
Transient Scheduling of Single Armed Cluster Tools:

Algorithms for Wafer Residency Constraints
Hong-Yue Jin

1
, James R. Morrison

2

Department of Industrial and Systems Engineering, KAIST
Daejeon, 305-701, Republic of Korea

1nevergiveup@kaist.ac.kr
2james.morrison@kaist.edu

Abstract— The wafer handling robot actions in cluster tools

used for semiconductor manufacturing should serve to

maximize throughput while maintaining good wafer quality.

Since excessive delay in a process chamber may cause

deterioration in wafer quality, wafer delays should be

maintained in an acceptable range, or preferably, should be

minimized. We focus on addressing these concerns for all

wafers in a lot, including those in both the transient and

possibly cyclic regime. As the general problem is

computationally complex, we first assume that the robot

sequence is given and develop a multistage linear programming

(LP) model to minimize the total makespan, subject to wafer

residency constraints, and subsequently the average delay.

Forging into less tractable territory, we next develop a branch

and bound algorithm to find an optimal robot sequence with

minimum wafer delay. This approach enables us to solve

problems that were not previously solvable. Simulation studies

demonstrate that when the number of process modules grows to

more than five, the branch and bound algorithm may fail to

find an optimal solution due to computational complexity. In

this case, we suggest a transient sequence based on cyclic
policies together with the LP model; it is within 2% of optimal.

Keywords— cluster tool, transient state, wafer delay constraint,

linear programming, branch and bound

I. INTRODUCTION

In 2011, the world semiconductor market revenue was
US$307 billion according to Garner, Inc., and is expected to

grow to US$344 billion by 2014 according to the

International Data Corporation. To increase the productivity

of semiconductor wafer fabrication, cluster tools are widely

used. A cluster tool consists of processing modules (PM) and

wafer handling robot(s) housed in a single chassis. We will

consider cluster tools with single armed robots that perform

three tasks: pick-up (or unload) a wafer from a processing

module, move from one processing module to another, and

place (or load) a wafer into a processing module. In addition

to the processing modules and wafer handling robot, there
are also input and output load locks that store wafers without

processing them. There may be a wafer aligner, cooler and

buffer.

We consider the case where the tool, starting from empty,

processes a fixed number of wafers and then empties. There

is a single wafer handling robot and wafers must receive

service from a fixed number of process modules in order

(serial processing). When wafers initially enter, there is a

start-up period. During this period, wafer exit times may not

exhibit periodic behaviour, i.e., wafers come out of the

system at irregular times; we call this the initial transient

period. After processing several wafers, the system may

enter a periodic regime referred to as steady state. Once the

final wafers in a lot enter the tool, another aperiodic regime
begins. This final transient period ends when the last wafer

exits the tool. The time difference between the entry of the

first wafer and the exit of the last wafer is called the

makespan. The makespan is the inverse of the throughput. It

is our primary goal to maximize the throughput. Readers

may refer to [1]-[4] for studies on steady state behaviour and

[5-8] for studies on transient analysis.

Minimizing wafer delay is the secondary goal of this

paper. Wafer delay occurs when a wafer has finished

processing but the robot is not available to pick it up. It is

thus the difference between the epochs of unloading a wafer

from a processing module and the end of the process
provided by that processing module. Especially for chemical

processes, if a wafer stays too long in a processing module,

then residual gas and heat may cause the wafer quality to

deteriorate. To combat this phenomenon, constraints on the

wafer delays – referred to as time windows – are common.

The sequential optimization of throughput followed by wafer

residency time seems to have first been proposed in [9-10] in

the context of flow line models of manufacturing. The

concept is helpful in our context as well.

Focusing on steady state analysis with wafer delay

constraints, Kim, et al. [11] proposed a method to find the
feasible range of process times in dual armed cluster tools

with wafer delay constraints. Kim [12] extended this work to

allow disruptive events in single-armed cluster tools, and

developed stabilizing strategies for an efficient return to

steady state. Wu, et al. [13] proposed an analytical method to

check the schedulability of single armed cluster tools with

wafer residency time constraints and developed an algorithm

to find the optimal cyclic sequence when it is schedulable.

