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Abstract 
 
 The robustness problem in the time delay control (TDC) 
against the discontinuous dynamics of robot manipulators, 
such as Coulomb friction, is revealed in this paper. As a 
remedy for this problem, an enhanced controller is proposed 
and its properties and stability are analyzed. The proposed 
controller has a compensator based on the internal model 
control (IMC) concept. It is effective in handling the adverse 
effects of friction; moreover, it is simple and efficient and 
becomes a positive attribute of TDC. The controller does not 
need the entire plant model and thus, it can be applied easily. 
The simulation and experimental results show the 
effectiveness of the proposed controller. 
 
1. Introduction 
 

This paper presents an enhanced controller which 
improves the robustness of the time delay control (TDC) 
against the discontinuous dynamics of robot manipulators, 
such as Coulomb friction, by using the internal model 
control (IMC) concept. The background and context for this 
research is provided below. 

 
The TDC [1,2] is a control technique that estimates and 

compensates system uncertainties, such as unmodeled 
dynamics, parameter variations, and disturbances, by 
utilizing a time-delayed signal of certain system variables. 
Owing to the effectiveness and efficiency of the time delay 
estimation (TDE), the TDC has an unusually compact 
structure and relatively simple gain selection procedure. 
After research on the TDC was firstly reported, the TDC has 
been applied to many mechanical, electric, and 
electromechanical systems. Particularly, the TDC exhibits a 
good performance when controlling robot manipulators. 
Hsia et al. have applied the TDC to problems of position 
control, force control, and impedance control for robot 
manipulators and have obtained good results [3-5]. Chang et 
al. have applied the TDC to the problem of hybrid 
position/force control for robot manipulators and they 
showed that the TDC exhibited robust responses [6,7]. Also, 
the experimental results of well-known heavy duty systems, 
such as robotic excavators and telescopic handlers, showed 
that the TDC is a simple and robust control scheme [8,9]. 

It has been observed, however, that the TDC reveals 

some problems in the presence of discontinuous dynamics. 
For example, Coulomb friction increases the tracking error 
when a plant passes by zero velocity and degrades the 
transient response of the controlled system. As will be 
explained in Section II, these phenomena of the TDC come 
from the TDE error. The TDE treats that the plant dynamics 
of a previous sampling time is similar to that of the current 
sampling time, and it is valid under the assumption that the 
plant dynamics varies continuously. However, in the 
presence of discontinuity (or very fast dynamics) in the plant 
dynamics, this assumption is invalid so the accuracy of the 
TDE degrades. Accordingly, the controlled system has a 
large tracking error. 

Coulomb friction dynamics, one of the major 
contributing factors of discontinuity, is an important aspect 
for industrial robot manipulators. For example, Coulomb 
friction levels as high as 30 percent of the maximum motor 
torque is not uncommon in some industrial robot 
manipulator drive trains, such as a PUMA arm [10]. 
Furthermore, [11] showed the significance of Coulomb 
friction with case studies of micro and macro manipulators 
and also reported that friction can cause 50 percent error in 
some heavy industrial manipulators. 

There is a little research on improving the robustness of 
the TDC. The main part of this research presents a remedy 
by adopting the sliding mode control (SMC) and shows its 
effectiveness by applying it to an excavator system [12], 
pneumatic cylinder system [13], and DC servo motor [14]; 
however, it has some drawbacks. Occasionally, its inherent 
use of discontinuous input causes chattering in the tracking 
response. In addition, it needs extra gain tuning for 
compensators, which can be a burden in the design 
procedures of controllers. Besides this, an enhanced 
perturbation observer was proposed in [15]. This has some 
multi-loop stages of a perturbation observer that are known 
to use a similar algorithm as the TDC.  

In this paper, a compensator is proposed to improve the 
robustness of the TDC against discontinuous dynamics, such 
as Coulomb friction. The proposed compensator is designed 
based on the concept of the IMC. The IMC is the control 
algorithm that uses the plant model directly [16,17]; it has a 
straight forward design method and good control 
performance to provide a theoretically perfect control 
scheme. It has also been widely used to control chemical 
processes [18,19] and robot manipulators by adding the 



computed torque control [20]. After all, an enhanced 
controller, called the time delay control with internal model 
(TDCIM), that combines the two concepts of TDC and IMC 
is proposed to handle the discontinuous friction dynamics of 
robot manipulators. 

