
Historical Value-Based Approach for Cost-cognizant Test Case
Prioritization to Improve the Effectiveness of Regression Testing

Hyuncheol Park, Hoyeon Ryu, Jongmoon Baik
School of Engineering, Information and Communications University,

119 Munji-ro, Yuseong-Gu, Daejeon, Republic of Korea
{hcparker, hoyeon, jbaik}@icu.ac.kr

Abstract

Regression testing has been used to support

software testing activities and assure the acquirement
of appropriate quality through several versions of a
software program. Regression testing, however, is too
expensive because it requires many test case
executions, and the number of test cases increases
sharply as the software evolves. In this paper, we
propose the Historical Value-Based Approach, which
is based on the use of historical information, to
estimate the current cost and fault severity for cost-
cognizant test case prioritization. We also conducted
a controlled experiment to validate the proposed
approach, the results of which proved the proposed
approach’s usefulness. As a result of the proposed
approach, software testers who perform regression
testing are able to prioritize their test cases so that
their effectiveness can be improved in terms of
Average Percentage of Fault Detected per Cost.

1. Introduction

A software product, once developed, has a long life

and evolves through numerous additions and
modifications based on its faults, changes of user
requirements, changes of environments, and so forth.
With the evolution of a software product, assuring its
quality is becoming more difficult because of
numerous release versions. It is becoming much
harder to manage the software itself. On the other
hand, users hope that a new software version has
better quality than before. However, sometimes The
quality of a software becomes worse than before
because the added or modified features create
additional faults into the existing product as well as
the newly modified version.

Regression testing has been used to support
software-testing activities and assure acquiring an
appropriate quality through several versions of a
software product during its development and
maintenance. Regression testing, however, is too
expensive because it requires a lot of test case
executions, and the number of test cases increases
sharply as the software evolves [4, 16]. For this reason,
several researches have been conducted to provide
effective regression testing techniques.

However, the existing researches as to test case
prioritization have had a critical weakness in that the
most of them are based on the assumption that all
factors in test case prioritization are considered
equally: it is a value-neutral situation. For instance,
the cost and fault severity of test cases are considered
equivalently. In practice, however, those factors
heavily affect the effectiveness of testing [20]. For this
reason, some researchers have suggested a cost-
cognizant test case prioritization technique [1, 2].
However, this cost-cognizant test case prioritization
technique reveals a problem; the specific way to
estimate cost and fault severity is not clarified even
though such estimations are needed.

In this paper, we propose the Historical Value-
Based Approach, which is based on the use of
historical value to estimate the current cost and fault
severity for a cost-cognizant test case prioritization
technique. We also conducted a controlled experiment
to validate the proposed approach by comparing it
with an existing test case prioritization technique. The
effectiveness of test case prioritization can be
measured using the Average Percentage of Fault
Detected (APFD) or Average Percentage of Fault
Detected per Cost (APFDc). The result of the
experiment proved the usefulness of the proposed
approach for improving the effectiveness of test case
prioritization in terms of the APFDc.

The Second International Conference on Secure System Integration and Reliability Improvement

978-0-7695-3266-0/08 $25.00 © 2008 IEEE

DOI 10.1109/SSIRI.2008.52

39

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:50:22 UTC from IEEE Xplore. Restrictions apply.

2. Background and Related Works

In this section, we provide background information

on regression testing, including its conceptual
definition, test case prioritization techniques that are
directly related to the proposed approach, and metrics
to show the effectiveness of test case prioritization
techniques.

2.1. Regression Testing
Regression testing is a kind of software testing that

focuses on selective retesting through various versions
of a software system [20]. The following is the formal
definition of regression testing used by IEEE.

“Selective retesting of a system or component to

verify that modifications have not caused unintended
effects and that the system or component still complies
with its specified requirements” [22]

In short, the basic idea of regression testing is the

revalidation of a software system in order to figure out
whether the modifications of the software system
cause errors or not among the several versions of the
software system. Because regression testing is highly
expensive, several techniques have been researched for
effective and efficient regression testing [14, 17, 19].
There are four major techniques for regression testing:
retest-all [15], regression test selection [18], test suite
reduction [13], and test case prioritization [4, 5].
Among them, test case prioritization has been
perceived as one of the most effective and efficient
techniques for regression testing [4].

