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Spin-orbital entangled molecular jeff states
in lacunar spinel compounds
Heung-Sik Kim1, Jino Im2, Myung Joon Han1,3 & Hosub Jin4,5

The entanglement of the spin and orbital degrees of freedom through the spin-orbit coupling

has been actively studied in condensed matter physics. In several iridium oxide systems, the

spin-orbital entangled state, identified by the effective angular momentum jeff, can host novel

quantum phases. Here we show that a series of lacunar spinel compounds, GaM4X8 (M¼Nb,

Mo, Ta and W and X¼ S, Se and Te), gives rise to a molecular jeff state as a new spin-orbital

composite on which the low-energy effective Hamiltonian is based. A wide range of electron

correlations is accessible by tuning the bandwidth under external and/or chemical pressure,

enabling us to investigate the cooperation between spin-orbit coupling and electron

correlations. As illustrative examples, a two-dimensional topological insulating phase and an

anisotropic spin Hamiltonian are investigated in the weak and strong coupling regimes,

respectively. Our finding can provide an ideal platform for exploring jeff physics and the

resulting emergent phenomena.
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S
pin-orbit coupling (SOC) is a manifestation of Einstein’s
theory of relativity in condensed matter systems. Recently,
SOC has attracted a great deal of attention since it is a

main ingredient for spintronics applications1,2, induces novel
quantum phases3,4 and generates new particles and elementary
excitations5,6. Moreover, when incorporated with electron
correlations, SOC can give rise to even more fascinating
phenomena7,8. In the iridium oxide family, where the IrO6

octahedron is the essential building block, various quantum
phases have been predicted or verified according to the electron
correlation strength on top of the large SOC of the Ir 5d t2g

orbital: topological band insulator for weak coupling9,10, Weyl
semi-metal, axion insulator, non-Fermi liquid and TI* phases for
intermediate coupling11–15, and topological Mott insulator and
quantum spin liquid phases for strong coupling7,16,17.

Emergence of the spin-orbital entangled jeff states induced by
SOC18,19 is the key feature to host all the above phases, yet
the existence of such states is limited to a small number of
iridate compounds only. Here, the series of lacunar spinel
compounds20,21, GaM4X8, where early 4d or 5d transition metal
atoms occupy the M-site, are found to provide the molecular
form of the jeff basis in their low-energy electronic structures.
The idealness of the molecular jeff state is guaranteed by the
formation of the M4 metal cluster and the large SOC. Combined
with the ability to control the electron correlation from the weak
to strong coupling limit, the lacunar spinels can manifest
themselves as the best candidates to demonstrate this so-called
jeff physics.

Results
Formation of the molecular jeff states in GaTa4Se8. The
chemical formula and crystal structure of the GaM4X8 lacunar
spinels are easily deduced from the spinel with half-deficient
Ga atoms, that is, Ga0.5M2X4. Due to the half removal of the
Ga atoms, the transition metal atoms are strongly distorted into
the tetrahedral center as denoted by the red arrows in Fig. 1a, and
a tetramerized M4 cluster appears. The M4 cluster yields a short
intra-cluster M–M distance, naturally inducing the molecular
states residing on the cluster as basic building blocks for the
low-energy electronic structure. On the other hand, the large
inter-cluster distance results in a weak inter-cluster bonding and a
narrow bandwidth of the molecular states.

As a representative example of the lacunar spinels, we
investigate the electronic structure of GaTa4Se8 (Fig. 1b–d).
Figure 1b shows the band structure and the projected density of
states (PDOS) of GaTa4Se8 in the absence of SOC. In consistency
with previous studies21–23, the triply degenerate molecular t2

bands occupied by one electron are located near the Fermi level
with a small bandwidth of B0.75 eV. As shown in the PDOS
plot, the molecular t2 bands are dominated by Ta t2g orbital
components; the small admixture of Se 5p and the strong
tetramerization imply that the molecular t2 states consist of direct
bonding between Ta t2g states.