This paper is organized as follows. In Section II, the 
problems of the TDC are analyzed and the IMC is reviewed 
briefly. In Section III, the enhanced controller is proposed 
and its properties are analyzed. The robustness of proposed 
controller is verified with the simulation and experimental 
results in Section IV. Finally, the results are summarized and 
conclusions are drawn in Section V. 

  
 

2. Problems of the TDC and review of the IMC 
 

In order to point out its problems, the TDC is briefly 
reviewed and analyzed with simulation results. Also, the 
IMC is introduced; it is adopted to handle the problems of 
the TDC. 

 
2.1 Problems of the TDC 

We summarize the TDC law for robot manipulators [2] 
and analyze its problems concerning TDE error. 

 
2.1.1 Review of the TDC  
The dynamics of n DOF robot manipulators is generally 

described as follows: 
M(θ)θ + V(θ,θ) + G(θ) + F(θ,θ) = τ&& & & ,  (1)  

where  denote the joint angle, joint angular 
velocity, and joint angular acceleration, respectively; 

 denotes the inertia matrix; 

n∈ℜθ,θ,θ& &&

n n×∈ℜM(θ) n∈ℜV(θ,θ)&  
denotes the Coriolis and the centrifugal forces; n∈ℜG(θ)  
denotes gravity;  denotes frictions and unmodeled 
disturbances; and  denotes the input torque. 

n∈ℜF
n∈ℜτ

By importing the constant matrix n n×∈ℜM , which 
represents the known range of M, (1) can be rewritten as 
follows: 

,Mθ + Η(θ,θ θ) = τ&& & && ,   (2) 
where H denotes the total sum of the nonlinear dynamics 

of robot manipulators and is described as follows:  
( )= −H(θ,θ,θ) M(θ) M θ + V(θ,θ) + G(θ) + F(θ,θ)& && && & & .(3) 

Generally, τ can be designed based on the computed 
torque control as follows: 

ˆτ = Mu + H , and (4) 
( ) (d D d P d− −u = θ + K θ θ + K θ θ&& & & ) , (5) 

where  denotes the estimated value of H; 
 denotes the desired trajectory; and 

 and  represent the PD gain diagonal 
matrices. 

Ĥ
n

d d d ∈ℜθ ,θ ,θ& &&

n n
D

×∈ℜK n n
P

×∈ℜK

When implementing the controller, it is very important 
to estimate H precisely, because the control performance 

depends directly on the accuracy of the estimation of H. The 
control objective is to cause the closed loop system to have 
the desired error dynamics described below by estimating H 
exactly, i.e. ˆ =H H  in an ideal case.  

D P =e + K e + K e 0&& & ,   (6) 
where d −e θ θ� . 
The TDC uses the time delay estimation (TDE) to obtain 
. Under the assumption that the time delay L is 

sufficiently small, the following approximation is valid from 
Ĥ

(2): 

( ) ( ) ( ) ( ) ( )
ˆ

t t t L t L t L− −
≅ = = −H H H τ Mθ&&

−
.  (7) 

Finally, the TDC is expressed as: 

( ) ( )[ ]
( ) ( )t L t L

d D d P d

− −
−

+ −

τ = τ Mθ

M θ + K θ θ + K θ θ

&&

&& & & −
. (8) 

If M  is selected as the diagonal constant matrix, the 
TDC can be designed as separate joint controller using only 
M  and PD gains, as in Fig. 1. Thus, the TDC is very 
simple and efficient and has few computation burdens 
because of using the TDE, which does not need to compute 
the entire robot manipulator dynamics. 

