint such as paral-
lelism or orthogonality of vectors are used to formulate the
cut constraint equations. Since the vectors are expressed in
terms of the relative generalized coordinates, the cut con-
straints may be written as

Oqt) = 0 4

Taking the time derivative of Eq. 4 once and twice yields the
velocity and acceleration constraints as:

g4t = 0 ©)
and
(I)(q9(‘l’ii»t) =0 6)

2.3 Equations of Motion

The augmented equations of motion were derived in
Ref. 2 by using the constraint stabilization method as

o

M ¢qT q f
®q 0 Al |y-20d -p*®
where

M = Mass matrix
P4 = Jacobian matrix for cut joints

A = Lagrange multiplier vector

f = Generalized force vector
a and B = Constraint stabilization coefficients

3. GRAPH THEORETIC REPRESENTATION

Graph theoretic representation of a mechanical system
is required to systematically derive and implement the
dynamic equations [6]. A node and an edge represent abody
and a joint, respectively. Topological preprocessing
generates a graph that defines the connectivity of mechani-
cal systems. As an example, the graph theoretic repre-
sentation of a tractor in Fig. 2 is presented in Fig. 3.

Qo
R
O

Fig. 2. Schematics of Tractor.

Fig. 3. Graph Representation of Fig. 2.

The cut joint concept was used to handle mechanical
systems with closed loops in Refs. 2 and 5. A cut joint is
defined within a loop. The cut joint is selected so as to
minimize the number of cut constraints and the generalized
coordinates [6]. The edges for the cut joints are then
removed from a graph. The resulting graph is called a
spanning tree structure. The tree structure for the closed

loop system in Fig. 3 is shown in Fig. 4. In order to compen-
sate the effects of cut joints removed, the cut constraint
equations are imposed on the equations of motion.

Fig. 4. Spanning Tree of Fig. 3.

4. METHODOLOGY FOR MODEL SYNTHESIS

4.1 Hierarchical, Modular Models

The purpose of our methodology is to automatically
synthesize simulation models in a hierarchical, modular
form [7]. The hierarchical structure provides a convenient
means to modify components and/or subsystems of a system.
At the same time, modularity promotes modification and
substitution of a subsystem(s) at the various levels of the
hierarchy. In such a modular system, no information can be
shared between modules for computation. However, the
modules exchange information by means of message pass-
ings through input/output ports. For example, if a module
A has a output port “out” connected to an input port “in”
of another module B, then A can send its output to B though
A’s output port “out” to B’s input port “in”. Thus, we need
to explicitly specify interface between two modules in terms
of module names and their connected port pairs.

The methodology for synthesizing simulation models is
based on system-theoretic representation of a system. Sys-
tem theoretic representation scheme distinguishes struc-
tural specification of a system from behavioral one.
Structural specification of a dynamic system represents
components of the system and relationships among the
components. Behavioral specification, represented by func-
tional subroutines, tells how a component behaves function-
ally. The main advantage of such separation in specification
is that different simulation models can be constructed simp-
ly by changing structure of models with behaviors of com-
ponents unchanged or vice versa.

4.2 Augmented Spanning Tree

Structure of a mechanical system can be represented by
aspanning tree as shown in Fig. 4. Even though the tree have
information on connectivity between two components, it
does not have information on which output port(s) of one
component is connected to which input port(s) of another
component. The interface between output ports of one
component and input ports of another 1s called coupling
scheme that is necessary to specify message paths for the
modular system as described above. For such interface, we

shall augment the spanning tree so that coupling scheme
may be conveniently associated with edges of the spanning
tree. To augment representation of edges that includes
coupling scheme, a list of port pairs is added to each edges.
For example, an edge (A, B) in a spanning tree is repre-
sented by ((A, B) ((out, in))) in an augmented spanning tree,
meaning that an output port “out” of a component A is
connected to an input port “in” of a component B. Note that
we represents coupling scheme as a pair of an edge and a
list of pairs of ports. Such coupling specification is required
for a modular system in which components of the system
communicate each other by the message passings through
their input/output ports.

