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Abstract

Because most rewarding events are probabilistic and changing, the extinction of probabilistic rewards is important for
survival. It has been proposed that the extinction of probabilistic rewards depends on arousal and the amount of learning of
reward values. Midbrain dopamine neurons were suggested to play a role in both arousal and learning reward values.
Despite extensive research on modeling dopaminergic activity in reward learning (e.g. temporal difference models), few
studies have been done on modeling its role in arousal. Although temporal difference models capture key characteristics of
dopaminergic activity during the extinction of deterministic rewards, they have been less successful at simulating the
extinction of probabilistic rewards. By adding an arousal signal to a temporal difference model, we were able to simulate the
extinction of probabilistic rewards and its dependence on the amount of learning. Our simulations propose that arousal
allows the probability of reward to have lasting effects on the updating of reward value, which slows the extinction of low
probability rewards. Using this model, we predicted that, by signaling the prediction error, dopamine determines the
learned reward value that has to be extinguished during extinction and participates in regulating the size of the arousal
signal that controls the learning rate. These predictions were supported by pharmacological experiments in rats.
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Introduction

If the conditioned stimulus (CS) is no longer followed by the

unconditioned stimulus (US), it weakens the ability of the CS to

induce the conditioned response, a phenomenon called extinction

[1,2]. Extinction is not erasing prior beliefs about the contingency

of the CS and US but amounts to adding a new belief that the CS

does not elicit the US anymore. This is evidenced by the finding

that the extinguished conditioned response typically reappears as

time goes by (spontaneous recovery). Unlike de novo acquisition of

the association between the CS and US, extinction occurs under

the influence of prior beliefs about the CS-US relationship and

usually takes longer than acquisition. It has been suggested that

arousal induced by observations inconsistent with prior beliefs

facilitates the formation of a new belief by enhancing the learning

rate [3,4,5].

In the stochastic and continuously changing environment, the

extinction of probabilistic rewards is important for survival and

failure in the extinction of probabilistic rewards leads to

maladaptation such as pathological gambling [6,7]. In cases of

the extinction of probabilistic rewards, the amount of arousal

elicited by the cessation of those rewards increases with the reward

probability. Research has shown that after extensive learning of

the values of probabilistic rewards, the lower the reward

probability, the more time is required for extinction to occur (a

phenomenon known as partial reinforcement extinction effect

(PREE)) [8,9]. The PREE can be explained by an arousal-

mediated difference in the learning rate of the extinction of low

and high probability rewards. Furthermore, if the extinction

happens after a moderate amount of learning, the rate of

extinction appears as an inverted-U shaped function of the reward

probability [9,10]. This indicates that the learned reward value as

well as arousal may play a role in the extinction of probabilistic

rewards.

The involvement of reward learning and arousal elicited by

deviations from prior beliefs suggests that the midbrain dopami-

nergic system may be a neural substrate that controls the rate of

the extinction of probabilistic rewards. Dopamine neurons are

known to drive reinforcement learning by signaling the reward

prediction error–discrepancy between the expected reward and

the reward received [11,12]. The magnitude of the phasic firing of

dopamine neurons at the time of the CS is related to the

parameters of the rewards including their probability, size and

delivery delay [13,14]. Because dopamine neurons signal the

reward prediction error, they are in a good position to not only

affect reward learning but also to signal deviations from prior

beliefs. Recent studies have demonstrated that the activity of the

amygdala reflected the level of arousal resulting from deviations

from prior beliefs [15,16] and that enhanced levels of arousal are
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related to larger learning rate [4]. The arousal signal in the

amygdala has also been found to rely on the dopamine neurons

[17]. Finally, systemic injection of amphetamine has been found to

abolish PREE, supporting again a potential role of the dopamine

neurons in PREE [18].

During extinction, the phasic activity of dopamine neurons in

response to the CS decays and an inhibitory response to the CS

develops [19,20]. The temporal difference model by Pan et al.

[20] is a biologically grounded model based on these findings and

simulates key features of reward extinction such as spontaneous

recovery and fast relearning after extinction. However, this model

has not been tested in the extinction of probabilistic rewards and

does not take into account the effect of arousal. The Pearce-Kaye-

Hall model proposes a way to incorporate the prediction error of

dopamine neurons and the influence of arousal on the learning

rate in reinforcement learning [5,15]. In this model, the prediction

error updates the level of arousal, which correlates with the

learning rate.

We hypothesize that the rate of extinction of probabilistic

rewards depends on arousal and learned reward value and that the

prediction error computed by the dopamine neurons is involved in

arousal as well as reward learning. By combining a Pearce-Kaye-

Hall model of arousal with the model by Pan et al. [20] we could

reproduce the inverted-U shape of the rate of extinction as a

function of reward probability after non-extensive learning and

could produce PREE after extensive learning. This modified

model furthermore predicted the effect of pharmacological

activation and inactivation of the dopamine neurons in the ventral

tegmental area (VTA) on the extinction of probabilistic rewards.

This prediction was confirmed experimentally.

Materials and Methods

Subjects
For the behavioral experiments, eight BN/RijHsd and two

FBNF1/Hsd rats were used. For the VTA inactivation experi-

ment, six Sprague Dawley and four BN/RijHsd rats were used.

For the VTA activation experiment, six BN/RijHsd, two FBNF1/

Hsd and three Sprague Dawley animals were used. All rats were

male between 5 and 11 months old (Harlan Sprague Dawley). The

animals were housed in a reversed 12 h light/dark cycle and

maintained at 85% of their normal weight during all experiments.