 

 
2.1.2 Problems of the TDC concerned with the TDE 
error 
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Fig. 1.  Block diagram of the TDC 

If the time delay L is set infinitesimally small, it is 
possible to estimate H precisely using the TDE. Because of 
hardware limitations, however, L must be set for a finite 
time interval. Generally, controllers are implemented with 
digital devices, and the smallest value for the time delay L is 
the sampling time, which is finite. Therefore, the TDE error 
exists due to a finite L. From (2), (4), and (7), the 
following is derived: 

( )( ) ( ) ( ) ( ) ( ) ( )
ˆ

t t t t t t−− − = −M u θ = H H H H&&
L . (9) 

The right side term of the above equation denotes the 
TDE error. Here, the TDE error is defined as: 

( )( ) ( ) ( ) ( ) ( - )t t t t t L

−− −1ε u θ = M H H&&� .  (10) 
The error dynamics of the TDC is represented as follows 

and it shows the influence of the TDE error on the tracking 
error: 

( ) ( ) ( ) ( )t D t P t =e + K e + K e ε&& &
t .   (11) 

The effectiveness of the TDE determines the robustness 
of the closed loop system against the plant nonlinearity and 
disturbances. Closely related to the effectiveness of the TDE, 
the value of the time delay L is a crucial factor. Qualitatively 
speaking, the time delay L needs to be selected so that the 



continuity assumption of H(t) is valid. In mechanical systems, 
however, discontinuous (or very fast) dynamics, such as the 
Coulomb frictions, exists and cannot be estimated accurately 
using the TDE with a finite L. Therefore, when the TDC is 
applied to such systems, the TDE error increases resulting in 
a large tracking error occurs. 

 
2.1.3 Simulation under Coulomb friction 
To observe the problem of the TDC due to the TDE error 

more clearly, the TDC is analyzed using simulation results 
under Coulomb friction dynamics. A 1 DOF link system, as 
described in Fig. 2, is used in this simulation and gravity is 
not considered. This plant has nonlinear dynamics due only 
to friction, so it is an appropriate plant for observing the 
properties of the controller against the friction effect. 

Generally, coulomb friction is modeled as follows. 
( )sgnslipF τ θ= &     (12) 

where, τslip denotes coulomb friction coefficient. When 
plant goes across zero velocity, coulomb friction changes its 
direction and plant has discontinuous dynamics. And this 
effect degrades control performance in tracking control. 

In this simulation, the TDC with 1.0M =  is applied to 
the plant with the friction as described above. The PD gains 
are fixed at KD=20 and KP=100 to cause the error dynamics 
in (11) to have a natural frequency of ωn=10 rad/sec with 
critical damping. To observe the Coulomb friction effect in 
the tracking control, the reference velocity is set to increase 
linearly and to cross zero velocity at t=1 sec. 

 

 
The simulation results are shown in Fig. 3: (a) is the 

conceptual figure of the estimation error of H and (b) is the 
tracking error of the simulation results. Fig. 3(b) shows that 
the controlled system has a large tracking error with a bound 
of 0.021 deg at zero velocity. This is a result of the Coulomb 
friction. When a plant passes by zero velocity, the Coulomb 
friction changes direction, and the plant has discontinuous 
nonlinearity. The TDE uses the previous information for H 

at t-L to estimate itself and therefore the TDE error occurs is 
as large as the changes in the plant dynamics during one 
sampling time. Therefore, the TDE cannot estimate the hasty 
change of the Coulomb friction exactly, and the TDE error 
becomes large at zero velocity, as described in Fig. 3(a). 
According to such a TDE error and the error dynamics in 
(11), the controlled system has a large tracking error, as 
shown in Fig. 3(b).  
 
2.2 Review of the IMC 

2.2.1 Structure of the IMC 
The IMC, proposed by Garcia and Morari [16], is shown 

in Fig. 4. It is composed of the IMC controller Q and the 
internal model Gm. The effect of the parallel path with the 
model Gm is to subtract the effect of the manipulated 
variables from the plant output. If it is assumed that the 
model represents the plant perfectly, then the feedback 
signal is equal to the influence of the disturbances and is not 
affected by the actions of the manipulated variables. Thus, 
the system is effectively an open loop [17]. 

The IMC controller Q designed based on Gm
-1 plays the 

role of a feed-forward controller. But the IMC controller 
does not suffer from the disadvantages of feed-forward 
controllers: it can cancel the influence of the disturbances 
because the feedback signal is equal to this influence and it 
modifies the controller set point accordingly [17]. 