4.3 Hierarchical Augmented Spanning Tree

The augmented spanning tree represents structure of a
mechanical system that includes all information com-
ponents and coupling scheme among each component.
Since each node of the tree correspon£ to a component of
the mechanical system, the tree cannot represent subsys-
tems of the mechanical system explicitly. In other word, no
node in the tree represents a subsystem of a mechanical
system. Thus, the spanning tree is not suited for manipula-
tion of structure of a mechanical system in a structured
manner. To manipulate structure of a mechanical system in
a highly structured manner, the augmented spanning tree
needs to be represented hierarchically. Such hierarchical
representation allows the modeler to add and/or delete
components or subsystems of the mechanical system at any
level of hierarchy. More specifically, we represent a hierar-
chical spanning tree in a way that all leaves in the tree
correspond to functional modules while internal nodes cor-
respond to subsystems and root node represents the name
of a mechanical system. Since an internal node in the tree
can have internal children nodes, a subsystem can have
children subsystems, each of which, in turn, can have its own
subsystems, and so on. Fig. 5 shows an augmented spanning
tree representing a tractor system shown in Fig. 4.

Coupling scheme in a hierarchical spanning tree consists
of three parts: external input coupling, internal coupling,
external output coupling. External input coupling tells how
input ports of a component and those of its subcomponents
coupled together. Internal coupling says how subcom-
ponents of the component coupled together. External out-

Qractod
-~} Coupling Scheme

ONORONO

Coupling Scheme = {(Tractor.in, 1in) (1.out, 2.in)
1.out, 3.1n) (1.out, 4.in) (2.0ut, Tractor.outl)
3.out, Tractor.out2) (4.out, Tractor.out3) }

Fig. 5. Hierarchical Spanning Tree of Fig. 4.

put coupling specifies how output ports of subcomponents
and a component coupled together.

4.4 Saving Structures and Behaviors

Structural specification representing a hierarchical
structure of a mechanical system employs an augmented
spannin% tree formalism. Behavioral specification employs
various functional modules to solve differential equations
numerically. Such separated specifications are saved in
separated, well-organized libraries for later reuse. We call
the library of structural specifications the spanning tree base
STB), and that of behavioral specifications the model base
MB). The STB consists of spanning trees representing
different mechanical systems. The MB consists of models
representing functional behavior of components of
mechanical systems. Each spanning tree in the STB has
information on the components of a mechanical system and
coupling scheme of the components. Each model in the MB
has mput port(s), output port(s), a set of state variables, and
afunctional subroutine.

4.5 Synthesis Procedure

Once a system is specified in terms of its structure and
components behaviors, it is ready to synthesize a simulation
model. Synthesis procedure in our methodology traverses a
spanning tree in preorder and synthesize a simulation model
from bottom up. More specifically, when traversing the
spanning tree, the procedure retrieves atomic (functional)
models in the MB and associates them to corres onding
leaves in the spanning tree while creating coupled models
and associating them with corresponding internal nodes in
the tree. A coupled model so created has information on its
children, its parent, its coupling scheme, and others.

To simulate a synthesized model, virtual processors are
created and attached to models. The processors has two
classes: coordinators attached to coupled models and
simulators attached to atomic models. The job of the
simulator is to execute a mathematical subroutine as-
sociated with the atomic model when it receives input
stimuli. The coordinator, when it receives inputs, carries out
message communications through input/output ports
spegit;lcd in coupling scheme within the associated coupled
model.

5. PROTOTYPING THE METHODOLOGY

APSYS (Automatic Program SYnthesis System) is a
software system written in C that implements the

methodology for aut_glllatic program synthesis described in

previous section. C™ ™, an object-oriented superset of C
language [8], is used to take advantages of object-oriented
paradigm such as data encapsulation, information hiding,
inheritance, and polymorphism as well as modularity, ex-
pendability and reusability.