The experiments were approved by the University of Arizona

Institutional Animal Care and Use Committee (IACUC; Protocol

Number: 06-022). All procedures were conducted in accordance

with the Guide for the Care and Use of Laboratory Animals of the

University of Arizona IACUC.

Apparatus and Pretraining
A Plexiglas cylinder (height: 12.50; diameter: 120) with three

holes (40 between two adjacent holes) 1.5 inches from the bottom

was used. A food pellet (Research Diet, 20 mg) was inserted

through the holes with a familiar pair of tweezers. Animals were

pre-trained until they ate the food pellets within 15 seconds of

tweezer presentation for more than 30 consecutive trials. Inter-

trial interval was 2063 seconds. All pre-training rewards were

delivered with 100% probability.

Experimental Paradigm
We conducted two types of experiments: a trial-constant

experiment and a reward-constant experiment. Each experiment

was composed of four sessions with different probabilities: 25%,

50%, 75%, and 100% (order counter-balanced). Each session

consisted of an acquisition phase and an extinction phase (Table 1).

During the acquisition phase of the trial-constant experiment, we

fixed the total number of trials to 20 and presented food pellets

and empty tweezers in a pseudorandom order according to the

designated probability of the session. In contrast, during the

acquisition phase of the reward-constant experiment, the number

of pellets was fixed to 20 and the total number of trials varied

according to the probability of the session. The extinction phase

immediately followed the acquisition phase. During the extinction

phase, only empty tweezers were presented until the rat did not

bite or smell the tweezers for five consecutive trials. The tweezers

were inserted every 20 seconds and withdrawn when the animal

bit or smelled the tweezers or after 15 seconds if the animal did not

(time out). The animals were put back in their home cage for at

least 15 minutes between sessions. Each rat underwent both trial-

constant and reward-constant experiments (order counter-bal-

anced) on different days.

VTA Activation/Inactivation Experiments
After pre-training, two stainless steel cannula guides (26 gauge;

Plastics One) were implanted bilaterally targeting the VTA

(anteroposterior 25.4 mm from bregma; mediolateral

60.05 mm; dorsoventral 27.5 mm from the surface of the skull).

The rats were anesthetized with isoflurane, and their body

temperature maintained at 37uC using an isopad during the

surgery. Screws and dental acrylic were used to fix the cannula

guides to the skull. After one week of recovery, the animals were

briefly pre-trained again to confirm that they could perform the

task. In the VTA activation experiment group, WIN-255212-2

mesylate 0.5 mM (dissolved in DMSO:Tween:saline = 1:1:38;

Sigma) 1.4,1.8 mL or the same amount of physiological saline

were microinjected into the VTA each day. WIN-55212-2 is a

cannabinoid CB1 receptor agonist which is known to enhance

dopaminergic activity [21]. The doses were individually adjusted

to the maximum amount of each drug that would not induce

abnormal locomotor activity. Saline was used as control. In VTA

inactivation experiments, 0.8 mL of bupivacaine hydrochloride

76.9 mM (dissolved in saline; Sigma) or physiological saline were

administered instead. The two injections on the same day were

followed by different probability sessions separated by a gap of at

least 60 min. The order of probability and the order of the drugs

were counterbalanced. The trial constant experimental protocol

was conducted similarly. All drugs were administered through the

injection cannula (33 gauge; Plastics One, about 0.3 ml/min)

extending 1 mm beyond the tip of the guide cannula using

Table 1. Structure of the acquisition phase of the trial-
constant and reward-constant experiments.

Acquisition phase

Session Probability Trial-constant Reward-constant

25% 20 (5) 80 (20)

50% 20 (10) 40 (20)

75% 20 (15) 27 (20)

100% 20 (20) 20 (20)

The numbers outside the parentheses represent the total number of trials
whereas those inside represent the number of rewarded trials. The extinction
phase immediately followed the acquisition phase in both types of
experiments. During the extinction phase, empty tweezers were inserted until
the rat made no attempt for 5 consecutive trials.
doi:10.1371/journal.pone.0089494.t001
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microliter syringes (Hamilton). The experiment started 2,5 min

after the end of the drug administration.

Histology
After all VTA inactivation/activation experiments, the animals

were transcardially perfused with 0.9% saline and then 0.4%

paraformaldehyde while under deep anesthesia. The brains were

first stored in the 0.4% paraformaldehyde solution for 2–6 hours

and then transferred to a 30% sucrose solution for at least 24

hours. The brains were cut into 50 mm slices on a cryostat. For

tyrosine hydroxylase (TH) staining, free-floating sections were

immersed in 3% normal goat serum, 0.02% sodium azide and

0.4% triton X-100 in PBS for 1 hour and then incubated with the

primary antibody (rabbit polyclonal anti-TH, 1:10,000, Chemi-

con) for 18 hours. The sections were incubated with the

biotynilated secondary antibody (1:1000, in 1.5% NGS, 0.4%

Triton X-100 in PBS) for 1 hour and then with ABC complex

(1:500, Vector Lab) for 1 hour. Sections were incubated in 0.05%

diaminobenzidine (DAB), 0.003% H2O2 and 0.05% nickel

chloride in PBS (Fig. 1).

Data Analysis
Reaction times were defined as the time interval between the

tweezers presentation and the animals’ attempt to get food from

the tweezers–bite or smell. To decrease the effect of individual

differences, the average of the first three reaction times for each rat

in each session was divided by the average of the first three

reaction times of the same rat in all four sessions. The last three

reaction times were normalized with the average of the last three

reaction times in a similar way. The number of trials until

extinction for each rat in each session was divided by the average

number of trials until extinction of the same rat in all four sessions.