The overall transfer function of the IMC is given as: 

( ) ( )
1

( )
1 1

m
d

m m

G QGQ
y s y Gd

Q G G Q G G

−
= +

+ − + −
. (13) 
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Fig. 2. 1 DOF link system.   and 1.0( )l =

The IMC is an intuitive and prominent algorithm. 
However, there are some limitations to be applied solely to 
the mechanical field. One limitation is that it requires the 
plant model, which is very difficult and time consuming to 
be obtained in complex nonlinear plants, such as robot 
manipulators. Moreover, the IMC’s scheme, in its original 
design form, results in an open loop control, which is only 
applicable to stable systems [20]. These are the main reasons 
why the IMC has been seldom applied to the control of 
mechanical systems. 

m g1.0( )m k=

 
2.2.2 Concept of perfect control 
Some properties of the IMC can be easily derived from 

(13) and one is the concept of perfect control [16,20]. 
 
▪ Assume that ① Q=Gm

-1 is realizable and ② the 
IMC system is closed loop stable, then the perfect reference 
tracking control (y=yd) can be achieved from (13) for all 
t>0 despite any disturbance d. 

t

(a) Estimation error of TDC

θ&

12 slipM τ−

t
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Fig. 3. Effect of the Coulomb friction in the TDC where 
τslip=5 Nm and L=0.001 sec.  

 
This indicates perfect reference tracking and complete 

disturbance rejection. Though perfect control cannot be 
realized, it is of great theoretical interest. Also, it is a 
practical issue regarding how closely this ideal can be 
approached. In the age of digital control, very complex 
controllers can be implemented with relative ease. 
Furthermore, if Gm is invertible, it is possible to design a 



controller closer to the ideal case, which will work robustly 
even though the plant has fast dynamics such as Coulomb 
friction. 

 
3. Time Delay Control with Internal Model(TDCIM) 
 

 In this section, an enhanced controller, named the time 
delay control with internal model (TDCIM), is proposed and 
its properties are analyzed. Its design procedure is arranged 
into two steps. In the first step, the closed loop system 
controlled by the TDC is rearranged into a linear form with 
the perturbation of the TDE error and in the second step, an 
additional control loop based on the IMC is designed to 
compensate for the TDE error. 

 
3.1 Derivation of the TDCIM 

3.1.1 Derivation of the linear dynamics from the TDC 
system 
▪ Plant linearization using the TDE
In the TDC, the TDE is used to cancel the nonlinear 

dynamics of the plant. From (10), the robot dynamics 
compensated by the TDE can be written as the following 
linear equation:  

( )( ) ( ) ( ) ( - ) ( ) ( )t t t t L t− − = −-1θ = u M H H u ε&&
t . (14) 

This indicates that the relationship between the joint 
variable, θ, and control input, u, is described as a linear 
equation, θ=s-2u, where the TDE error, ε, can be treated as a 
disturbance. 
▪  PD feedback loop 
The control input u in (5) can be separated as a 

reference input and feedback input:  
( D P− +u = K θ K θv & )

d

,   (15) 
where v denotes the reference input: 

d D d Pv θ + K θ + K θ&& &� . Then, (14) can be rewritten as 
follows: 

D P = −θ + K θ + K θ v ε&& & .   (16) 
Finally, the dynamics of θ can be described as the 

separate linear dynamics of v, and the TDC system can be 
simplified as in Fig. 5. 

As a result, the TDC system can be explained as a feed-
forward controller with the plant linearized by the TDE and 
PD feedback. Through the linearization process, however, 
the TDE error occurs and affects the controlled variables as 
a disturbance. 

 
3.1.2 Compensator design based on the IMC 
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Fig. 5. Simplified block diagram of the TDC with the 
plant linearized by the TDE and PD feedback.  
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Fig. 4.  Block diagram of the IMC where Q denotes the 
IMC controller, G signifies the plant, and Gm implies the 
internal model. 
  

Now, the compensator based on the IMC is added to the 
TDC simplified in Fig. 5. According to the design procedure 
of the IMC [16,17], the internal model Gm can be easily 
selected from Fig. 5, as follows: 

( 12( )m Ds ss −

= + +G I K K )P .  (17) 
Also, the IMC controller can be designed as follows 

based on the above internal model: 
2( ) D Ps ss = + +Q I K K

L−

.1   (18) 
Fig. 5 shows that the simplified TDC already has a 

controller such as (18); therefore, the TDCIM can be 
achieved by adding only an internal model and the IMC 
feedback, as described in Fig. 6. 