2.2. Cost-cognizant Test Case Prioritization
Since test case prioritization was introduced, there

has been an important weakness in the technique;
there has been no consideration of test costs and fault
severities. In practice, however, the cost of each test
case and the severities of each fault are not equal. For
this reason, test case prioritization techniques often
produce no appropriate test orders in practice [2].

Cost-cognizant test case prioritization incorporates
test costs and fault severities into test case
prioritization [1, 2]. In short, cost-cognizant test case
prioritization considers the test cost and fault severity
of each test case as important factors, and the test cost
and fault severity are used for prioritizing test cases on
the existing test case prioritization algorithms.

2.3. History-Based Test Prioritization
History-based test prioritization is based on the use

of historical test execution data and a regression test
selection technique. The keys of history-based test
prioritization are the following two factors [3]:

 A procedure for test case prioritization
 How to set and assign the selection

probabilities

The selection probabilities are calculated from the

following formula [3]:
� P0 = h1
� Pk = αhk + (1 – α)Pk-1 (0 =< α =< 1, k => 1)

Let Pk be the selection probability of a test case at kth
execution. Also, let hk be a set of test execution times
which is a time-ordered observation from 1st
execution to kth execution. By changing α, the last
probability of a test case and the previous probability
of the test case affect the current probability of the test
case. The historical information regarding each test
case’s execution is used to increase or decrease the
selection probabilities at a current testing session.

2.4. Metrics of Test Effectiveness
There is a metric, APFD, to measure the prioritized

order of test cases in a test suite in terms of the
effectiveness of a test case prioritization technique [4,
5]. APFD focuses on increasing a test suite’s rate of
fault detection, how quickly the faults are detected
during testing processes, in order to measure the
average cumulative percentage of faults detected over
the execution of test cases in a test suite’s given order.
Also, APFD quantifies the effectiveness and efficiency
of the order of test cases and measures a test suite’s
rate of fault detection using two criteria, percentage of
test suite executed and percentage of fault detected.

Basically, APFD is based on an assumption that all
test cases have equal cost and all faults have equal
severity. However, test costs and fault severities vary
widely in practice. If the assumption is broken, APFD
produces no appropriate results. For this reason,
APFDc was introduced [1, 2]. APFDc adopts the
considerations of test costs and fault severities into
APFD in the view of Value-Based Software
Engineering (VBSE).

In short, APFD is a metric used to show the
effectiveness of test case prioritization, and it is value-
neutral in terms of test cost and fault severity. In
contrast, APFDc is a metric used to show the
effectiveness of test case prioritization in terms of
value, test cost, and fault severity.

40

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:50:22 UTC from IEEE Xplore. Restrictions apply.

3. Research Approach: Historical Value-

Based Approach for Cost-cognizant Test
Case Prioritization

In this section, we describe the proposed Historical

Value-Based Approach for cost-cognizant test case
prioritization. It includes an overview of the proposed
approach, the contents of the approach with some
examples, and a historical value model.

3.1. Overview of the approach
The proposed approach focuses on the use of

historical information to determine the priority of
given test cases. By using the historical information of
the costs of the test cases and the fault severities of
detected defects in a test suite, the historical value of
the test cases is calculated and used for the basis of
test case prioritization. Additionally, the historical
value can be combined with not only a cost-cognizant
test case prioritization technique, but also several
existing test case prioritization techniques such as a
coverage-based test case prioritization technique.

Namely, the historical value is calculated from the
previous test costs and fault severities of detected
defects in a test suite. Then, the historical value is
used for the factor that affects the prioritization of test
cases in a given test suite. The following figure shows
the overall description of the proposed approach.

 Figure 1. Overview of Historical Value-Based
Approach

The following explains the above figure.