In the VTA activation/inactivation experiments, each rat

underwent each probability session under each drug condition

up to twice. To normalize these data, the average number of trials

until extinction of each rat at each probability under each drug

condition was divided by the average number of trials until

extinction of the same rat in all four sessions under the saline

condition. The reaction times during the acquisition phase and the

extinction phase were normalized by the individual average of

both drug conditions (saline and WIN-255212-2 or saline and

bupivacaine). Normalized data were then analyzed with two-way

repeated measures analysis of variance (RMANOVA) and Fishers

least significant difference (LSD) method. Differences were

assessed significant when p,0.05.

Model Structure
The computational model was based on that of Pan et al. [20]

with the following modifications. First we added an arousal signal.

Arousal A(i) in the i-th trial was defined as Li et al. [15]:

A(i)~gA(i{1)z(1{g)|d(t)

where 0vgv1 is the decay factor for arousal. d(t) is the prediction
error. During acquisition and extinction, the positive and negative

weights were updated as:

ŵwz(tz1)~ŵwz(t)zA(i)|ad(t)êel(t)

ŵw{(tz1)~ŵw{(t)zA(i)|bd(t)êel(t)

where ŵwzw0 and ŵw{v0 are the positive and negative weight

vector, respectively. belel is the eligibility trace. a and b are learning

rates for positive and negative weights, respectively. Unlike Pan

et al. (2008), we made forgetting occur only during the break since

spontaneous recovery occurs over a much longer time scale than

acquisition or extinction:

ŵwz(tz1)~yzŵwz(t)

ŵw{(tz1)~y{ŵw{(t)

where 0vyz
ƒ1 and 0vy{

ƒ1 are the decay factors for the

positive and negative weight vectors, respectively.

A(i) was fixed to 1 for all probabilities during acquisition (see

discussion). To simulate the amount of unexpectedness of the

cessation of reward, A(i) at the beginning of extinction was set to

the reward probability that was learned during acquisition.

Because large b (0.2) in Pan et al.’s model caused large fluctuations

during the acquisition of probabilistic rewards–which should not

have been apparent in the acquisition of deterministic rewards in

their simulation–we reduced b to 0.04. Since small a (0.005) in

their model required hundreds of acquisition trials, we increased it

to 0.08 so that the number of acquisition trials in our model

simulation is comparable to that in our empirical data (Fig. 2A). y-

and y+ were 0.999999 and 0.9, respectively. The length of each

trial was 10 (arbitrary units). The CS and the reward were given at

time points 3 and 8, respectively. The size of the eligibility trace

decay factor l was set to l=0.9 as in Pan et al. [20]. Acquisition

sessions for simulations were constructed by combining the

acquisition sessions that were actually used in our behavioral

experiments. We assumed that extinction was completed when the

size of the prediction error at the time of CS was below 0.12. We

found that after these modifications, the model could produce

spontaneous recovery and fast relearning after extinction as in the

original model of Pan et al. (2008). We modeled the effect of

dopamine inactivating drugs by modifying the size of the

prediction error as follows.

Figure 1. Microphotograph of a representative cannula
placement in the VTA (arrows). Cells with tyrosine hydroxylase
are stained brown using 3,39-Diaminobenzidine (DAB).
doi:10.1371/journal.pone.0089494.g001
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d(t)~d(t)|(1zdose), when d(t)§0

d(t)~d(t)|(1{dose), when d(t)v0

In contrast, drug-induced dopamine neuron activation was

implemented as follows.

d(t)~d(t)|(1{dose), when d(t)§0

d(t)~d(t)|(1zdose), when d(t)v0

where 0vdosev1 is the constant that represents the amount of

the drug.

Results

Learned Value and Arousal may Influence the Shape of
the Rate of Extinction vs Reward Probability Curve
Previous studies have found that, after extensive learning, the

rate of the extinction of probabilistic rewards decreases as the

reward probability increases (e.g. PREE) whereas, after moderate

amount of learning, the rate of extinction follows an inverted U-

shaped function of the reward probability [9]. In the latter case,

the subject might not have learned enough to distinguish different

probabilities of reward. Moreover, the difference in the number of

rewards, instead of the reward probability itself, might have caused

the inverted U-shape. Before addressing the effect of learned

values and arousal on the extinction of probabilistic rewards, we

proceeded to exclude these possibilities.

The rate of extinction was measured as the number of trials

until extinction. Two-way RMANOVA indicated a statistically

significant effect of the probability of reward on the rate of

extinction (p= 0.005) (Fig. 2A). In trial-constant experiments, the

extinction of 50% reward was significantly slower than that of 25%

and 100% rewards (p = 0.020 and 0.041, respectively; n = 10;

Fisher LSD method). In reward-constant experiments, the

extinction of 50% reward was significantly slower than that of

25% and 75% rewards (p = 0.003 and 0.036, respectively). The

effect of different experiments were not statistically significant

(p = 0.163). There was no significant interaction between the

reward probability and experiment type (p = 0.714). These results

indicated that the reward probability itself, not the number of

reward delivery, resulted in the inverted U-shape.

Our behavioral data include individual differences that do not

exist in our model simulations. To ease qualitative comparison

between our simulation results and empirical data, we normalized

the number of trials until extinction (see methods) and analyzed

again (Fig. 2B). Statistical tests on the normalized data gave similar

results. The probability of reward had a statistically significant

effect on the rate of extinction (p= 0.003; Two-way RMANOVA)

(Fig. 2B). In trial-constant experiments, the extinction of 50%

reward was significantly slower than that of 25% and 100%

rewards (p = 0.019 and 0.050, respectively; n = 10; Fisher LSD

method). In reward-constant experiments, the extinction of 50%

reward was significantly slower than that of 25%, 75% and 100%

rewards (p,0.001, p = 0.014 and 0.021, respectively). The effect of

different experiments were not statistically significant (p = 0.222)

and there was no significant interaction between the reward

probability and experiment type (p= 0.499).