Fig. 7 shows the overall block diagram of the TDCIM. 
In the TDCIM, the combined value of the reference and 
IMC feedback is used instead of the reference θd of the TDC. 
The control law of the TDCIM is given as: 

( ) ( ) ( ) ( )t d t t L m tδ −
= − +θ θ θ θ , and  (19) 

( ) ([ ]
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

t t L t L

t D t t P t tδ δ δ

− −
−

+ −

τ = τ Mθ

M θ + K θ θ + K θ θ

&&

&& & & )−
(20) 

The TDCIM has a simple structure, as shown in Fig. 9, 
and does not need extra gain. The control law described 
above shows that the TDCIM can be designed by choosing 
only M , KD, and KP the same as the TDC case. 
Furthermore, because of using the TDE, it does not need the 
entire computation of the robot dynamics. Therefore, it is 
easily applied and efficient so as to match the positive 
attributes of the TDC.  

 
▪ Remark 1: time delay due to sampling 
The feedback time delay in the IMC feedback is 

included in Fig. 7 (dashed box) and (19). It is not included 
intentionally, but it is inevitable in the discretely 
implemented controllers. If Q=Gm

-1, the IMC theoretically 
provides a perfect control scheme, but, it is only possible 
under a continuous time condition. In many cases, the 
controllers are designed with a digital platform such as 
personal computers and work under a discrete time 
condition. In these cases, it is impossible to prevent a time 
delay in the feedback due to sampling. Thus, the IMC 

                                                           
1 The controller needs the velocity and acceleration of the plants. In 

many cases, however, they are not measured and are thus obtained by 
numerical differentiations. The numerical differentiations cause a delay in 
the responses and degrade the tracking performance; however, it is not a 
critical problem in implementation of a controller. It is also well known that 
the differentiations enlarge the influence of the sensing noise, but this can 
be overcome by using a low pass filter [17,21]. 



cannot work as a perfect controller. So, it is necessary to 
consider the time delay due to sampling for a more precise 
analysis. 

 
3.2 The role of the IMC feedback 

To determine the properties of the TDCIM, it is essential 
to verify the role of the IMC feedback. So, the meaning of 
the IMC feedback is analyzed.  

At first, the control input of the TDC is redefined as 
follows to prevent confusion with the control input of the 
TDCIM: 

( ) ( ) ( ) ( )TDC t d t D t P tu θ + K e + K e&& &� .  (21) 
Then, the control input of the TDCIM, including the 

time delay in the IMC feedback, can be described as 
follows: 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

t TDC t t L m t L

D t L m t L P t L m t L

− −

− − − −

− ⎡= −⎣
⎤− − ⎦

u u θ θ

+K θ θ + K θ θ

&& &&

& &
. (22) 

The right side terms, except uTDC(t), are the additional 
control inputs from the IMC feedback. Also, their meanings 
can be obtained by subtracting the plant dynamics G in (16) 
from the internal model dynamics Gm in (17) at t-L: 

( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( )

t L m t L D t L m t L

P t L m t L t L

− − − −

− −

− −

− = −+

θ θ + K θ θ

K θ θ ε

&& && & &

−

L

. (23) 

This shows that the IMC feedback value indicates the 
TDE error before one sampling time. Therefore, the control 
input and input torque of the TDCIM can be rewritten as: 

( ) ( ) ( )t TDC t t−= +u u ε , and   (24) 

( ) ( ) ( ) ( ) ( ) ( ) . (25) ˆ
t t t TDC t t L t L− −

+ = + +τ = Mu H Mu H Mε

L

The TDCIM can be treated as a TDC with a 
compensator using the TDE error at t-L. Also, the error 
dynamics of the TDCIM is given as follows:  

( ) ( ) ( ) ( ) ( )t D t P t t t−= −e + K e + K e ε ε&& & .  (26) 
From another point of view, the TDCIM can be regarded 

as a controller with an estimator of H working as follows: 
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Fig. 6. Simplified block diagram of the TDCIM. 