The APSYS environment facilitates creating model ob-
jects and saving them in the model base. The environment
also supports specification of augmented hierarchical span-
ning trees and saving them in the spanning tree base as

class atom : public model {

int niports; /] # of input ports
port *iports; // pointer to port array
port oport; // output port
PF func; // work function for this atom
int count; // state variable
public:
atom(char *, model *, int, PF); // constructorc
~ atom(); // destructor

void setipnmae(char*);
void setopname(char*);
void setoutput(void*);

/[set input port
/1 set output port
// set output address

Fig. 6. Definition of Class Atom.

described in section 4.3. The facility synthesis traverses a
hierarchical spanning tree to synthesize a simulation model
by retrieving models in the model base as described in
section 4.5,

Classes in APSYS are organized hierarchically. All clas-
ses are derived from the general class models. The class
models has a basic definition, which includes its name,
parent name, and others, necessary to derive its subclasses.
The class models in APSYS has two derived classes: atomic
models and coupled models. The coupled models class has
a derived class called root models. Thus, the class models
inherits all of its properties to the classes of atomic models
and coupled models. The coupled models, in turn, inherits
both its properties and its inherited properties to the root
models class. Fig. 6 shows definition of the atomic models
class.

6. TRACTOR SYSTEM: AN EXAMPLE

We demonstrate our APSYS prototype through an ex-
ample of tracktor system simulation. The example shown
here deals with a subsystem of the tractor system called
chassis. The example is to show how the simulation model
of the chassis subsystem will be synthesized. To do so, we
first will specify structure of the chassis including coupling
scheme. We will then specify behavior parts of each com-
ponent of the chassis. Finally, the simulation model of the
chassis that APSYS generates will be shown.

The chassis subsystem first computes the orientation
matrix of the chassis with known Euler parameters. Six
locally defined vectors within the local chassis frame are
then converted to the global frame.

The chassis subsystem consists of eight components: one
chassis_orientator and six converters. The chassis has eight
input ports and eight output ports. Fig. 7 shows the hierar-
chical spanning tree for the chassis subsystem.

The components of the chassis are defined as objects of
the class atomic models. The model chassis_orientator is an
object of the class atomic models with the work function of
orientation_matrix. Six converters of the class atomic
models are defined. They are converterl, coverter2,...., con-

Chassis
~=®—— Coupling Scheme

Chassis_orientator/Converter2| Converter4 Converter6

Converter1 Converter5

Converter3

Coupling Scheme = {
chassis.inl, chassis_orientator.in)
chassis.in2, converterl.in2
chassis.in3, converter2.in2
chassis.in4, converter3.in2
chassis.in5, converter4.in2
chassis.in6, converter5.in2
chassis.in7, converter6.in2
chassis_orientator.out, converterl.inl
chassis_orientator.out, converter2.inl
chassis_orientator.out, converter3.inl
chassis_orientator.out, converter4.inl
chassis_orientator.out, converterS.inl
chassis_orientator.out, converter6.inl)
converterl.out, chassis.outl
converter2.out, chassis.out2
converter3.out, chassis.out3
converter4.out, chassis.out4
converterS.out, chassis.out5
converter6.out, chassis.out6) }

Fig. 7. Spanning Tree for Chassis Subsystem.

verter6, each of which has the work function of convert.
Each work function in the objects above is a functional
subroutine which carries out its own computation. In
APSYS, the atomic model of converter in the chassis is
created as:

atom converter (“converter”, 0, 2, convert);
converter.setipname E“inl” ;
converter.setipname (“in2”);

converter.setopnmae (“out”);

The above definition tells us the following information:
a converter is an object of class atomic models; the work
function of the converter is the subroutine convert; the
converter has two input ports inl and in2, and one output
port out. Other atomic models can be created in a similar
manner.