To confirm that the animals learned the probabilities of reward

within the acquisition phase in both types of experiments, we

analyzed the normalized reaction times during the acquisition

phase of the trial-constant experiment (see methods for normal-

ization; Fig. 2C). At the beginning of the acquisition phase,

reaction times did not differ between the different reward

probability conditions. However, by the end of the acquisition

phase, the animals responded faster to rewards with higher

probabilities. The reaction time was significantly shorter when the

probability of reward was 50%, 75% and 100% than when the

reward probability was 25% (p= 0.016, 0.003 and 0.002,

respectively). Although not statistically significant, the average of

Figure 2. Effects of the reward probability on the rate of extinction. A: Number of trials until extinction in trial-constant and reward-constant
experiments (* and #: p,0.05 in the trial- and reward- constant experiments, respectively). B: Normalized number of trials until extinction in trial-
constant and reward-constant experiments (* and#: p,0.05 in the trial- and reward- constant experiments, respectively). C: First three and last three
reaction times during the acquisition phase of the trial constant experiment (* and +: p,0.05 within the last three reaction times and between the
first and last three reaction times, respectively).
doi:10.1371/journal.pone.0089494.g002
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reaction times at the end of the acquisition phase of 75% and

100% rewards were shorter than that of 50% reward. There was a

significant effect of the reward probability on reaction times

(p = 0.022; two-way RMANOVA). The effect of learning and

interaction of learning and the reward probability were not

statistically significant (p = 0.067 and 0.185, respectively). This

result suggests that the animals learned different reward proba-

bilities within the acquisition phase and that insufficient learning

did not account for the inverted U-shape nature of the curves.

Adding Arousal to a Temporal Difference Model Enabled
the Simulation of the Inverted U-shape
The dependence of the pattern of extinction on the amount of

learning indicates the importance of value learning in the

extinction of probabilistic rewards. In addition, PREE suggests

that arousal is a key factor in the extinction of probabilistic

rewards. Previous studies have implicated midbrain dopamine

neurons in both arousal and reinforcement learning

[11,17,18,22,23]. Using model simulations, we investigated the

interplay between value learning and arousal in the extinction of

probabilistic rewards in terms of known activity pattern of

dopamine neurons. A previous model related the phasic firing of

dopamine neurons to the prediction error generated by temporal

difference learning [20,24,25,26]. This model successfully ac-

counted for dopaminergic activity during acquisition and extinc-

tion of deterministic rewards and reproduced key features of

extinction such as spontaneous recovery and fast re-learning

[20,26]. The model, however, did not take into account arousal

and was not tested with probabilistic rewards.

We simulated the role of arousal in the extinction of

probabilistic rewards (Fig. 3). In figure 3A, the levels of acquisition

and extinction are shown as the size of the prediction error for a

given conditioned stimulus (CS). 100% reward has a greater value

than 50% reward. At the beginning of extinction (grey box), the

magnitude of the prediction error of 100% reward probability is

larger than that of 50%. However, the rate of decrease of the

prediction error for 100% reward probability is not fast enough for

its curve to cross the curve of the prediction error for 50% (Fig. 3A,

inset). As a result, the extinction of 100% reward probability takes

longer than the extinction of 50%. Without arousal, the extinction

of high probability reward is slower than that of low probability

rewards (Fig. 3B).

Because the reliability of the prediction of reward delivery

increases with the reward probability, the level of arousal at the

beginning of extinction should also increase with the reward

probability. Since arousal controls the learning rate, it hastens the

extinction of higher reward probability but slows the extinction of

lower reward probability. To reproduce the inverted U-shape, the

curves of the prediction error for higher reward probability should

cross those of lower reward probability during extinction (compare

insets of Fig. 3A and Fig. 4A). For this to occur, the size difference

between the arousal A of different probability should be

maintained for a long enough period (Fig. 4B). We achieved this

by introducing arousal in the extinction phase of the model by Pan

et al. [20] and by setting the decay factor of arousal g to large

values (Fig. 4B,C, see methods).

The plots of figure 5 A–E show the rate of extinction when the

number of acquisition trials is 10, 30 or 100, respectively. These

plots have increasing values of the decay factor from 0.91 to 0.99.

With 30 acquisition trials, the inverted-U shape was reproduced

with the decay factor g greater than 0.91 (Fig. 5B–E). Because the

arousal and the prediction error continuously decayed during

extinction, the curves of the prediction error became almost

horizontal and parallel to one another by the end of extinction

(Fig. 4A, B). Thus, for PREE to appear, large arousal should

hasten the extinction of 50%, 75% and 100% reward probability

during early to mid extinction so that the trajectories of the

prediction error at the CSs of 50%, 75%, and 100% reward

probabilities cross that of 25%. A slow decay of arousal (e.g.

g=0.99) gives a long temporal window for arousal to control the

learning rate. As a result, the value of high probability rewards

extinguishes more quickly than the value of low probability

rewards, which causes PREE (Fig. 5E). In contrast, a fast decay of

arousal (e.g. g=0.91) leads to fast extinction of rewards with low

values (low probability rewards in this case), resulting in a linear

shape of the extinction curve (Fig. 5A). When the rate of decay of

arousal is intermediate (e.g. g=0.95), the extinction curve

becomes a mixture of PREE and a linear function (Fig. 5C). In

other words, PREE occurs only when the prior belief (and

associated arousal) is persistent and fades very slowly whereas the

inverted-U shape curve occurs with a faster decay of the prior

belief. Experimentally, it is likely that the prior belief has been

firmly established during extensive training which has been found

to be important for PREE ([9] and see below) whereas the prior

belief is less strong after intermediate amount of learning which

has been found to be needed for the inverted-U. Significant

portions of reward value are extinguished during early to mid

extinction when both the prediction error and the arousal are

large. Thus, as the decay factor of arousal g grew, extinction

tended to occur faster.