This was extended to allow changing activity times ([14]).

Focusing on transient analysis with wafer delay

constraints, Kim, et al. [15] discussed how the latest starting

policy minimizes the start-up period and earliest starting
policy minimizes the close-down period while meeting the

wafer delay constraints. However, without restricting

attention to the backward sequence or assuming the tool is in

steady state, there is no systematic approach to decide both

2013 IEEE International Conference on Automation Science
and Engineering (CASE)

TuBT2.1

978-1-4799-1515-6/13/$31.00 ©2013 IEEE 856

when and how (in what sequence) to schedule the robot for

the entire makespan with wafer delay constraints. We take

steps to address this problem.

This paper is organized as follows. In Section 2, we

propose a multistage linear programming model to answer

the question of when to start each robot activity assuming a
given sequence of activities. It employs an approach ([16])

enabling the modelling of a discrete-event system as an LP.

In Section 3, we develop a branch and bound algorithm that

uses an upper bound, lower bound, and feasibility check to

address the larger question of what robot action sequence to

use (we also obtain action times). In Section 4, we conduct

numerical experiments to evaluate the performance of our

branch and bound algorithm. Concluding remarks and future

work are mentioned in Section 5.

II. LINEAR PROGRAMMING MODEL

A. Notation

Let m+1 be the total number of processing modules (PM),
including the input and output load locks. The processing

module index is in the set {0, 1, …, m}; 0 represents the

input load lock and m represents the output load lock. Let n

be the total number of wafers to be processed; the wafer

index is in the set {1, …, n}. Wafers must receive service

from each processing module in order. There is a single

wafer handling robot. In this section, we will assume a given

robot action sequence; it should be feasible (but our linear

programming model will determine if it is not).

1) s =(, ,…, ,…,) denotes a given robot action

sequence, where {0,1,…,m-1} is the index of the

processing module from which the action starts. For

example, = 2 means that the robot action in the

sequence is to unload a wafer from the processing

module, move it to the PM, and then load the wafer into

the processing module.

2) w =(, ,…, ,…,) denotes the set of wafer

indices associated with each of the robot actions, where

{1,…,n} is the index of the wafer associated with the

robot action. For example, =5 means that the robot

action is handling the wafer.

For a given robot action sequence, the following pseudo-
code determines the wafer index associated with each action.

Pseudo code 1:
Let wafer_index=1
(1) Initialize for i (1,2,…,mn) as 0.

(2) Update the value of each as follows.

For (j=1;j<=mn;j++){

 If =0 then{//start of the first “if”

 =wafer_index

 Set latest_index = j
 For (k=j+1;k<=mn;k++){

 If =0 and = +1 then

 {//start of the second “if”
 =wafer_index

 Update latest_index = k
 }//end of the second “if”
 }

Update wafer_index = wafer_index+1
}//end of the first “if”

 }

For example, consider the case with two processing

modules, an input load lock, an output load lock (m=3) and

n=2 wafers. When the robot action sequence is s=(0, 1, 0, 2,

1, 2), we obtain w=(1, 1, 2, 1, 2, 2). That is, the 1st, 2nd and

4th robot actions move the first wafer, while the 3rd, 5th and

6th robot actions move the second wafer.

3) Table I provides the definition of other variables and

constants.

TABLE I

TERMINOLOGY

Term Type Definition
 variable Unloading epoch of wafer i from PM j

 variable Start time of processing wafer i in PM j

 variable Finish time of processing wafer i in PM j

 variable Robot available time for the time

 constant Maximum allowed wafer delay in PM j

 constant If and k<mn, then the

value is 1; otherwise, it is 0.

 constant Process time of a wafer in PM j

δ constant Robot moving time

ε constant Robot pick / place time

B. Constraint

Chan, et al. [16] proposed a method to model the

dynamics of discrete-event stochastic systems as

optimization problems. They presented a procedure that

maps a simulation event relationship graph into a mixed-
integer program. Our linear programming model is a special

case of this approach, where the following constraints define

and enforce the desired system behaviour.