( ) ( ) ( ) ( ) ( 2 )
ˆ 2TDCIM t t L t L t L t L− − −

= + = −H H Mε H H
−

ˆ
t t L−=H H

. (27) 
This indicates that the compensator decreases the 

influence of the TDE error and improves the estimation 
performance of H by using the TDE error at t-L. 

To show the role of the compensator more clearly, it is 
worthwhile to observe its effect when H changes slowly. Fig. 
8 shows the estimation values of H in the TDC and TDCIM 
conceptually. The TDC uses the TDE, ) , and the 
TDE error occurs to the extent of the change in H during 
one sampling time. In the TDCIM, the TDE error is 
compensated by itself at t-L, and thus a more precise 
estimation is possible. This is an indication that the TDCIM 
is more robust to the change in H than the TDC. 

( ) (

2 1( )D Ps s −+ +I K K
+

-

mθ

Q

mG

PLANTM

Lse− -

+

τ θ
2

D Ps s+ +I K K u

2sM

+

+

-
+

D Ps +K K

v
dθ

+

- δθ

Lse−

2 1( )D Ps s −+ +I K K
+

-

mθ

Q

mG

PLANTM

Lse− -

+

τ θ
2

D Ps s+ +I K K u

2sM

+

+

-
+

D Ps +K K

v
dθ

+

- δθ

Lse−

Fig. 7. Overall block diagram of the TDCIM. 

 
3.3 Stability analysis of the TDCIM 
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Fig. 8. Estimation of a slow H in the TDC and TDCIM. 

Sufficient stability conditions have been derived based 
on an analysis of NL∞  [22]. The notations used in the 
stability analysis are presented in Table I. 

 
▪ Theorem 1: Stability of the TDCIM  
If the assumption and the stability condition presented 

below are satisfied, then the robot manipulator controlled by 
the TDCIM is L∞ stable.  

Assumption: , , θ , , w dθ d
&

dθ&&
NL
∞

∈

Stability condition: ( ) 2
1t i ∞

<A'  and ( ) 2
1t i ∞

<B' , 
 
where denotes the disturbance and Coulomb or static 

friction, and the matrices ,  are defined as 
follows: 

w
( )tA' ( )tB'

▫ Definition of  and B' : ( )tA' ( )t

At first, ( ) 1( ) ( )[ , ,t t Ndiag ]tλ λ=Λ L  and P(t) is defined 

as follows to diagonalize :  ( )tΩ
1

( ) ( ) ( ) ( )t t t t

−=Ω P Λ P ,   (28) 

where 1

( ) ( )t t

−= −Ω I MM M  and M is defined as 
the diagonal positive definite matrix that satisfies 



=M M M . 
Then  and  are defined as: ( )tA' ( )tB'

1

( ) ( ) ( ) ( )t t t t

−=A' P A P 1

( ) ( ) ( ) ( )t t t t

−=B' P B P

]t

, ,  (29) 

where , ( ) 1( ) ( )[ , ,t t Ndiag a a=A L

2

( ) ( ) ( ) ( )  i t i t i t i ta λ λ λ= + −  and , ( ) 1( ) ( )[ , ,t t Ndiag b b=B L ]t

2

( ) ( ) ( ) ( )i t i t i t i tb λ λ λ= − − . 

 
▪ Proof 
From (19) and (20), the input torque of the TDCIM 

can be rewritten as: 

( ) ( ) ( ) ( 2 ) ( 2 )

( ) ( ) ( )

2[ ] [ ]

[ ]
t t L t L t L t

d t D t P t

− − − −
= − − −

+ + +

τ τ Mθ τ Mθ

M θ K e K e

&& &&

&& &

L
. (30) 

Also,  of F (1) can be expressed as follows, where  
denotes viscous friction and is disturbance including the 
Coulomb and static frictions: 

vF
w

v= +F F w .    (31) 
Then, the error dynamics of the closed loop system can 

be derived from (1), (30), and (31): 
1 1

( ) ( ) ( ) ( ) ( 2 ) , (32) 
( ) ( )

2[ ] [ ]t t t L t t L

t t

− −

− −
− − + −

= +
ε I M M ε I M M ε

ψ φ
% % %

where,
1 1
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t L ,  

and, 1 1

( ) ( ) ( ) ( )( ) [ ]t t t d tt
− −−= +M w I M M θφ

%%% &&% . 