The molecular nature of the low-energy electronic structure
can be visualized by adopting the maximally localized Wannier
function scheme24,25. The three molecular t2 Wannier functions
depicted in Fig. 1c read

j Dai ¼
1
2

X4

i¼1

j di
aiða ¼ xy; yz; zxÞ; ð1Þ

where Da and da denote the molecular t2 and atomic t2g states,
respectively, and i is a site index indicating the four corners of the
M4 cluster. Each Da originates from a s-type strong bonding
between the constituent t2g orbitals in the M4 cluster. (See
Supplementary Note 1, Supplementary Fig. 1 and Supplementary

Table 1 for details on the molecular t2 Hamiltonian.) Owing to
the exact correspondence between the molecular t2 and the
atomic t2g states, as revealed in equation 1, the molecular t2 triplet
carries the same effective orbital angular momentum leff¼ 1 as
the atomic t2g orbital18. By virtue of SOC, the leff¼ 1 states are
entangled with the s¼ 1/2 spin, and two multiplets designated by
the effective total angular momentum jeff¼ 1/2 and 3/2 emerge.
The band structure and PDOS of GaTa4Se8 in the presence of
SOC verify the above jeff picture (Fig. 1d); the molecular t2 bands
split into upper jeff¼ 1/2 and lower jeff¼ 3/2 bands. The
separation between the two jeff subbands is almost perfect
owing to the large SOC of the Ta atoms as well as the small
bandwidth of the molecular t2 band. An alternative confirmation
of the jeff picture can also be given by constructing the Wannier
function from each of the jeff subbands, which shows a 99%
agreement with the ideal molecular jeff states. (See Supplementary
Fig. 2.) Consequently, the electronic structure of GaTa4Se8 can be
labelled as a quarter-filled jeff¼ 3/2 system on a face-centered
cubic lattice.

Robust jeff-ness in the GaM4X8 series. The aforementioned
jeff-ness in GaTa4Se8 remains robust in the GaM4X8 series with a
neighbouring 5d transition metal (M¼W) as well as the 4d
counterparts (M¼Nb and Mo). Among the series, M¼W
compounds have not been reported previously in experiments;
thus we use optimized lattice parameters by structural relaxations.
In Fig. 2a–d, the electronic structures of GaTa4Se4Te4

26,
GaW4Se4Te4, GaNb4Se8

21 and GaMo4Se8
27 are shown—band

structure, PDOS and Fermi surface with projection onto the
molecular jeff states. In Fig. 2a,b, one can see the clear separation
and identification of the higher jeff¼ 1/2 doublet and the lower
jeff¼ 3/2 quartet driven by the large SOC of the 5d transition
metal atoms. The overall band dispersions are quite similar,
except for the location of the Fermi level; the M¼Ta and M¼W
lacunar spinels are well characterized by the quarter-filled
jeff¼ 3/2 and the half-filled jeff¼ 1/2 systems, respectively. In 4d
compounds, the separation between the jeff subbands is reduced
due to the smaller SOC compared with that of the 5d systems
(Fig. 2c,d). Nevertheless, there is a discernible splitting between
the jeff¼ 1/2 and 3/2 bands, which is comparable to or even better
than that in the prototype jeff compounds, Sr2IrO4 and Ba2IrO4

28.
To acquire a well-identified jeff band, we need the jeff state as a

local basis, and the inter-orbital hopping terms between the jeff

subspaces should be suppressed. Hence, there are three important
conditions to realize the ideal jeff system: high symmetry
protecting the leff¼ 1 threefold orbital degeneracy, small
bandwidth minimizing the inter-orbital mixing and large SOC
fully entangling the spin and orbital degrees of freedom.
The lacunar spinel compounds comfortably satisfy the above
conditions; the tetrahedral symmetry of the M4 cluster protects
the orbital degeneracy, the long inter-cluster distance leads to the
small bandwidth and a large SOC is inherent in 4d and 5d
transition metal atoms.