 P is a software system and P ̀ is the modified
version of P.

 To conduct regression testing for P ,̀ a test
suite is composed of the test cases from the
test case repository.

 The cost of a test case and fault severity of the
detected defects, which are the results from
the execution of a test case, are stored in the
historical information repository.

 When the prioritization is required, the
historical value model uses the stored
historical information, the test costs of the
test cases and the fault severities of the
detected defects, and calculates the historical
value.

 The calculated historical value is used for the
criterion of prioritizing test cases in a test
suite.

3.2. Historical Value-Based Approach for Cost-

cognizant Test Case Prioritization
The Historical Value-Based Approach for cost-

cognizant test case prioritization focuses on
prioritizing test cases in terms of historical value. This
means that the previous test costs of test cases and the
fault severities of previously detected faults are used
for a criterion of test case prioritization; however, the
Historical Value-Based Approach has one assumption,
that the test costs of the test cases and the fault
severities of detected faults are not significantly
changed from one release to a later one. We are
concerned with this assumption, but it is rarely broken
in general cases [3].

3.2.1. Test Cost and Fault Severity
Test costs are greatly diversified in software testing.

Depending on the criteria, a test cost can be refined
through several factors such as machine time, human
time, test case execution time, monetary value of the
test execution, and so forth [2].

Similarly, fault severity can also be refined by
depending upon such criteria as test criticality (the
criticality of the test case that detects a fault) and
function criticality (the criticality of the function in the
code that is covered by the test case).

In our approach, we refined test cost as the test case
execution time of a test case. It is the most widely used
definition to refine test costs in previous researches on
test case prioritization [1, 2]. Fault severity is refined
to test case criticality, which is designated to each test
case by software testers.

3.2.2. Definitions used in the Historical Value-

Based Approach
In our approach, some definitions are used for its

designated meaning. In this part, we provide all of the
definitions as follows.

41

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:50:22 UTC from IEEE Xplore. Restrictions apply.

 Let P be a software system.
 Let P ̀be the next version of software system

P.
 Let n be the number of the test cases that

consists of a test suite.
 Let T be a test suite, that is composed of the

test cases from t1 to tn, for testing P.
 Let T ̀be a test suite, that is composed of the

test cases from t1 to tn, for testing P .̀
 Let ti be a test case that is involved in test

suite T.
 Let m be the number of the faults that can be

detected by test suite T.
 Let HV(t, i) be a historical value of test case t

on an ith execution (from i-1th execution). (i
> 0)

 Let C(t, i) be the relative cost of test case t’s
ith execution by comparing the maximum
cost among the cost of test cases in a test suite.
(cf. C0 = the mean value of the cost of all test
cases in a test suite)

 Let FS(t, i) be the relative total fault severities
of test case t’s ith execution, the sum of the
fault severity of the faults that are revealed by
test case t, by comparing the maximum fault
severity revealed by test case t’s ith execution.
(cf. FS0 = the mean value of the fault severity
of all test cases in a test suite)

 Let wCi be a weight factor of C with an ith
execution of test cases.

 Let wFSi be a weight factor of FS with an ith
execution of test cases.

 Let min(X1, Xn) be a function that receives the
minimum value between X1 to Xn.

3.2.2. Historical Value Model
A historical value model is a model to quantify the

historical value of a test case, HV(t, i), in terms of
previous test costs C(t, i-1) and previous fault severity
FS(t, i-1). For test cost C(t, i-1) and fault severity FS(t,
i-1), the relative values are used by comparing the
maximum value among them. There are a software
system P and five test cases each have their own cost
as follows.

Table 1. Example to explain the relative cost

Test cases Cost Relative Cost
A 2 50
B 1 25
C 4 100

D 2 50
E 1 25

For instance, there are five test cases A, B, C, D,

and E. Each of them has a cost from 1 to 4. Test case
C has a maximum cost of 4, which is the maximum
relative cost of 100 among the five test cases. By
comparing the cost of C, which has the maximum
value, the relative costs of the other test cases are each
determined proportionally. Consequently, test case A
has a relative cost of 50 because its cost is 2, half of
the cost of C.