As the number of acquisition trials increases, the learned reward

value that has to be extinguished during extinction grows. As a

result, extinction tended to become slower with a larger number of

acquisition trials. Sufficient learning of the value of 25% reward

gave more time for the curves of the prediction error for 50%,

75%, and 100% reward probabilities to cross that for 25% reward

probability before extinction. Therefore, as the number of

acquisition trials increases, the rate of extinction changed from a

linear function, to an inverted-U shaped curve, and to an inversely

proportional function of the reward probability (Fig. 5D–E). PREE

only appears after extensive training. The trajectories of the

prediction error at the time of the CS reached a plateau after

around 90 acquisition trials (not shown). When the number of

acquisition trial was 100, PREE was reproduced with the decay

factor g greater than 0.97 (Fig. 5E). Thus, the amount of learning

affects the shape of the extinction curve by determining the

magnitude of reward value to be extinguished as well as by

influencing the persistency of the prior belief. In all cases, our

model reproduced spontaneous recovery and fast re-learning as

the model by Pan et al. [20]. Our model with a decay factor g $

0.97 (Fig. 5D, E), simulated well the effect of the amount of

learning on the rate of extinction measured experimentally (Fig. 5F)

[9].

Model Prediction of the Effects of Enhancing and
Reducing the Dopaminergic Prediction Error Signal
In our model, the prediction error is the key element regulating

reward learning and arousal. Previous studies have indicated that

dopamine neurons encode the prediction error [11,24]. To further

validate our model, we simulated the effect of enhancing and

reducing the magnitude of the prediction error on the shape of the

extinction curves and then tested the model predictions experi-

mentally. Because phasic inhibition of dopamine is upper-bounded

by the level of tonic firing, we implemented the reduction of the

prediction error as negatively shifting the prediction error in a

multiplicative way whereas enhancing the prediction error was

implemented in the opposite way (see methods).

Dopamine and Arousal in Extinction
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Our model predicted that drugs that would reduce the size of

the dopaminergic prediction error signal would result in an

underestimation of reward value whereas drugs that would

enhance the size of the dopaminergic prediction error signal

would cause an overestimation (Fig. 6A). Reward underestimation

and overestimation were further found to hasten and slow down

extinction, respectively (Fig. 6B). This is because the amount of

reward value that has to be extinguished is increased by

overestimation but decreased by underestimation. Since low

reward probabilities give only a small amount of reward value

that has to be extinguished, the extinction of low probability

rewards is particularly sensitive to the magnitude of learned value.

Thus, the effect of enhancing and reducing the size of the

prediction error on the rate of extinction was more prominent in

low probabilities than on higher ones.

Our model also predicted that reducing the prediction error

would flatten the shape of the function of the extinction rate and

reward probability whereas enhancing the prediction error would

bend it more (Fig. 6C). In the model, the overestimation from

enhancing the prediction error increased the difference in the

negative prediction error between high probability and low

probability rewards during early extinction. Therefore, the ratio

of the rate of extinction of high reward probability to that of low

reward probability is higher when the prediction error is enhanced

than when the prediction error is reduced. This resulted in the

flatter shape of the function with reduced prediction error

(Fig. 6C).

Pharmacological Experiments in Rats Confirmed the
Model Predictions
We tested the prediction of our model by pharmacologically

activating and inactivating dopamine neurons of the ventral

tegmental area (VTA). Because the tonic firing rate is smaller than

the phasic firing rate, a drug that raises the overall firing of

dopamine neurons would reduce the contrast between tonic and

phasic firings. In addition, presynaptic dopamine D2 autorecep-

tors are activated by the tonic level of extracellular dopamine and

inhibit dopamine release [27,28]. Therefore, the infusion of such a

drug into the midbrain would attenuate the positive prediction

error. On the other hand, microinjection of this drug would

enhance the magnitude of the negative prediction error because

phasic inhibition of dopamine is upper-bounded by the level of

tonic firing. A drug that suppresses the overall firing of dopamine

neurons would have the opposite effects. Thus, we used a

dopamine inactivating drug to enhance the magnitude of the

prediction error while a dopamine activating drug was injected to

reduce the size of the prediction error.

To suppress dopaminergic activity, we microinjected bupiva-

caine into the VTA just before the acquisition phase. Two-way

RMANOVA revealed statistically significant effects of the reward

probability and drugs (p = 0.007 and p,0.001, respectively;

n = 10). As predicted, bupivacaine slowed extinction and bent

the shape of the extinction-probability curve (Fig. 7A, black curve).

In the case of 25%, 50% and 75% reward probabilities, the rate of

extinction was significantly slower in the bupivacaine condition

than in the saline condition (p= 0.035, p = 0.025 and p,0.001,

respectively; n = 10; Fisher LSD method). After bupivacaine

infusion, the extinction of 50% and 75% reward probability was

significantly slower than the extinction of 25% and 100%

(compared to 50%: p= 0.006 and 0.020, respectively; compared

to 75%: p= 0.006 and 0.021). There was no significant interaction

between the effects of the drug and reward probability on the rate

of extinction (p = 0.452). Taken together, these experimental

results confirm our model prediction of the effect of enhancing the

size of the dopaminergic prediction error signal. (Fig. 6B).