Figure 2e introduces one important controlling parameter—
the bandwidth. By changing the inter-cluster distance via external
pressure and/or by substituting chalcogen atoms, the bandwidth
of the molecular t2 band can be tuned over a wide range. In the
M¼Ta series, for example, the bandwidth varies from 0.4 to
1.1 eV. Consequently, the effective electron correlation strength,
given by the ratio between the bandwidth and the on-site
Coulomb interactions, can be controlled to reach from the weak
to the strong coupling regime. In fact, the bandwidth-controlled
insulator-to-metal transitions were observed in GaTa4Se4 and
GaNb4Se4

23,29, implying that both the weakly and strongly
interacting limits are accessible in a single compound.
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Effective Hamiltonian. From the apparent separation between
the jeff subbands, as well as the similar band dispersions, the
GaM4X8 series are governed by a common effective Hamiltonian
composed of two independent jeff¼ 1/2 and 3/2 subspaces, that is,
Heff ’ H1=2 � H3=2. (See Supplementary Notes 2 and 3.)
Therefore, the compounds with M¼Nb/Ta and M¼Mo/W are
described by the quarter-filled H3=2 and the half-filled H1=2

systems, respectively. The nearest-neighbor hopping terms for
each subspace are written as

Ht
hopping ¼

X
hiji

C
y
itTt

ijCjt t ¼ 1=2; 3=2ð Þ; ð2Þ

with T1=2
ij ¼ t0Iþ itD

ij � S1=2

T3=2
ij ¼ t0Iþ itD

ij � S3=2þ tQ
ij � G;

where S1/2 and S3/2 are the jeff¼ 1/2 and 3/2 pseudospin matrices,
respectively, and C are the 5-component Dirac Gamma matrices.
t0 and tQ’s are even, and tD’s are odd functions under the spatial
inversion; tD’s are allowed by the inversion asymmetry of the M4

cluster. The pseudospin-dependent hopping terms tD and tQ can

be interpreted as the effective magnetic dipolar and quadrupolar
fields acting on the hopping electron, respectively.

DFTþ SOCþU calculations. So far, we have discussed about
the jeff-ness without containing electron correlations, which
provides a valid picture in the weak coupling regime. Once taking
electron correlations into account, one important question arises
on the robustness of the molecular jeff states under the influence
of the on-site Coulomb interaction. To answer this question, we
perform DFTþ SOCþU calculations for GaTa4Se4Te4, GaW4-

Se4Te4, GaNb4Se8 and GaMo4Se8. We consider two simplest
magnetic configurations, ferromagnetic and antiferromagnetic
order, and the antiferromagnetic solutions for each compound
are shown in Fig. 3. In the 5d compounds, the molecular jeff states
remain robust with developing a SOC-assisted Mott gap within
each jeff subspace (Fig. 3a,b). For the 4d compounds, the jeff

character is enhanced from the non-interacting cases in Fig. 2c,d;
the occupied states in GaNb4Se8 (Fig. 3c) and the unoccupied
states in GaMo4Se8 (Fig. 3d) are dominated by jeff¼ 3/2 and 1/2
characters, respectively. The strengthened jeff character by the
cooperation with electron correlations is consistent with the
recent theoretical results on Sr2IrO4

28,30. See the Supplementary
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Note 4, Supplementary Figs 3–6 and Supplementary Tables 2–5
for more details.

Discussion
The effective Hamiltonian of the lacunar spinel series has
intriguing implications both in the weak and strong coupling
regimes. As suggested in previous studies3,9,31, the effective fields
exerted on the hopping electron can induce a topological
insulating phase in the weak coupling regime. In fact, a non-
trivial band topology is realized within the molecular jeff bands in-
thin film geometries: the monolayer (Fig. 4a) and the bilayer thin
film (Fig. 4b) of the M4 clusters normal to the (111) direction.
Each system corresponds to the triangular and honeycomb lattice,
respectively, and the inter-layer coupling enhanced by a factor of
three is adopted in the bilayer system. Non-trivial gaps emerge in
the half-filled jeff¼ 3/2 bands in the monolayer and the half-filled
jeff¼ 1/2 bands in the bilayer system. A two-dimensional (2D)
topological insulator phase is indicated by an odd number of edge
Dirac cones at time-reversal invariant momenta in ribbon
geometries (Fig. 4a,b). Such 2D geometries might be feasible
with the help of the state-of-the-art epitaxial technique prevailing

in oxide perovskite compounds32, or by mechanically cleaving the
single crystal to get clean surfaces as done in previous studies on
GaTa4Se8