Fault severity is not same with cost. The following
table shows an example of faults and their severities.

Table 2. Example to explain the total fault
severities

Faults Fault Severity
1 4
2 2
3 5
4 1
5 2
6 2
7 4
8 2
9 2

10 1

For instance, there are ten faults, from No. 1 to No.

10. Each of them has a fault severity from 1 to 5. If
test case A can detect faults No. 1 and No. 4, test case
A has a total of 6 fault severities. Assuming that each
test case has a fault severity as in the following table,
their relative fault severities are determined by
depending on the maximum total fault severity among
the test cases.

Table 3. Example to explain the relative total fault
severity

Test cases Total Fault
Severity

Relative Total
Fault Severity

A 6 60
B 4 40
C 10 100
D 3 30

42

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:50:22 UTC from IEEE Xplore. Restrictions apply.

E 2 20

Namely, test case A has a relative total fault

severity of 40, by comparing the maximum relative
total fault severity of 100, which is that of test case C.
Similarly, the other test cases have a relative total fault
severity with the proportion of their fault severities
compared with the maximum value.

The weight factor wCi at an ith execution is defined
as follows:

i
i

i i

C
wC

C FS

Similarly, the weight factor wFSi at an ith

execution is defined as follows:
i

i
i i

FS
wFS

C FS

iC is the mean value of C, the total relative costs,

at an ith execution. Also, iFS is the mean value of FS,
the total relative fault severities, at an ith execution.
Those weight factors are used for balancing two other
kinds of values. This kind of use of weight factor is
presented in the previous research with respect to
requirement-based test case prioritization [21].
Because the historical value is basically a summation
of C and FS, each weight factor, wCi and wFSi,
represent the proportion of the each value in the
historical value.

The historical value of test case t at an ith
execution is defined as follows:

(,) (, 1) 1(, 1), (,)[(100 min()]t i t i it t nHV C C C wC

(, 1) 1t i iFS wFS

HV(t, i) is the historical value of test case t’s at an

ith execution. It consists of two values: the relative
cost, which is weighted by wCi, and the total relative
fault severities, the sum of the fault severities of the
faults that are revealed by test case t, which is
weighted by wFSi. Because the actual value from the
cost has an adverse relationship with cost, the
maximum value of relative cost 100, the minimum
cost among the test cases is added to the formula to
inverse the value of cost. This kind of formula, a
composition of a value with another value, is used in
the previous research as to requirement-based test case
prioritization [21]. We adopted a similar way in order
to make a model to compose two different values, test

cost and fault severity. Cost and fault severity, due to
the use of relative values, can be considered
independently, and the addition of relative cost and
relative fault severity can be admitted in the
calculation of the historical value.

The following figure shows the algorithm to
calculate historical value HV(t, i).

Figure 2. An algorithm to calculate historical value
HV(t, i)

4. Experiment

In this section, we explain the experiment to

validate and prove the effectiveness of the proposed
Historical Value-Based Approach for cost-cognizant
test case prioritization. The environment used to
conduct the experiment is depicted with the
hypotheses, variables, and measures of the experiment.
Last, we provide and explain an analysis of the
experimental results.

4. 1. Hypotheses
Cost-cognizant test case prioritization with the

Historical Value Based Approach produces better
results than a coverage-based test case prioritization
technique.

4. 2. Variables and measures
There are two variables of the experiment:

 Cost-cognizant test case prioritization with
Historical Value-Based Approach

 Functional coverage test case prioritization

For a measure of the experiment, APFDc is used

for comparison with two test case prioritization
techniques.