To increase dopaminergic activity, we used WIN-255212-2

(WIN2), a cannabinoid CB1 receptor agonist (Fig. 7D). Consistent

with our assumption for the simulation, previous studies have

found that WIN2 causes almost twice greater percent increase in

tonic firing than in burst firing [29] and decreases evoked

dopamine release [30]. WIN2 generally lowered and flattened the

inverted U-shape of the extinction-probability curves. A statisti-

cally significant influence of the interaction between the effects of

the drug and reward probability on the rate of extinction was

found (p = 0.038; n= 11; two-way RMANOVA). The rate of

Figure 3. Simulation of the extinction of probabilistic rewards. A: Prediction error at the time of the CS during conditioning and extinction.
The inset on the right is a horizontally enlarged view of the grey region. The black horizontal line in the inset indicates the point where the prediction
error meets the criterion for extinction (0.12). The first 30 trials constitute the acquisition phase, the following 70 trials were the first extinction phase,
the following 20 trials were the break (see methods) and the last 40 trials were the second extinction phase which shows spontaneous recovery.
(l=0.9, a=0.08, b=0.04, y+=0.999999, y2=0.9. B: Number of trials until the prediction error decays to the extinction criterion in the first
extinction phase. The extinction of high reward probability is always slower than that of low reward probability.
doi:10.1371/journal.pone.0089494.g003
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extinction at 50% reward probability significantly increased in the

WIN2 condition compared to saline (p = 0.007). This result is

similar to that of our model simulations for the effect of the

reduction of the prediction error with the simulated dose of 0.1,

except for the extinction at 25% probability (Fig. 6B). In our

model prediction with the dose of 0.1, 25% reward was

extinguished after three trials, which was not the case in our

experimental settings. During the acquisition phase of 25% reward

probability, a pellet was provided every 3–5 trials. The fact that

the rat did not stop approaching the tweezers to get food during

the acquisition phase of 25% reward suggests that the animal was

willing to make an effort to get pellets from the tweezers despite 4

consecutive unrewarded trials. One possible explanation is that the

value of the tweezers was higher than zero at the beginning of the

acquisition phase due to pre-training. Because it was difficult to

know the exact value of the tweezers at the beginning of the

acquisition phase, we set the value of the CS at the beginning of

the acquisition phase to zero in our simulations rather than a

higher arbitrary value. This difference could have caused the

difference between the model prediction and experimental results.

30 100 120 1600

Figure 4. Simulation of the extinction of probabilistic rewards with arousal. A: Prediction error at the time of the CS during conditioning
and extinction. All notations and values of parameters are the same as in Figure 3A. The decay factor of arousal g is 0.97. B: Arousal during the
extinction phase. Arousal A changes more slowly than the prediction error. C: Number of trials until the prediction error decays to the extinction
criterion in the first extinction phase. The model with arousal reproduced the inverted-U shape of the extinction probability curve seen
experimentally.
doi:10.1371/journal.pone.0089494.g004
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Figure 5. The amount of learning and the change rate of arousal affect the rate of extinction. A–E: Number of trials until extinction when
the number of acquisition trials is 10, 30 or 100. The size of the decay factor of arousal g is 0.91 in A, 0.93 in B, 0.95 in C, 0.97 in D, and 0.99 in E. The
values of all other parameters are the same as Figure 4A. F: Experimental data. Figure adapted from Bacon 1962 [9] with permission.
doi:10.1371/journal.pone.0089494.g005

Figure 6. Model predictions of the effects of enhancing and reducing the magnitude of the prediction error. A: Effect of enhancing
and reducing the magnitude of the prediction error on learned reward value at the end of the acquisition phase. The number of acquisition trials was
30 and the decay factor of arousal g was 0.97. B: Simulated effect of drugs enhancing/reducing the prediction error on the rate of extinction. C:
Number of trials until extinction in B was normalized to the extinction of 100% reward probability in the same drug/dose condition. The
normalization made it easier to compare the effect of drugs enhancing/reducing the prediction error on the shape of the extinction-probability curve.
doi:10.1371/journal.pone.0089494.g006
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The extinction rate after WIN2 microinjection in our results might

be the possible maximum rate in our experimental settings.

There was no statistically significant difference in the reaction

times between saline and WIN-255212-2 microinjections

(p = 0.266; n= 11; two-way ANOVA) or between saline and

bupivacaine (p = 0.208; n= 7) (Fig. 7B, D). Thus, the effect of

bupivacaine and WIN2 on the rate of extinction was not due to

different levels of locomotor activity after the drug injection. To

see if the drugs impaired the learning of reward probability during

the acquisition phase, we compared the first three reaction times

and the last three reaction times under each drug condition

(Fig. 7C, E). In both bupivacaine and WIN2 conditions, the

animals responded significantly faster when the reward was

delivered with 100% probability than with 25% probability

(p = 0.023 and p= 0.045, respectively). Although statistically not

significant, the animals showed a tendency to respond faster to

high reward probability. These results suggest that drug doses we

used did not impair learning.