1) Initial condition constraints

(1) =0, for ∀

(2) =∞

(3) =0

(4) =0

2) Primary constraints

For each k ∈ {1,…,mn}:

(5)
≥

(6)
 ≥

(7)
 -

 ≤

(8) ≥
 + 2 ε + δ + δ∙

(9) = - δ∙

(10) = +

Constraint (5) ensures that the robot unloads a wafer only
when the robot is available. Constraint (6) requires the robot

to wait until a wafer has finished processing before it unloads

it. Constraint (7) enforces the wafer delay constraints.

Constraint (8) calculates the robot available time for the next

action. It is not equality because we may want to delay the

loading to meet the wafer delay constraint. Constraint (9)

allows a wafer to start processing once it is loaded into a

processing module. Constraint (10) sets the finish time of

processing to the start time plus processing time.

857

C. Objective Function

Our multistage LP model is constructed as follows.

(1) Minimize makespan:

min

 s.t. constraints (1)~(10)

We call this linear programming model as , and denote

its optimal value as . The resulting total wafer delay we

denote as
. If feasible, this linear programming model

provides the minimal makespan possible while meeting the

time window constraints.
We subsequently seek to minimize wafer delays with the

following linear programming model that we call .

(2) Minimize total wafer delays:

min

s.t. constraints (1)~(10)

 =

Let denote the optimal value of . This linear

programming model minimizes the total wafer delay while

subject to reaching the minimum makespan and meeting the

wafer delay constraints. Since there are two objective
functions and they are solved one by one, we call this a

multistage linear programming model.

 The multistage LP model gives higher priority to the

makespan objective than to the total delay objective, with the

assumption that the throughput maximization is more

important as long as the wafer delay constraints are not

violated. However, one may modify and to balance the

trade-off between and . For example, importance

factors, denoted as and , may be given to and .

Then minimizing +

 would

become the objective function, while the constraints (1)~(10)
are kept the same.

Readers may refer to [9] and [10] for the use of sequential

optimizations via linear programming in flow lines. In [9],

Park, et al. proposed an optimization algorithm for flow lines

to reduce wafer residency times and maximize throughput. In

[10], Park, et al. developed a linear program to determine

when to admit the preordered jobs into flexible flow lines,

which resulted in significant reductions in wafer residency

time, in-tool buffer occupation and hot lot queueing time.

D. LP Performance Evaluation
We consider some examples using ILOG CPLEX 12.4

with JAVA on a PC with Intel dual core CPU, 2.4GHz and

3GB RAM. Table II provides the results with the backward

sequence. For odd PM indices such as the first and third PM,

the process time is set as 100 s; for even PM indices such as

the second and fourth PM, the process time is set as 150 s.

Furthermore, = 10 s for all j, and δ = ε =1s. We define m’

to be the number of processing modules excluding input and

output load lock; thus, m’=m-1. Average data, such as

optimal delay per wafer (/n), is rounded to two decimal

points. Let be the computation time. As it is shown in

Table II, the LP model is reasonably tractable.

TABLE II

LP PERFORMANCE WITH THE BACKWARD SEQUENCE

m' n
/n

/n
/n

2 25 161.08s 9.60s 0s <1s

2 1000 157.10s 8.97s 0s 3s

2 5000 157.02s 8.98s 0s 13s

3 25 165.20s 11.60s 0s <1s

3 1000 157.21s 14.91s 0s 3s

3 5000 157.04s 14.49s 0s 18s

4 25 171.32s 7.20s 0s <1s

4 1000 157.36s 9.99s 0s 5s

4 5000 157.07s 0s 0s 138s

5 25 175.44s 17.04s 14.28s <1s

5 1000 157.46s 16.96s 16.93s 7s

5 5000 157.09s 16.99s 16.99s 189s

6 25 182.00s 20.40s 18.36s <1s

6 1000 157.63s 20.98s 20.93s 11s

6 5000 157.13s 20.99s 20.99s 308s

From the data for the example given in Table II, we can

see that
/n becomes positive when m' is increased to 5.

This is reasonable because as the number of PMs increase,
there tend to be more wafers in the system. The robot is

busier and sometimes unavailable to handle the wafers

immediately as they are available.