33,34.
In the strong coupling regime, the large on-site Coulomb terms

are added to the kinetic Hamiltonian, and the hopping terms Tt
ij

are treated as perturbations. The localized jeff pseudospins
become low-energy degrees of freedom and exchange interactions
between the neighbouring jeff moments emerge. In the simplest
example, the one-band Hubbard model within the half-filled
H1=2, the resulting spin Hamiltonian for the jeff¼ 1/2 moments is
written as35,36

H1=2
spin ¼

X
hiji

Jsi � sjþDij � si�sj
� �

þ si � Aij � sj
� �

; ð3Þ

among the exchange interaction terms, the Dzyaloshinskii–
Moriya Dij and the pseudodipolar interaction Aij depend on tD

ij ,
whose direction is determined by the two mirror planes, as
illustrated in Fig. 4c (details in Supplementary Note 5). As shown
in Fig. 4d, the relative magnitude of each exchange term is
changed with different chalcogen atoms, so that systematic study
of the anisotropic Hamiltonian in equation 3 can be made in the
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M¼Mo/W compounds. Especially, GaMo4S8 and GaW4Se8

satisfies the limit of |t0/tD|-0, where the spin Hamiltonian
becomes highly anisotropic and bond direction dependent
such that

H1=2
spin !

X
hiji

si � Aij � sj ¼
4 j tD j2

U

X
hiji

2ðsi � t̂D
ij Þðsj � t̂D

ij Þ� si � sj

h i
;

ð4Þ
with t̂D

ij ¼ tD
ij = j tD j. In addition to the Heisenberg term, the

Hamiltonian contains the bond-dependent and Ising-like

pseudodipolar interaction, called as a Heisenberg-compass
model37. It can be further reduced to distinct 2D spin models
in thin-film geometries. Figure 4e,f shows two examples—the
(001) and (111) monolayer lead to the 90�- and 60�-compass
model with the Heisenberg exchange term on a square and a
triangular lattice, respectively.

The jeff¼ 3/2 systems in the strong coupling limit could also
have a significant implication in terms of unconventional
multipolar orders38–40. On top of the nonmagnetic insulating
behaviour, the weak tetragonal superstructure and the anomalous
magnetic response observed in GaNb4S8 at TB31 K41 could give
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some clues on the quadrupolar ordered phase as well as the spin
liquid phase suggested in ref. 39, which promptly calls for further
research on the jeff¼ 3/2 spin model.

The formation of the M4 cluster and SOC are the essential
requisites to realize the molecular jeff state in these 3D
intermetallic compounds. The strong tetramerization sustains
the isolated molecular bands with threefold orbital degeneracy
and narrow bandwidth, and the large SOC fully entangles the spin
and orbital components. The existence of the pure quantum state
has been shedding light on studying the ideal quantum model
systems in strongly correlated physics; the Hubbard Hamiltonian
or the frustrated spin Hamiltonian based on the pure spin-half
state has been realized in several organic compounds42–44.
Likewise, the molecular form of the ideal jeff state as a pure
quantum state might be of great use to explore the emergent
phenomena in the spin-orbit-coupled correlated electron systems.

Methods
First-principles calculations. Structural optimizations were done with the
projector augmented wave potentials and the PBEsol45 generalized gradient
approximation as implemented in the Vienna ab initio Simulation Package46,47.
Momentum space integrations were performed on a 12� 12� 12 Monkhorst-Pack
grid, and a 300-eV energy cutoff was used for the plane-wave basis set. The force
criterion was 10� 3 eV Å� 1, and the pressures exerted were estimated by using the
Birch–Murnaghan fit.

For the electronic structure calculations, we used OPENMX code48 based on the
linear-combination-of-pseudo-atomic-orbital basis formalism. Four hundred
Rydberg units of energy cutoff was used for the real-space integration. SOC was
treated via a fully relativistic j-dependent pseudopotential in a non-collinear
scheme. Simplified DFTþU formalism by Dudarev et al.49, implemented in
OPENMX code50, was adopted in the DFTþ SOCþU calculations.
Ueff�U� J¼ 2.5 and 2.0 eV was used for the 4d and 5d compounds, respectively.
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