Discussion

Using rat experiments and model simulations, we investigated

the role of dopamine in the extinction of probabilistic rewards. We

showed that arousal allowed the prior belief about the probability

of reward to have lasting effects on the rate of extinction and

hastened the extinction of high reward probabilities when

compared to low reward probabilities. We also demonstrated

that, by signaling the reward prediction error, dopamine

determined the learned reward value that had to be extinguished

during extinction and modulated an arousal signal that controlled

the learning rate. Our model reproduced and explained the

dependence of the rate of extinction on the reward probability on

the amount of learning.

In our model, the effect of dopamine inactivation was

implemented as positively shifting the prediction error in a

multiplicative way whereas the effect of dopamine activation was

implemented in the opposite way [31]. Consistent with this

implementation, previous studies have found that the CB1 agonist

Figure 7. Effects of bupivacaine and WIN 55212-2 microinfusions into the VTA on extinction. Effect of bupivacaine (A) and WIN 55212-2
(D) on the rate of extinction (*, # and +: p,0.05 within the saline condition, within the bupivacaine/WIN 55212-2 conditions, and between the saline
and bupivacaine/WIN 55212-2 conditions, respectively). Effect of bupivacaine (B) and WIN 55212-2 (E) on reaction times. Within the same phase,
there was no significant difference between the drug conditions. First and last three reaction times during the acquisition phase in the bupivacaine
(C) and WIN 55212-2 (F) conditions (*: p,0.05 within the last three reaction times).
doi:10.1371/journal.pone.0089494.g007
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WIN-255212-2 that we used to enhance dopamine firing caused

almost twice greater percent increase in tonic firing than burst

firing [29] and decreased evoked dopamine release [30]. Our

implementation is compatible with prior studies in which

dopaminergic modulation was implemented as a positive shift of

the prediction error in response to activating drugs (e.g. L-DOPA)

in Parkinson’s disease [32]. Because Parkinson’s disease involves

dopamine neuron degeneration, the level of extracellular dopa-

mine should be largely driven by the level of tonic firing in this

disease [33]. Our simulation results revealed that scaling up the

prediction error raised the difference in the value of rewards with

distinct probabilities through overestimation and slowed extinction

(Fig. 6AB). This result is in line with recent studies which suggested

that low level of tonic activity facilitated exploitation but reduced

exploration by enhancing the contrast between these different

behavioral options [34].

In the present study, microinfusion of WIN-255212-2 that

enhanced tonic firing of dopamine neurons hastened extinction.

This result is seemingly in contradiction with previous studies that

have linked tonic dopamine release with motivation [35]. These

studies have suggested that high level of tonic dopamine encodes

reward-rich environment where opportunity cost per unit time is

high and enhances the vigor of the animal. Unlike phasic

dopamine signaling, tonic dopamine firing changes at time scales

that seem too slow to control specific behaviors. Whereas the role

of phasic dopamine has been emphasized in reinforcing the

conditioned response, high level of tonic firing has been linked

with distraction in working memory paradigms [36] and increased

exploration [34]. High level of tonic dopamine during extinction

would raise the perceived opportunity cost per unit time while the

value of the conditioned response decays. Thus, the animal would

quickly give up the conditioned response and could be easily

distracted by task-irrelevant stimuli, in turn causing faster

extinction. Anecdotally, in some animals, we did observe an

increase in locomotor activity and an increase in distraction after

WIN-255212-2 injection.

Unlike de novo acquisition of the association between the CS and

US, extinction involves changes in prior beliefs about the CS-US

relationship. The well known phenomena of spontaneous recovery

and reinstatement [1] suggest that the effect of prior beliefs on later

learning is strong and persistent and emphasize the distinction

between de novo acquisition of a belief and changes of prior beliefs.

Previous studies have observed PREE even when a block in which

the reward was delivered with 100% probability was inserted

between acquisition and extinction of probabilistic rewards

[37,38]. It suggests that the inserted 100% probability block did

not erase the original prior belief about the prediction probability

of the CS and that the arousal elicited by deviations from the

original prior belief did have lasting effects on extinction to

generate PREE. It also revealed that PREE does not result from

the greater difficulty in detecting the cessation of probabilistic

rewards compared to deterministic rewards. Indeed, adding the

arousal signal to the acquisition phase in our model failed to

reproduce the inverted-U shape of the extinction-probability curve

and PREE. Whereas arousal had to change very slowly during

extinction to simulate the inverted-U shape and PREE, acquisition

did not occur if arousal was not quickly updated by the prediction

error. This implies that the slowly changing nature of arousal may

help prior beliefs to have lasting influence on later learning by

controlling the learning rate [3,4,39].

In a complex and changing environment, the observed

probability of a reward may deviate from the animal’s prior belief

(deviation represented as the prediction error). In addition, once

changed reward probability may go back to its original value for

unknown reasons (e.g. re-conditioning after extinction). Thus,

building up a repertoire of beliefs should be a better strategy than

maintaining and updating a single belief [40,41]. For an animal

with limited resources in the noisy real world, having a repertoire

with several beliefs with meaningful differences should be more

adaptive than having a repertoire with a large number of beliefs

with minute distinctions. Therefore adding a new belief only when

observations significantly and consistently deviate from existing prior

beliefs should be appropriate [3,5,42]. Compared to the prediction

error that is sensitive to small deviations from the prior belief and

promptly updates trial by trial [15,43], arousal is elicited by

relatively large deviations and changes more slowly. It may allow

arousal to sustain high learning rates until the majority of a new

belief is formed when substantial deviations from prior beliefs are

observed. Supporting this notion, previous studies have found that

a significant deviation from prior belief raises the learning rate and

that the learning rate decays more slowly than the prediction error

[4,15,39]. Our simulations also indicated that the time constant of

arousal should be large to reproduce the inverted-U shape and

PREE.