Note that there are two cases in which the LP model fails

to provide a solution. The first case is when the given robot

action sequence is itself infeasible. This case violates our

assumption of starting with a viable sequence and can be

fixed by providing a feasible one (which could be obtained

using those inspired by steady state policies as in Section

III.A below). The second case is when the time windows

cannot be satisfied with the given feasible sequence. We next
develop a branch and bound algorithm to identify an optimal

sequence; the approach is less computationally tractable but

guarantees an optimal solution if one exists.

III. BRANCH AND BOUND ALGORITHM

We next endeavour to develop a branch and bound

algorithm to identify an optimal robot action sequence as

well as to determine the actions times. We pursue two goals

sequentially as before.

In order to increase the computational efficiency, we use

three mechanisms: upper bound, lower bound, and feasibility

check in our branch and bound algorithm. First, we find an

upper bound on the optimal makespan value by choosing the
best transient robot sequence inspired by the steady state

sequences. Second, we apply a dynamic programming

algorithm to find a lower bound on the makespan. If the

lower bound exceeds the upper bound, we stop searching and

move to another branch. Finally, we apply the linear

programming model to check the feasibility of the

survived branches.

A. Upper Bound

We develop an algorithm to find an upper bound on the
optimal makespan with wafer delay constraints. We do this

858

by considering robot action sequences inspired by the one-

unit cycle sequences.

For a given one-unit cycle sequence, we generate an entire

sequence that includes all actions from the start of the first

wafer to the end of the last one. For a given m, there are (m-

1)! different one-unit cycle sequences, so the computation
required is limited.

The entire sequence is generated as follows. Let =

(
 , …,

 ,…,
) denote the one-unit cycle sequence,

where
 {0, 1, …, m-1}. Since it is a one-unit cycle

sequence, each value in {0, 1, ..., m-1} occurs exactly once.

Let s be the corresponding full sequence including all robot

actions from start to finish of the work (which is initially

empty when we start our algorithm to construct it).

TABLE III

 TERMINOLOGY FOR PSEUDO CODE 2

Term Type Definition

 constant Robot position after robot action in

j constant Index of the full sequence s

max constant Maximum index of the feasible action

 constant Number of wafers processed by PM i

Pseudo code 2:
1) Initialization
max = 0
 = 0

j= 1

 =0 for i∈(0,1,…,m-1)

2) Determine the value of each for each k∈(1,2,…,mn) as

follows.
(2-1) Start-up and steady-state period
While <n, do the following.

For (i = 1; i <=m; i++) {

 If (
 <=) or (

 > and
 <= max), then

 {//start of first “if”

 Set =

Update =
 + 1

 Update
 =

 + 1

 If max < , then {//start of second “if”

 Set max =

 }//end of second “if”
 Update j = j+1

 }//end of first “if”
}
(2-2) Close-down period
While < n, do the following.

For (i = 1; i <=m; i++) {
If

 <n, then{//start of first “if”

Set =

Update j= j+1
Update

 =
 +1

}//end of first “if”

 }

 Pseudo code 2 generates a full robot sequence from a

steady state sequence. By checking the number of wafers

processed by each PM, we ensure that every PM has

processed exactly n wafers. The generated sequence is

deadlock free because it satisfies the feasibility condition

mentioned in [2]. In the start-up period, the term “max” plays

the role of maximum index for a feasible robot action, and

“
 <= max” avoids robot unloading an unoccupied PM.

Additionally, we avoid loading an occupied PM by walking

through the one by one and adding appropriate . In

the steady state, the algorithm iterates so that no

deadlock will occur. In the close-down period, “ < n”

ensures that the robot does not unload an unoccupied PM.

Similarly in the start-up period, we avoid loading an

occupied PM by adding each according to the sequence

of
 . As such, the feasibility (deadlock free) condition is

met for the sequences generated by Pseudo code 2.

We apply the linear programming model developed in

Section II to all the sequences generated from the one-unit

cycle sequences. Each is thus checked for feasibility with

respect to the wafer delay constraints and the robot timing is

adjusted to obtain the minimal makespan for that sequence.