Given structural and behavioral specifications of the
chassis subsystem, the synthesis facility generates a simula-
tion model which basically is a main program for simulation
of the chassis. While traversing the spanning tree shown in
Fig. 7, the synthesis facility first retrieves all atomic models
from the model base, and then creates a couple model called
chassis followed by connecting them together. The synthesis
facility has successfully generated a main program ready for
simulation of the chassis subsystem for the tractor system.
Fig. 8 shows part of the main program generated Ky the

synthesis facility. The rest of subsystems for the tractor can
be generated in a similar manner.

root manager("manager");
led ch "chassis", & 20);
coupled chassis("chassis", &manager, 20);)
atom chassis_orientator("chassis_orientator", &chassis, 1,
orientation_matrix);)
atom converter1("converterl", &chassis, 2, convert);
atom converter2("converter2", &chassis, 2, convert);
atom converter3("converter3", &chassis, 2, convert);
atom converter4("converter4", &chassis, 2, convert);
’ .
atom converter5("converter5", &chassis, 2, convert);
atom converter6("converter6", &chassis, 2, convert);
chassis.add(&chassis, "in1", &chassis_orientator, "in")
chassis.add(&chassis, "in2", &converterl, "in2");
chassis.add(&chassis, "in3", &converter2, "in2");
chassis.add(&chassis, "in4", &converter3, "in2");
. . ? . 2 ’ . 4
chassis.add(&chassis, "in5", & converter4, "in2");
chassis.add(&chassis, "in6", &converter5, "in2");
chassis.add(&chassis, "in7", &converter6, "in2");
chassis.add(&chassis_orientator, "
" "
in1");
chassis.add(&chassis_orientator,
"ll’ll");
chassis.add(&chassis_orientator,
llinlll ;
chassis.add(&chassis_orientator,
"inlll);
chassis.add(&chassis_orientator, "out", &converters5,
"inlﬂ ;
chassis.add(&chassis_orientator,
"inl");
chassis.add(&converterl, "out", &chassis, "out1");
M ’ M "n "
chassis.add(&converter2, "out", &chassis, "out2");
chassis.add(&converter3, "out", &chassis, "out3");
. ’ . 1
chassis.add(&converter4, "out", &chassis, "out4");
M g l’ M ’ " "
chassis.add(&converter5, "out", &chassis, "out5");
chassis.add(&converter6, "out", &chassis, "out6"

out", &converterl,

"

out", &converter2,

"

out", &converter3,

"

out", &converter4,

"

out", &convertero,

b

Fig. 8. Part of Synthesized Simulation Program.

7. CONCLUSIONS

A methodology for automatic program synthesis for
dynamic simulation of mechanical systems is described. The
methodology is based on system-theoretic representation of
simulation models that distinguishes models structure from
their behavior. The APSYS system implementing the
methodology was successfully used for dynamic simulation
of a tractor system.

REFERENCES

(1] DADS User’s Manual, CADSI, P.O. Box 203, Oakdale,
Iowa 52319.

[2] Wittenburg, J., Dynamics of Systems of Rigid Bodies, B.G.
Terbner, Stuattgart, 1977.

[3] Zeigler, B.P., “Knowledge Representation From New-
ton to Minsky and Beyond,” Applied Artificial Intelligence,
vol.1, pp. 87-107, 1987.

[4] Kim, T.G. and Zeigler, B.P., “A Knowledge-Based En-
vironment for Investigating Multicomputer Architectures,”
Information and Software Technology, vol. 31, no. 10, Dec,
1989.

[5] Bae, D.S. and Haug, E.J., “A Recursive Formulation for
Constrained Mechanical System Part II, Closed Loop,”
Mechanics of Structures and Machines, vol. 15, no. 4, 1987.

(6] Kim, S.S. and Vanderploeg, M.J.,“A General and Effi-
cient Method for Dynamic Analysis of Mechanical Systems
Using Velocity Transformations,” J. of Mechanisms, Trans-
missions, and Automation in Design, 1986.

[7] Zeigler, B.P., Multifacetted Modelling and Discrete Event
Simulation, Academic Press, 1984.

8] Stroustrup, B., The C* +Programming Language, Addi-
tional Wesley, 1984.