However, the time constant and the level of dependence on the

prediction error of arousal may vary depending on the extent to

which prior beliefs are different from the new belief. In reversal

learning where the content of the prior belief is simply flipped over

and potentially different brain regions are involved in [44,45], the

fitted time constant was smaller than ours [15]. Further research

should be conducted to understand how different types of

alterations to prior beliefs may change the time constant and the

level of dependence on the prediction error of arousal.

Recent studies have pointed to the amygdala as a potential

neural substrate for arousal that is elicited by significant deviation

from prior beliefs. Activity in the amygdala has been found to

correlate with the pattern of arousal during reversal learning and

switching [15,16]. Inactivation of the amygdala delays reward

extinction and task switching, suggesting a role of the amygdala in

controlling the learning rate when abrupt deviations from prior

beliefs occur [16,46]. Because dopamine neurons signal the

prediction error, they can inform the amygdala of abrupt

deviations from prior beliefs. Indeed, a recent study found that

the arousal signal of the amygdala disappeared when midbrain

dopamine neurons were degenerated with 6-OHDA [17]. The

Pearce-Kaye-Hall model proposed that the prediction error affects

the level of arousal that controls the learning rate [5,47]. Recent

empirical studies, compatible with the present study, found that

neural activity of the amygdala and midbrain dopamine neurons

fit the pattern of the prediction error and arousal predicted by this

model [15,16]. The properties of prior beliefs proposed above

resemble those of hippocampal memory traces [40]. The

characteristic circuit of the hippocampus suited for pattern

completion and separation may support formation and retrieval

of prior beliefs [42]. It is likely that the amygdala encodes arousal

receiving the prediction error from dopamine neurons and assists

the formation of a new belief in the hippocampus by sustaining

high learning rate using slowly changing arousal signals. It would

be worth comparing activity in the amygdala during the inverted-

U or PREE and our model predictions of the arousal signal.

The idea that the level of deviation from the prior belief controls

the rate of learning of a new belief is amenable to Bayesian

probability modelling. However, when arousal was defined based

on the likelihood of reward omission given the reward probability

as prior in our model, arousal was updated too fast to reproduce

the inverted-U shape (not shown). Although more sophisticated

Bayesian models successfully simulated the extinction of probabi-

listic rewards [42], it is not straight-forward to identify which
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neural activity corresponds to what parameter in those models. We

chose here to define arousal as in the Pearce-Kaye-Hall model

which directly links the level of arousal to the prediction error of

dopamine [5,47]. Bayesian models have the advantage that they

are more flexible and widely applicable compared to the Pearce-

Kaye-Hall model and a Bayesian approach would be helpful for

investigations on arousal in various types of learning [4,39,48,49].

However, the present study suggests that simplified implementa-

tion of arousal as in the Pearce-Kaye-Hall model can provide

insights and straight-forward links to potential neural correlates

and may generate helpful predictions (e.g. the arousal signal in the

amygala during PREE).

The original Pearce-Hall model and other related studies have

considered arousal in terms of enhanced attention by uncertainty

and predictiveness [50,51]. We interpreted arousal more broadly

as a surprise elicited by discrepancies from prior beliefs and

assumed that more than one prior belief may exist regarding each

stimulus. An advantage of this view of arousal is that it helps

investigation of diverse aspects of learning that are difficult to be

addressed with arousal as a function of predictiveness and/or

uncertainty. For example, the effect of the level of firmness of the

prior belief on learning (e.g. In our simulations, PREE for which

extensive learning has been found to be important occurred only

when the prior belief was persistent and faded very slowly whereas

the inverted-U shape curve for which intermediate amount of

learning has been found to be needed occurred with a faster decay

of the prior belief) can be examined. The content of the prior belief

can also be diversified, not being confined to predictiveness/

uncertainty of the CS (e.g. learning under the influence of

prejudice or prior instruction from authority). Moreover, this view

of arousal can be useful in investigating the formation of multiple

memory traces about a single stimulus and their relevant neural

correlates (e.g. hippocampal pattern separation).

In the present study, low probability rewards had lower values

than high probability rewards because the amount of reward

delivered each time was the same in the two conditions. However,

PREE has also been found to occur when the values of rewards

with distinct probabilities were equal [8]. We observed that the

model reproduced PREE when values of rewards with different

probabilities were the same (not shown). This is because the low

arousal of low reward probabilities slows the extinction, whereas

high arousal of high reward probabilities hastens the extinction.

Gambles with low probability of winning and large amount of

rewards for each winning should maintain low levels of arousal

and have considerable reward values. A person who casually starts

a gamble with small amount of betting money would experience a

low arousal. If the bet is raised, the value of the gamble would

increase. However, the low arousal of the gamble which changes

slowly would prevent negative prediction errors in frequent losses

from driving extinction [7]. Pathological gambling patients might

tend to develop lower arousal of gambles or may tend to be

reluctant to modify these values, once established [6].

Using rat experiments and model simulations, the present study

suggested that arousal allowed the prior belief about the

probability of reward to have lasting effects on the rate of

extinction of probabilistic rewards and that the prediction error

mediated by dopamine activity is involved in this process. Cases

where the equations for arousal in our model can be directly

applied are confined to reinforcement learning that involves

changes in the probability of reward. However, our generalized

interpretation of arousal as a surprise signal elicited by deviations

from prior beliefs may easily be adapted to various forms of

learning that involves changes in prior beliefs–such as set shifting,

latent inhibition, learning under prejudice or prior instruction

from authority [52,53]. In addition, our model would help

understand abnormal extinction in pathological gambling disor-

ders.
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