Input: Test suit T with n test cases (from t
1
 to t

n
), the current time of

testing i, cost of test case t

at i-1 time C

(t, (i-1)),
 fault severity of test

case t

at i-1 time FS

(t, (i-1))

Output: Test case t’s historical value HV(t, i) at ith test execution
 1: begin
 2: set T empty
 3: calculate wCi
 4: calculate wFSi
 5: for each test case t T do
 6: get C

(t, (i-1))
and FS

(t, (i-1))

 7: calculate an historical value HV(t, i) of t

 8: end for
9: end

43

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:50:22 UTC from IEEE Xplore. Restrictions apply.

4. 3. Experimental Environment
Some researchers have conducted their researches

to prove the effectiveness of the test case prioritization
by using an experimental environment [7, 8, 9, 10, 11,
12]. Those researches aim to provide for assessing test
case prioritization techniques using hand-seeded faults
based on the JUnit testing framework. Because it
based on JUnit, the test execution is also performed on
the JUnit environment. For the target of the
experiment, an open-source Java software system, ant,
is used. The testing objects, ant, whose faults are
seeded by hand, and tools came from [10]. For a
coverage analysis of the target, a dynamic Java
analyzer, Sofya, is used [23].

Additionally, we developed the following module
for the experiment:

 A module to store the historical information
into the historical information repository

 A module to calculate the historical value by
composing the cost and fault severity from
the testing object and their historical
information

 An interface module to integrate those objects,
tools, and historical information.

 A module to calculate APFDc

The following figure describes the overall structure
of the experimental environment.

Figure 3. Overview of the experimental
environment

From the execution of test cases in the target

objects, their cost, execution time, and fault severity
derived from the test criticality are stored in the
historical information repository. The stored
information is used for determining the historical
value, and it continuously affects the Historical Value-
Based Approach. By using Sofya, the coverage
information is derived and stored in the coverage
information repository.

For prioritizing the current test cases, two test case
prioritization techniques are used, and they generate a
prioritized order of test cases. Finally, the APFDc
calculator calculates the effectiveness of the prioritized
order of test cases.

4. 4. Analysis of the experimental result
The target of the experiment is comprised of

several versions of ant with JUnit test cases. Those ant
systems and test cases are provided by SIR and are
fault seeded. The following table shows the overall
target system.

Because the execution time of JUnit test cases are
too short, each test case is executed 10,000 times, and
the mean execution time of the overall execution is
stored into the historical information repository for the
costs of the test cases. Each JUnit test case has its test
criticality and is used as the fault severity of each test
case. Because there are lots of test suites by using the
test cases of each version, we summarize the APFDc
value of every test suite by using the mean value of the
APFDc for each prioritized test suite.

The following Tables 4 and 5 show the
experimental results by the above procedure. Table 4
describes the results from the first experiment, and
Table 5 depicts the results from the second experiment
with a correction of the Historical Value-Based
Approach.

Table 4. Mean APFDc values from the experimental
results when the intial value is 0

Version
Number
of test
cases

Mean APFDc for
Functional

coverage test case
prioritization

Mean APFDc for
Historical Value-
Based Approach

0 34 62% 46%

1 34 60% 73%

2 52 58% 52%

3 52 61% 79%

4 101 62% 42%

5 104 66% 80%

6 105 64% 79%

7 150 62% 45%

8 151 65% 78%

The following figure shows the changes in the

trend of mean APFDc value through ant versions in
the first experiment. The black graph shows the trend
of mean APFDc value when the Historical Value-
Based Approach is used, and the pink graph shows the

44

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:50:22 UTC from IEEE Xplore. Restrictions apply.

trend of mean APFDc value of functional coverage test
case prioritization. Sometimes, there are huge
declinations of mean APFDc value when the
Historical Value-Based Approach is used. The black
graph even shows a worse mean APFDc value than
functional coverage based test case prioritization.

Figure 4. The change trends of mean APFDc
values through ant versions in the first experiment

In the earlier part of our experiment, we used the

initial value 0 for the newly added test cases. However,
this caused a significant fall of mean APFDc value in
the first experiment when the number of test cases is
significantly changed.

For this reason, we modified our approach to take
the mean value of the cost and fault severity of all test
cases for the initial historical information of the newly
added test cases and then conducted a second
experiment. Table 5 shows the experimental result of
the second experiment, where the decline of the mean
APFDc value is greatly decreased.