From all of these sequences generated from the one-unit

cycle sequences, we select one that satisfies all of the LP

constraints and achieves the minimal makespan. This

makespan value will serve as an upper bound on the

achievable performance for all possible robot action
sequences and timings. Of course, if no such feasible policy

is generated from the one-unit cycle sequences, the upper

bound is considered as infinity.

Example 1: Obtaining an upper bound. Consider the

case m=4.

First, enumerate all the possible one-unit cycle sequences.

There are 3!=6 such sequences; they are {3,2,1,0}, {3,2,0,1},

{3,1,2,0}, {3,1,0,2}, {3,0,2,1,} and {3,0,1,2}.

Second, generate a robot action sequence for each one-

unit cycle sequence via Pseudo code 2. There is one for a

given one-unit cycle sequence. For example, consider the

case m=3 and = { }. The resulting robot action

sequence is s={0,1,0,2,1,0,2,1,2}.

Third, apply the multistage linear programming models

from Section II to each s.

Fourth, select a best sequence from among these full robot

actions sequences as follows. It must be feasible, obtain the

minimum makespan from among the sequences, and achieve

the minimal average wafer delay from among those with

minimal makespan. □

 The selected sequence serves as an upper bound for our
branch and bound model. If we can prove that a branch in the

branch and bound tree will provide a larger makespan than

the upper bound, we will discard it. To this end, we next

develop a lower bound.

B. Lower Bound

The minimum makespan of a sequence with wafer delay

constraints cannot be less than the minimum makespan of the

same sequence without wafer delay constraints, all other

things being equal. Therefore, the minimum makespan

without time windows can serve as a lower bound for our
problem. Now the task is to find an efficient algorithm that

859

helps obtain this lower bound. In [8], Wikborg et al.

suggested an efficient dynamic programming (DP) algorithm

to find an optimal robot sequence without time window

constraints. The main idea is that when there are two

identical states (same wafer occupancy in each chamber), we

compare the ready times of each resource and discard the
state that is inferior.

In [8], the DP algorithm obtains an optimal solution for a

problem with 5 process steps and 1000 wafers within 1

second. As the speed of this algorithm is substantially faster

than others in existence, we employ it to obtain our lower

bound.

Since the DP algorithm does not consider wafer delay

constraints, it might discard the states that we want to keep.

As such, we do not discard the states in the branch and

bound tree at this stage. For each state, we obtain the

minimum makespan from the DP algorithm without wafer

delay constraints. If this lower bound (LB) on makespan
exceeds the upper bound (UB), then we discard the state.

Here we briefly introduce the branching strategy that is

used in [8]. Let denote the number of wafers in the PM.

Then, the state (, ,…,) shows the wafer occupancy of
each PM at some point of time. For instance, (4,0,1,0) means

that there are 4 wafers in the input load lock, 1 wafer in the

second PM, and no wafers in the other PMs. The next

possible robot action is either 0 or 2; the robot can either

unload a wafer from the input load lock or a wafer from the

second PM. As such, from a given state, we can determine

the next possible robot action(s) and the subsequent next

state. Each subsequent state is the descendent of the original

state. The robot action to reach that descendent is embedded

in the arrow from parent to descendent. The result is a

reachability graph.

Example 2: Lower bounds. Consider the case m=3, n=4,

 =100s, =150s, δ=ε=1s. Using the preceding, an upper

bound sequence can be obtained as s={0,1,0,2,1,0,2,1,0,2,

1,2}. Its minimal makespan and total wafer delay are 730s

and 0s.

Figure 1 shows the reachability tree or branch and bound

tree. Here, the states are a vector of four integer values.

Each value is the number of wafers in the corresponding

process module. The DP algorithm provides a lower bound

on the makespan of states (3,0,0,1), (2,0,0,2) and (1,0,0,3) as
833s. This exceeds the upper bound of 730s, so these states

are discarded. As a result, only one branch remains; it is the

upper bound sequence, s={0,1,0,2,1,0,2,1,0,2,1,2}. In Figure

1, states with colours are the states that have been discarded

based on the UB and LB comparison. □

For the surviving states, we extract the robot sequence

from the reachability graph and apply the multistage linear

programming model in Section II to check its feasibility for

the wafer delay constraints. (We are guaranteed at least one

feasible branch if there was a feasible sequence obtained
from the extended one-unit cycle sequences.) The branch and

bound algorithm with upper bound, lower bound and

feasibility check follows.