( )tγe  and  are defined as follows: 
( )tγε

( ) ( ) ( ) ( ),  t t tγ γe Me ε Mε� � t
.  (33) 

Then, the following can be derived by transforming (32) 
into the function of  and : 

( )tγe ( )tγε

( ) ( ) ( ) ( ) ( 2 ) ( ) ( )2t t t L t t L t tγ γ γ− −
− + = +ε Ω ε Ω ε M Mψ φ% % % . (34) 

From the definition of A'  and  in ( )t ( )tB' (29), the 

relationship  
is valid. So, the above equation is described as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 ,  

t t t t t t t
+ = = =A' B' Ω A' B' B' A' Ω

( ) ( ) ( ) ( ) ( 2 )( ) ( )

( ) ( )

( )t t t L t t Lt t

t t

γ γ −
− ++

+=
ε A' B' ε B' A' ε

M Mψ φ
% % %

γ − . (35) 

If ( ) 2
1t i ∞

<B'  is satisfied, the following can be 
derived from (35): 
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( ) ( 2 )
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Furthermore, if ( ) 2
1t i ∞

<A'  is satisfied, the following 
can be derived from (36): 

( ) ( 2 )

( )
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Letting , the following is obtained: T →∞

( ) ( 2 )

( )

( )
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( ) 22
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For a sufficiently small L, 
( ) ( 2 )( ) ( ) t t Lt t γ −

∞
−M B' A' εψ % % , 

which is composed of •% , •%% , and , becomes small and its 
effect can be ignored. Besides, if the assumption is satisfied, 

•
(

( )t
∞
< ∞Mφ . Therefore, 

( )tγ ∞
≤ ∞ε% , so that  and 

 are bounded.    □  
( )te

( )te&

 As M  is similar to M , ( )t ( ) 2t i ∞
A'  and ( ) 2t i ∞

B'  
become smaller, so the TDCIM has a greater possibility to 
satisfy the stability condition. From the analysis and 
simulation, it has been detected that the stable gain of the 
TDCIM is less than that of the TDC. 
 
4. Verification: Simulation and Experiment 
 
4.1 Simulation of the TDCIM under Coulomb friction 

The robustness of the TDCIM is verified by simulation, 
and how the proposed compensator affects the fast dynamics 
of the system, especially the Coulomb and static frictions, is 
analyzed. These results are compared with those of the TDC 
in subsection 2.1.3. 

The TDCIM with 0.5M

t

=  is applied to the 1 DOF 
manipulator shown in Fig. 2 with the same conditions as in 
the TDC case. The PD gains are set to KD=20 and KP=100 to 
ensure the error dynamics (26) have natural frequencies of 
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NOTATIONS 

When  is a  vector 
( )t
• 1N × When 

( )t
•  is a matrix When  is a vector or a matrix  
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0
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≥

• = •
+

(This means NL
∞

) 

( ) ( )
0

supt c t cT
t T
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≤ ≤

• = • . 

( ) 2t i
•  is the induced second norm 

of . 
( )t
•

( ) ( )2 2t ti i∞ ∞
• •= . 

( ) ( ) ( )t t t−L• = • − •% . 

( ) ( ) ( )t t t−L• = • − •%% % % . 

( ) ( ) ( 2 )t t t−• = • − • L

( . 

(where L denotes the sampling time) 



ωn=10 rad/sec with critical damping. 
The simulation results of the TDCIM against Coulomb 

friction are shown in Fig. 9: (a) is the conceptual figure of 
the estimation errors of H in the TDCIM and (b) is the 
tracking error of the simulation results. Fig. 9(b) shows that 
the tracking error of the TDCIM has an error bound of 0.001 
deg. This error bound is dramatically reduced compared 
with the result of the TDC, and represents robustness of 
TDCIM against discontinuous dynamics such as Coulomb 
friction. Furthermore, it can be explained from the 
estimation error of H. After the TDE error occurs due to the 
Coulomb friction effect, a counter action appears from the 
compensation using ε(t-L), as described in Fig. 9(a); 
furthermore, it eliminates the influence of the TDE error and 
considerably reduces the tracking error as shown in Fig. 9(b).  