Table 5. Mean APFDc values from the experimental
results when the intial value is the mean value of
the prior test cases’ historical information

Version
Number
of test
cases

Mean APFDc for
Functional

coverage test case
prioritization

Mean APFDc for
Historical Value-
Based Approach

0 34 62% 46%

1 34 60% 73%

2 52 58% 65%

3 52 61% 79%

4 101 62% 68%

5 104 66% 80%

6 105 63% 79%

7 150 62% 70%

8 151 65% 78%

The following figure shows the changes in trend of

mean APFDc value through ant versions in the second
experiment. The black graph shows the trend of mean
APFDc value when the Historical Value-Based
Approach is used, and the pink graph shows the trend
of mean APFDc value for functional coverage test case
prioritization. Also, there are falls in the black graph,
and this shows the declination of mean APFDc value
when the Historical Value-Based Approach is used.
However, the declination of the mean APFDc value is
largely decreased when the Historical Value-Based
Approach is used, and the declined mean APFDc
values are greater than the mean APFDc value, which
comes from the functional coverage based test case
prioritization. Consequently, the black graph always
shows a better mean APFDc value than functional
coverage based test case prioritization.

Figure 5. The change trends of mean APFDc

values through ant versions in the first experiment

5. Conclusions and Further Works

In this paper, we suggest the Historical Value-

Based Approach for a cost-cognizant test case
prioritization technique that includes an estimation of
the trends of cost and fault severity by using historical
information. We also conducted a controlled
experiment to validate the proposed approach, the
results of which proved its usefulness and effectiveness.
As a result of the experiment, the Historical Value-

45

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:50:22 UTC from IEEE Xplore. Restrictions apply.

Based Approach for cost-cognizant test case
prioritization produces better results, in terms of
APFDc, than functional coverage-based test case
prioritization techniques.

The major contributions of this research are the
following two points. First, it provides a way to
estimate the cost and fault severity of the current test
case by using historical information. Second, the
proposed approach can complement other test case
prioritization techniques because it can be combined
with other test case prioritizations.

We have many future works for enhancing the
proposed approach and providing the best test case
prioritization technique. First, more sufficient
experimental data are required because we only
consider two techniques, the Historical Value-Based
Approach and functional coverage test case
prioritization. Second, we only used a linear scale for
fault severity. For instance, we can use many kinds of
scale for fault severity such as exponential or
logarithmic scales. Third, for cost and fault severity,
one of them may have greater priority than the other
one. To support this situation, we should provide a
way to give more priority to one of them, cost or fault
severity. Finally, we are working on appending a
consideration of other factors that affect the
prioritization of the test cases such as the number of
not yet detected defects in a test case.

Acknowledgement

This research was supported by the MIC(Ministry

of Information and Communication), Korea, under the
ITRC(Information Technology Research Center)
support program supervised by the IITA(Institute of
Information Technology Advancement) (IITA-2008-
(C1090-0801-0032))

References

[1] Sebastian Elbaum, Alexey Malishevsky, and Gregg Rothermel,
"Incorporating Varying Test Costs and Fault Severities into Test Case
Prioritization", Proceedings of the Internal Conference on Software
Engineering (ICSE`01), May 2001.
[2] Alexey G. Malishevsky, Joseph R. Ruthruff, Gregg Rothermel, and
Sebastian Elbaum, “Cost-cognizant Test Case Prioritization”,
Technical Report TR-UNL-CSE-2006-0004, University of Nebraska-
Lincoln, March 2006.
[3] Jung-Min Kim and Adam Porter, “A History-Based Test
Prioritization Technique for Regression Testing in Resource
Constrained Environments,” Proceedings of the International
Conference on Software Engineering (ICSE`02), May 2002.
[4] Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel,
"Test Case Prioritization: A Family of Empirical Studies", IEEE
Transactions on Software Engineering, vol. 28, no. 2, pp. 159-182,
Feburary 2002.