Fig. 1 Reachability graph using the UB and LB elimination strategy

First, the DP algorithm of [8] finds the minimum

makespan for each state without considering the wafer delay

constraints. Denote this makespan as
Second, the LP of Section II is used to obtain an upper

bound on the makespan. Denote it as .

Third, if = and the total wafer delay of the upper

bound is zero, then we have an optimal solution. Otherwise,

we generate descendant states. For each generated state, find

its lower bound and discard the state if it exceeds the upper

bound. Also, check the feasibility of each branch and discard

one that violates the wafer delay constraints.

IV. PERFORMANCE EVALUATION

To assess the computational efficiency of the proposed

approach, we studied several cases. We created 30 randomly

generated cases each for m’=3, 4, 5 and 6.

For each case, the process times, time windows and robot
move times were uniformly distributed and independent of

all others. The stage processing times, time windows, δ and ε

were uniformly distributed in the range [50, 300], [0, 10], [1,

2] and [1, 2] seconds, respectively. For m’≤4, we obtained an

optimal solution for all the 60 cases. For m’≥5, there were 6

cases out of the 60 trials in which the algorithm did not come

to a solution due to the heavy computational load. The

average computation times to obtain an optimal solution

were 1, 1.8, 5.9 and 24 seconds for m’=3, 4, 5 and 6,

respectively, excluding the timed out cases.

For the cases where the branch and bound algorithm failed

to converge, we use the upper bound as a good candidate.

0,1,0,3

1,0,0,3

0,0,1,3

0,0,0,4

1,1,1,1

1,1,0,2

23,1,0,1 1,0,1,2

0,1,1,2

2,0,0,2

4,0,0,0

3,1,0,0

3,0,1,0

3,0,0,1 2,1,1,0

2,1,0,1

2,0,1,1

860

Figures 2 and 3 show the difference between the upper

bound and lower bound for m’=5 and m’=6. The maximum

gap between the lower bound and upper bound in all the trial

cases is within 2%. Since the optimal solution must have

value between the upper bound and lower bound, the

difference between the upper bound and optimal makespan is
at most 2%.

Fig. 2 UB vs. LB for m’=5 Fig. 3 UB vs. LB for m’=6

V. CONCLUSION

We proposed a multistage linear programming (LP) model

that consists of two LPs. The first LP minimizes the total

makespan of any given robot sequence while meeting wafer

delay constraints, if that is possible. If the first LP is feasible,

we apply the second LP to minimize the total wafer delays.

Both LP models adjust the timings of each robot action to
meet the wafer delay constraints.

Next we developed a branch and bound algorithm to find

an optimal robot sequence. A DP approach was employed to

obtain a lower bound on the makespan. An approach based

on extending the one-cycle sequences into the transient

regime was used to identify an upper bound on the makespan.

The multistage LP was used to check the time window

feasibility of each branch. The lower bound, upper bound

and feasibility check are employed to eliminate fruitless

paths.

This approach is relatively simple but gives optimal or
good solutions in a relatively short time without assuming

the backward sequence.

Since our focus is on single armed circular cluster tools,

future work may extend the approach to dual armed cluster

tools, linear cluster tools or multi-cluster tools. It would also

be useful to allow wafer reentrance or lots with different

recipes.

ACKNOWLEDGMENT

This work was supported in part by Korea Research

Foundation (KRF) Grants N01110132-00 and N01120191.00.

REFERENCES

[1] Terry L. Perkinson, Peter K. McLarty, Ronald S. Gyurcsik, and Ralph

K. Cavin Ⅲ. “Single-wafer cluster tool performance: an analysis of

throughput.” IEEE Transactions on Semiconductor Manufacturing,

Vol.7, No.3, August 1994.