 
 
4.2 Experiment 

In this subsection, the robustness of the TDCIM is 
verified by the experimental results of a 2 DOF planar robot 
and is compared with that of the TDC. The planar robot used 
in the experiments is shown in Fig. 10 and its specifications 
are provided in Table II. 

 
4.2.1 Experimental set up 
Fig. 11 shows the reference trajectory that makes the end 

effecter draw a circle with a 10 mm radius during 4 seconds. 
Both the sampling time and the time delay for the TDE are 
set to L=0.001 sec. 

1( , )M diag α α
2

=  of the TDC and TDCIM described in 
Table III are tuned to minimize the tracking error. The PD 
gains are set to kDi=20 and kPi=100 for both controllers to 
make natural frequencies of ωn=10 rad/sec and damping 
ratios ζ=1 of the error dynamics (11) and (25), where i 
denotes the joint number.  

 

4.2.2 Experimental results 
The experimental results are arranged in Figs. 12 and 13. 

Fig. 12 represents the tracking error and torque of each joint 
and Fig. 13 shows the XY position responses of the end 
effecter. The maximum tracking errors are presented in 
Table IV. From the results in Fig.12(a) and (c) compared 
with the references in Fig. 11, it can observed that the plant 
controlled by the TDC has a large tracking error due to 
Coulomb friction when the plant passes by zero velocity. In 
the TDCIM case, the tracking error is reduced dramatically 
and confirms that the compensator works well. Fig. 12(b) 
and (d) show that the TDCIM has a similar torque profile to 
that of the TDC and does not increase unwanted effects such 
as chattering. This desirable result shows that the TDCIM 
has little adverse effect due to the addition of the IMC 
feedback.  

Through the above experimental results, it is verified 
that the TDCIM is applicable to a multi DOF system and 
improves the robustness of the TDC against discontinuous 
friction. 
 
5. Conclusion 
 

This paper reveals the robustness problem of the TDC 
associated with the TDE error in the tracking control of 
robot manipulators under discontinuous dynamics, 
especially the Coulomb frictions. To control and manage the 
effect of the TDE error, an enhanced controller is proposed 
using a compensator designed based on the IMC concept, 

time (sec) 

Fig. 11. Desired trajectory 

TABLE  II 
SPECIFICATIONS OF THE 2 DOF PLANAR ROBOT 

 Link 1 Link 2 
Length (m) 0.35 0.29 
Mass (kg) 11.17 6.82 

Mass center from joint axis (m) 0.30 0.18 
Stall torque (Nm) 2.39 0.92 

Gear ratio 80:1 100:1 

t

(a) Estimation error of TDCIM

θ&

12 slipM τ−

12 slipM τ−−

t

(a) Estimation error of TDCIM

θ&

12 slipM τ−

12 slipM τ−−

 

Fig. 9. Effect of the Coulomb friction in the TDCIM where 
τslip=5 Nm and L=0.001 sec.  

TABLE  III 
CONTROL GAINS ( 1 2( , )M diag α α= ) FOR SCARA ROBOT 

 TDC TDCIM 
α1 0.1 0.03 
α2 0.025 0.0058 

 
Fig. 10. 2 DOF planar robot system 



and the proposed controller’s properties and stability 
conditions are analyzed. Through the simulation of a 1 DOF 
link system and experiments with a 2 DOF planar robot, the 
proposed controller’s robustness is verified when the TDE 
error becomes large due to discontinuous friction.  

 

 
Fig. 12. Experimental results (solid: TDCIM; dashed: TDC).

The advantages of the proposed controller can be 
arranged into two areas: effectiveness and efficiency. The 
compensator using the IMC can compensate for the effect of 
the TDE error accurately and improve its robustness against 
fast friction dynamics. In addition, the proposed 
compensator also has a simple structure to match the 
positive attributes of the TDC. Furthermore, it does not need 
extra tuning of gain or additional hardware: the inclusion of 
several lines of program code is enough. Therefore, it can be 
easily applied. 
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Fig. 13. Experimental results – XY plot. 
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