[5] Gregg Rothermel, R. Untch, C. Chu, and Mary J. Harrold,
“Prioritizing Test Cases for Regression Testing,” IEEE Transactions on
Software Engineering, vol. 27, no. 10, pp. 929-948, October 2001.
[6] .
[7] Hyunsook Do and Gregg Rothermel, "A Controlled Experiment
Assessing Test Case Prioritization Techniques via Mutation Faults",
Proceedings of the International Conference on Software Maintenance
(ICSM`05), 2005.
[8] Hyunsook Do and Gregg Rothermel, "On the Use of Mutation
Faults in Empirical Assessments of Test Case Prioritization
Techniques", IEEE Transactions on Software Engineering, vol. 32, no.
9, September 2006.
[9] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel,
"Supporting Controlled Experimentation with Testing Techniques: An
Infrastructure and Its Potential Impact", Empirical Software
Engineering, vol. 10, no. 4, pp. 405-435, 2005.
[10] Software-artifact Infrastructure Repository, http://sir.
unl.edu
[11] Hyunsook Do, Gregg Rothermel, and A. Kinneer, “Prioritizing
JUnit Test Cases: An Empirical Assessment and Cost-Benefits
Analysis,” Empirical Software Engineering, vol. 11, no.1, pp. 33-70,
Mar. 2006.
[12] Hyunsook Do, Gregg Rothermel, and Alex Kinneer, “Empirical
Studies of Test Case Prioritization in a JUnit Testing Environment”,
Proceedings of the International Symposium on Software Reliability
Engineering (ISSRE’04), November 2004.
[13] Sebastian Elbaum, D. Gable, and Gregg Rothermel,
“Understanding and Measuring the Sources of Variation in the
Prioritization of Regression Test Suites,” Proceedings of the
International Software Metrics Symposium, April 2001.
[14] Jung-Min Kim, Adam Porter, and Gregg Rothermel, “An
Empirical Study of Regression Test Application Frequency,”
Proceedings of the International Conference on Software Engineering
(ICSE`00), June 2000.
[15] Hareton K. N. Leung and Lee White, “Insights into Regression
Testing”, Proceedings of the International Conference on Software
Maintenance (ICSM’89), October 1989.
[16] K. Onoma, W-T. Tsai, M. Poonawala, and H. Suganuma,
“Regression Testing in an Industrial Environment,” Communications
of ACM, vol. 41, no. 5, pp. 81-86, May 1988.
[17] Gregg Rothermel, Sebastian Elbaum, A.G. Malishevsky, P.
Kallakuri, and X. Qiu, “On Test Suite Composition and Cost-Effective
Regression Testing,” ACM Transactions on Software Engineering and
Methodology, vol. 13, no. 3, pp. 227-331, July 2004.
[18] Gregg Rothermel and M.J. Harrold, “Analyzing Regression Test
Selection Techniques,” IEEE Transactions on Software Engineering,
vol. 22, no. 8, pp. 529-551, August 1996.
[19] A. Srivastava and J. Thiagarajan, “Effectively Prioritizing Tests in
Development Environment,” Proceedings of the International
Symposium on Software Testing and Analysis, July 2002.
[20] W.E. Wong, J.R. Horgan, S. London, and H. Agrawal, “A Study
of Effective Regression Testing in Practice,” Proceedings of the
International Symposium on Software Reliability Engineering,
November 1997.
[21] Hema Srikanth and Laurie Williams, “On the Economics of
Requirements-Based Test Case Prioritization”, Proceedings of the
International Workshop on Economics-Driven Software Engineering
Research (EDSER’05), July 2005.
[22] Institute of Electrical and Electronics Engineers(IEEE). IEEE
Standard Computer Dictionary: A Compilation of IEEE Standard
Computer Glossaries. New York, NY: 1990.
[23] Alex Keener, Sofya – dynamic program analysis for Java
software, http://sofya.unl.edu

46

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:50:22 UTC from IEEE Xplore. Restrictions apply.