[2] Milind W. Dawande, H. Neil Geismar, Suresh P. Sethi, and Chelliah

Sriskandarajah. “Throughput optimization in robotic cells”,

Springer`s International Series in Operations Research &

Management Science, Volume 101, 2007

[3] Tae-Eog Lee, Hwan-Yong Lee, and Yong-Ho Shin. "Workload

balancing and scheduling of a single-armed cluster tool," Proceedings

of the 5th Asian-Pacifica Industrial Engineering and Management

Systems Conference, Gold Coast, Australia, Dec. 2004.

[4] Dae-Kyu Kim, Yu-Ju Jung, Chihyun Jung, and Tae-Eog Lee. "Cyclic

scheduling of cluster tools with non-identical chamber access times

between parallel chambers," IEEE Transactions on Semiconductor

Manufacturing, vol. 25, no. 3, pp. 420-431, 2012.

[5] Young-hun Ahn, and James R. Morrison. “Analysis of circular cluster

tools: Transient behavior and semiconductor equipment models”,

Proceedings of the 6th Annual IEEE Conference on Automation

Science and Engineering, Toronto, Canada, August 2010, pp. 39-44.

[6] Hyun-Jung Kim, and Tae-Eog Lee. "Scheduling cluster tools with

ready time constraints for consecutive small lots," Proceedings of the

2011 IEEE Conference on Automation Science and Engineering,

Trieste, Italy, Aug. 2011, pp. 96-101.

[7] Jun-Ho Lee, and Tae-Eog Lee. "Scheduling transient periods of

single-armed cluster tools," Proceedings of the 2012 IEEE

Conference on Robotics and Automation, Saint Paul, MN, USA, May.

2012, pp. 5062-5067.

[8] Uno Wikborg, and Tae-Eog Lee. “Non-cyclic scheduling for timed

discrete event systems with application to single-armed cluster tools

using Pareto-optimal optimization”, accepted for publication in IEEE

Transactions on Automation Science and Engineering

[9] Kyungsu Park, and James R. Morrison. “Control of wafer release in

multi cluster tools”, Proceedings of the 2010 8th IEEE International

Conference on Control and Automation (ICCA 2010), Xiamen, China,

June 2010, pp. 1481-1487.

[10] Kyungsu Park and James R. Morrison, “Scheduling of job release in

flexible flow lines: An LP approach and applications to

semiconductor wafer fabrication”, in revision for the IEEE

Transactions on Automation Science and Engineering (IEEE).

[11] Ja-Hee Kim, Tae-Eog Lee, Hwan-Yong Lee, and Doo Byeong Park..

"Scheduling analysis of time-constrained dual-armed cluster tools,"

IEEE Transactions on Semiconductor Manufacturing, Vol. 16, No. 3,

p. 521 - 534, 2003.

[12] Ja-Hee Kim, “Stable Schedule for a single-armed cluster tool with

time constraints,” 4
th
 IEEE Conference on Automation Science and

Engineering, Key Bridge Marriott, Washington DC, USA, Aug. 2008.

[13] Naiqi Wu, Chengbin Chu, Feng Chu, and Meng Chu Zhou. “A petri

net method for schedulability and scheduling problems in single-arm

cluster tools with wafer residency time constraints”, IEEE

Transactions on semiconductor manufacturing, vol.21, No.2, May

2008.

[14] Yan Qiao, NaiQi Wu, and MengChu Zhou. “Petri net modeling and

wafer sojourn time analysis of single-arm cluster tools with residency

time constraints and activity time variation”, IEEE Transactions on

Semiconductor Manufacturing, Vol.25, No.3, Aug. 2012.

[15] Tae-Kyu Kim, Chihyun Jung, and Tae-Eog Lee. "Scheduling start-up

and close-down periods of dual-armed cluster tools with wafer delay

regulation," International Journal of Production Research, vol. 50,

no. 10, pp. 2785-2795, 2012.

[16] Wai Kin (Victor) Chan, and Lee Schruben. “Optimization models of

discrete-event system dynamics”, Operations Research, Vol. 56, No.

5, September-October 2008, pp. 1218-1237

861

